Apodized phase plates & Shaped pupils

Size: px
Start display at page:

Download "Apodized phase plates & Shaped pupils"

Transcription

1 Apodized phase plates & Shaped pupils Surprising similarities & key differences Carlotti Alexis & Mamadou N Diaye Combining Coronagraphs and Wavefront Control - Oct. 6-1, Lorentz Center, Leiden 1

2 'Direct' apodizers Shaped pupil (SP) Apodized phase plate (APP) Amplitude mask Phase mask Achromatic Two sided - Partially achromatic Two-sided with vector-app Spergel, Kasdin, 21 Kasdin, Vanderbei, Littman, 23 Carlotti, Vanderbei, Kasdin, 21-2 Codono, 24 Kenworthy, Quanz, Meyer & 5 co-authors, 21 Snik, Otten, Kenworthy & 4 co-authors, 212

3 2D SP APP Pupil Image Optimization problem: Maximize: N X N X A(xi, yj ) i=1 i=1 With two constraints: -1 < A(xi, yj ) < 1 E(uk, vl ) 2 < 1 with {xi, yj } in Pupil c with {uk, vl } in Dark zone Phase mask w/ real amplitude: APP with two symmetric dark zones 3

4 Two-sided: similar performance In some cases, APP have a slight advantage over SP especially in 'extreme' cases (small IWA, very high contrast ) APP SP Angular distance (lambda/d) Shaped pupil PSF (log scale) TAiry=28% PSF ; CObs=.3 ; CST=8 ; IWA=6 ; ALPHA=18 Throughput: 33% TAiry=32% SP [,1] APP [-1,1] lambda/d 4

5 Hundreds of SP designed for specific telescopes but no global characterization yet Clear aperture Gemini/VLT-like Segmented WFIRST-AFTA => New paper submitted in Sept. 214! - trade-offs: IWA vs Contrast vs Obscuration, etc. - sensitivity to low-order aberrations - Benefits of APLC-like mode vs standalone mode (Carlotti, N Diaye, Riggs, Kasdin, Soummer, Vanderbei, Pueyo, Zimmerman) 5

6 Standalone vs. APLC Standalone 1/3 of masks have 5-13 contrast gain w/ APLC NACO APLC SPHERE APLC configuration provides higher contrast! Higher gain for smaller IWA (proportionally more energy next to FPM) 6

7 Closed-form approximations Tring = -.79 CObs IWA -.74 OWA C Tbowtie = -.54 CObs IWA +.11 OWA C Great for early design process Bow-tie T CO IWA OWA C T CO IWA OWA C Ring T CO IWA OWA C T CO IWA OWA C e.g.: W/ a bow-tie region, one order smaller C <=>.5 λ/d larger IWA 7

8 Moving energy around - Energy moved as close to the star as possible - Some regions are better suited than others: W/ real amplitude masks W/ APP Original PSF Ring Bow-tie 8

9 Optimizing the phase? You may optimize Re & Im, instead of phase "Non physical" cost functions work, e.g.: NX NX (A R (x i,y j )+A I (x i,y j )) i=1 j=1 Phasers are limited to inscribe square: I 1/ p 2 R 1/ p 2 9

10 One-sided dark zone More throughput, smaller IWA.5 PHASE ; CObs=.3 ; CST=8 ; IWA eff =2.5 ; ALPHA=6 3.5 PHASE ; CObs=.3 ; CST=8 ; IWA eff =2.5 ; ALPHA= π/2 -π/ APP is made of! phase steps lambda/d PSF ; CObs=.3 ; CST=8 ; IWA =2.5 ; ALPHA=6 eff lambda/d PSF ; CObs=.3 ; CST=8 ; IWA =2.5 ; ALPHA=18 eff Left: 6 dark hole: 43% throughput lambda/d lambda/d Right: 18 dark hole: 3% throughput

11 Application to WFIRST-AFTA 2.9 λ/d IWA, 1-8 contrast (5x1-9 in 2 nd image plane) 26% Airy throughput for 18 region (~ same for 12 ).5 APP phase ; Throughput=26% ; IWA=2.5 λ/d ; C= APP PSF (log scale) = Angular extent! w/ SP for AFTA 1 2 units of pupil diameter 1 1 Angular distance (lambda/d)

12 IWA vs. Throughput Throughput for 6 dark zone, 15% obscuration IWAmin depends on contrast, not on obscuration: IWAmin = 2 λ/d for 1-6 IWAmin = 2.5 λ/d for dark hole : Clear advantage for APP if planet location is known Airy throughput (%) Throughput vs. IWA ; CObs=.15 ; ALPHA=6 APP 1-6 APP 1-8 Disc. - SP 1-6 Charact. - SP 1-6 Disc. - SP 1-8 Charact. - SP 1-8 CST=6 CST= Effective IWA (λ/d) 12

13 IWA vs. Throughput Throughput for 18 dark zone, 3% obscuration (15% higher for 15% obscuration) IWAmin depends on contrast, not on obscuration: IWAmin = 2 λ/d for 1-6 IWAmin = 2.5 λ/d for dark hole : Clear advantage for APP even in discovery mode Airy throughput (%) Throughput vs. IWA ; CObs=.3 ; ALPHA=18 APP 1-6 APP 1-8 CST=6 CST=8 Charact. - SP 1-6 Discovery - SP Effective IWA (λ/d) 13

14 WFE effects on APP 1% bandwidth Standalone configuration APLC configuration Obs: 15% - IWA: 1.5l êd - ALF: 6 Normalized intensity in log scale Two groups Contrast in Dmag tip tilt defocus astigmatism astigmatism2 coma coma2 trefoil trefoil2 spherical rms WFE error in l unit 14

15 COMPASS simulations E-ELT pupil ; r=16cm ; windspeed=2m/s ; Roof-sensor ; 64x64 DM + tip-tilt DM ; Obs. at 3.5 μm (METIS).5 sec of exposure time (25 x 5ms simulated frames) W/ APP W/ SP (for HARMONI) -1 IWA = 2 λ/d 39 mas OWA = 24 λ/d 47 mas residual spikes 15 Plume? -5-6

16 Missing segments presented at the Exoplanets with E-ELT workshop in Garching (Feb. 214) With 3 (randomly) missing segments:! 1% chance to have < 1-6 mean contrast! 5% chance to have < 1-5 mean contrast! 9% chance to have < 3x1-5 mean contrast Possible solutions: - design coronagraphs for missing segments (each night ) - use micro-mirror arrays with 1k x 1k mirrors (see Zamkotsian et al.) - adaptive liquid crystal plate? - use adaptive optics to accommodate (but how much stroke?) - 1 DM? 2 DMs? Stroke? Number of actuators?

Predicting the Performance of Space Coronagraphs. John Krist (JPL) 17 August st International Vortex Workshop

Predicting the Performance of Space Coronagraphs. John Krist (JPL) 17 August st International Vortex Workshop Predicting the Performance of Space Coronagraphs John Krist (JPL) 17 August 2016 1 st International Vortex Workshop Determine the Reality of a Coronagraph through End-to-End Modeling Use End-to-End modeling

More information

High-contrast imaging with E-ELT/HARMONI

High-contrast imaging with E-ELT/HARMONI High-contrast imaging with E-ELT/HARMONI A. Carlotti, C. Vérinaud, J.-L. Beuzit, D. Mouillet - IPAG D. Gratadour - LESIA Spectroscopy with HARMONI - 07/2015 - Oxford University 1 Imaging young giant planets

More information

Optimization of Apodized Pupil Lyot Coronagraph for ELTs

Optimization of Apodized Pupil Lyot Coronagraph for ELTs Optimization of Apodized Pupil Lyot Coronagraph for ELTs P. Martinez 1,2, A. Boccaletti 1, M. Kasper 2, P. Baudoz 1 & C. Cavarroc 1 1 Observatoire de Paris-Meudon / LESIA 2 European Southern Observatory

More information

Towards Contrast for Terrestrial Exoplanet Detection:

Towards Contrast for Terrestrial Exoplanet Detection: Towards 10 10 Contrast for Terrestrial Exoplanet Detection: Coronography Lab Results and Wavefront Control Methods Ruslan Belikov, Jeremy Kasdin, David Spergel, Robert J. Vanderbei, Michael Carr, Michael

More information

The Shaped Pupil Coronagraph for Planet Finding Coronagraphy: Optimization, Sensitivity, and Laboratory Testing

The Shaped Pupil Coronagraph for Planet Finding Coronagraphy: Optimization, Sensitivity, and Laboratory Testing The Shaped Pupil Coronagraph for Planet Finding Coronagraphy: Optimization, Sensitivity, and Laboratory Testing N. Jeremy Kasdin a, Robert J. Vanderbei b, Michael G. Littman a, Michael Carr c and David

More information

Design and test of a high-contrast imaging coronagraph based on two. 50-step transmission filters

Design and test of a high-contrast imaging coronagraph based on two. 50-step transmission filters Design and test of a high-contrast imaging coronagraph based on two 50-step transmission filters Jiangpei Dou *a,b, Deqing Ren a,b,c, Yongtian Zhu a,b, Xi Zhang a,b,d, Xue Wang a,b,d a. National Astronomical

More information

Astronomy. Astrophysics. Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph

Astronomy. Astrophysics. Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph A&A 566, A31 (214) DOI: 1.151/4-6361/21323258 c ESO 214 Astronomy & Astrophysics Apodized phase mask coronagraphs for arbitrary apertures II. Comprehensive review of solutions for the vortex coronagraph

More information

Opportunities and Challenges with Coronagraphy on WFIRST/AFTA

Opportunities and Challenges with Coronagraphy on WFIRST/AFTA Opportunities and Challenges with Coronagraphy on WFIRST/AFTA Neil Zimmerman and N. Jeremy Kasdin Princeton University Nov 18, 2014 WFIRST/AFTA Exoplanet Imaging Science Goals Detect and characterize a

More information

An overview of WFIRST-AFTA coronagraph modelling

An overview of WFIRST-AFTA coronagraph modelling An overview of WFIRST-AFTA coronagraph modelling John Krist, Bijan Nemati, Hanying Zhou, Erkin Sidick Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

More information

arxiv: v1 [astro-ph.im] 15 Aug 2012

arxiv: v1 [astro-ph.im] 15 Aug 2012 Broadband Focal Plane Wavefront Control of Amplitude and Phase Aberrations Tyler D. Groff a, N. Jeremy Kasdin a, Alexis Carlotti a and A J Eldorado Riggs a a Princeton University, Princeton, NJ USA arxiv:128.3191v1

More information

arxiv: v1 [astro-ph.im] 7 Sep 2017

arxiv: v1 [astro-ph.im] 7 Sep 2017 Draft version September 11, 2017 Preprint typeset using L A TEX style emulateapj v. 01/23/15 ACTIVE CORRECTION OF APERTURE DISCONTINUITIES - OPTIMIZED STROKE MINIMIZATION I: A NEW ADAPTIVE INTERACTION

More information

Checkerboard-Mask Coronagraphs for High-Contrast Imaging

Checkerboard-Mask Coronagraphs for High-Contrast Imaging Checkerboard-Mask Coronagraphs for High-Contrast Imaging Robert J. Vanderbei Operations Research and Financial Engineering, Princeton University rvdb@princeton.edu N. Jeremy Kasdin Mechanical and Aerospace

More information

PhD Defense. Low-order wavefront control and calibration for phase-mask coronagraphs. Garima Singh

PhD Defense. Low-order wavefront control and calibration for phase-mask coronagraphs. Garima Singh PhD Defense 21st September 2015 Space Telescope Science Institute, Baltimore on Low-order wavefront control and calibration for phase-mask coronagraphs by Garima Singh PhD student and SCExAO member Observatoire

More information

Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes

Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes Neil T. Zimmerman, a A J Eldorado Riggs, a, N. Jeremy Kasdin a, Alexis Carlotti b, Robert J. Vanderbei c a Princeton

More information

Laboratory Experiment of a High-contrast Imaging Coronagraph with. New Step-transmission Filters

Laboratory Experiment of a High-contrast Imaging Coronagraph with. New Step-transmission Filters Laboratory Experiment of a High-contrast Imaging Coronagraph with New Step-transmission Filters Jiangpei Dou *a,b,c, Deqing Ren a,b,d, Yongtian Zhu a,b & Xi Zhang a,b,c a. National Astronomical Observatories/Nanjing

More information

Proposed Adaptive Optics system for Vainu Bappu Telescope

Proposed Adaptive Optics system for Vainu Bappu Telescope Proposed Adaptive Optics system for Vainu Bappu Telescope Essential requirements of an adaptive optics system Adaptive Optics is a real time wave front error measurement and correction system The essential

More information

arxiv: v1 [astro-ph.im] 19 Jan 2016

arxiv: v1 [astro-ph.im] 19 Jan 2016 Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes arxiv:1601.05121v1 [astro-ph.im] 19 Jan 2016 Neil T. Zimmerman, a A J Eldorado Riggs, a, N. Jeremy Kasdin a, Alexis Carlotti

More information

Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes

Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes Neil T. Zimmerman A. J. Eldorado Riggs N. Jeremy Kasdin Alexis Carlotti Robert J. Vanderbei Journal of Astronomical Telescopes,

More information

COMPARISON OF WAVEFRONT CONTROL ALGORITHMS AND FIRST RESULTS ON THE HIGH-CONTRAST IMAGER FOR COMPLEX APERTURE TELESCOPES (HICAT) TESTBED

COMPARISON OF WAVEFRONT CONTROL ALGORITHMS AND FIRST RESULTS ON THE HIGH-CONTRAST IMAGER FOR COMPLEX APERTURE TELESCOPES (HICAT) TESTBED COMPARISON OF WAVEFRONT CONTROL ALGORITHMS AND FIRST RESULTS ON THE HIGH-CONTRAST IMAGER FOR COMPLEX APERTURE TELESCOPES (HICAT) TESTBED L. Leboulleux 1,2,3, M. N Diaye 3, J. Mazoyer 3, L. Pueyo 3, M.

More information

The predicted performance of the ACS coronagraph

The predicted performance of the ACS coronagraph Instrument Science Report ACS 2000-04 The predicted performance of the ACS coronagraph John Krist March 30, 2000 ABSTRACT The Aberrated Beam Coronagraph (ABC) on the Advanced Camera for Surveys (ACS) has

More information

Potential benefits of freeform optics for the ELT instruments. J. Kosmalski

Potential benefits of freeform optics for the ELT instruments. J. Kosmalski Potential benefits of freeform optics for the ELT instruments J. Kosmalski Freeform Days, 12-13 th October 2017 Summary Introduction to E-ELT intruments Freeform design for MAORY LGS Free form design for

More information

arxiv: v1 [astro-ph.im] 28 Mar 2018

arxiv: v1 [astro-ph.im] 28 Mar 2018 Astronomy & Astrophysics manuscript no. main c ESO 218 March 29, 218 The Single-mode Complex Amplitude Refinement (SCAR) coronagraph I. Concept, theory and design E.H. Por and S.Y. Haffert arxiv:183.691v1

More information

Matthew R. Bolcar NASA GSFC

Matthew R. Bolcar NASA GSFC Matthew R. Bolcar NASA GSFC 14 November 2017 What is LUVOIR? Crab Nebula with HST ACS/WFC Credit: NASA / ESA Large UV / Optical / Infrared Surveyor (LUVOIR) A space telescope concept in tradition of Hubble

More information

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS

INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS INTRODUCTION TO ABERRATIONS IN OPTICAL IMAGING SYSTEMS JOSE SASIÄN University of Arizona ШШ CAMBRIDGE Щ0 UNIVERSITY PRESS Contents Preface Acknowledgements Harold H. Hopkins Roland V. Shack Symbols 1 Introduction

More information

HC(ST) 2 : The High Contrast Spectroscopy Testbed for Segmented Telescopes

HC(ST) 2 : The High Contrast Spectroscopy Testbed for Segmented Telescopes HC(ST) 2 : The High Contrast Spectroscopy Testbed for Segmented Telescopes Garreth Ruane Exoplanet Technology Lab, Caltech NSF Astronomy and Astrophysics Postdoctoral Fellow On behalf of our Caltech/JPL

More information

Exoplanet Imaging with the Giant Magellan Telescope

Exoplanet Imaging with the Giant Magellan Telescope Exoplanet Imaging with the Giant Magellan Telescope Johanan L. Codona Steward Observatory, University of Arizona, Tucson, AZ, USA 85721 ABSTRACT The proposed Giant Magellan Telescope (GMT) has a number

More information

Making Dark Shadows with Linear Programming

Making Dark Shadows with Linear Programming Making Dark Shadows with Linear Programming Robert J. Vanderbei 28 Nov 1 Faculty of Engineering Dept. of Management Sciences University of Waterloo http://www.princeton.edu/~rvdb Are We Alone? Indirect

More information

arxiv: v2 [astro-ph.im] 2 Oct 2017

arxiv: v2 [astro-ph.im] 2 Oct 2017 Accepted in the Astronomical Journal Preprint typeset using L A TEX style emulateapj v. 1/23/15 POLYNOMIAL APODIZERS FOR CENTRALLY OBSCURED VORTEX CORONAGRAPHS Kevin Fogarty 1, Laurent Pueyo 2, Johan Mazoyer

More information

Active Correction of Aperture Discontinuities (ACAD) for Space Telescope Pupils: a parametic analysis

Active Correction of Aperture Discontinuities (ACAD) for Space Telescope Pupils: a parametic analysis Active Correction of Aperture Discontinuities (ACAD) for Space Telescope Pupils: a parametic analysis Johan Mazoyer a, Laurent Pueyo a, Colin Norman b, Mamadou N Diaye a, Dimitri Mawet c, Rémi Soummer

More information

The Coronagraph Tree of Life (non-solar coronagraphs)

The Coronagraph Tree of Life (non-solar coronagraphs) The Coronagraph Tree of Life (non-solar coronagraphs) Olivier Guyon (Subaru Telescope) guyon@naoj.org Quick overview of coronagraph designs attempt to group coronagraphs in broad families Where is the

More information

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT Phase and Amplitude Control Ability using Spatial Light Modulators and Zero Path Length Difference Michelson Interferometer Michael G. Littman, Michael Carr, Jim Leighton, Ezekiel Burke, David Spergel

More information

GPI INSTRUMENT PAGES

GPI INSTRUMENT PAGES GPI INSTRUMENT PAGES This document presents a snapshot of the GPI Instrument web pages as of the date of the call for letters of intent. Please consult the GPI web pages themselves for up to the minute

More information

arxiv: v1 [astro-ph.im] 17 Jun 2014

arxiv: v1 [astro-ph.im] 17 Jun 2014 Lyot-based Low Order Wavefront Sensor: Implementation on the Subaru Coronagraphic Extreme Adaptive Optics System and its Laboratory Performance arxiv:1406.4240v1 [astro-ph.im] 17 Jun 2014 Garima Singh

More information

Recent Progress in Vector Vortex Coronagraphy

Recent Progress in Vector Vortex Coronagraphy Recent Progress in Vector Vortex Coronagraphy E. Serabyn* a, D. Mawet b, J.K. Wallace a, K. Liewer a, J. Trauger a, D. Moody a, and B. Kern a a Jet Propulsion Laboratory, California Institute of Technology,

More information

MMTO Technical Memorandum #03-1

MMTO Technical Memorandum #03-1 MMTO Technical Memorandum #03-1 Fall 2002 f/9 optical performance of the 6.5m MMT analyzed with the top box Shack-Hartmann wavefront sensor S. C. West January 2003 Fall 2002 f/9 optical performance of

More information

Astronomy. Astrophysics. Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes

Astronomy. Astrophysics. Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes A&A 492, 289 300 (2008) DOI: 10.1051/0004-6361:200810650 c ESO 2008 Astronomy & Astrophysics Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes P. Martinez

More information

An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy

An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 127:437 444, 2015 May 2015. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. An Achromatic Focal Plane Mask for High-Performance

More information

NASA Ames Research Center, Moffet Field, Mountain View, CA 94035, USA; c. Lockheed Martin Space Systems Company, Palo Alto, CA ABSTRACT

NASA Ames Research Center, Moffet Field, Mountain View, CA 94035, USA; c. Lockheed Martin Space Systems Company, Palo Alto, CA ABSTRACT The EXoplanetary Circumstellar Environments and Disk Explorer (EXCEDE) Olivier Guyon*a, Glenn Schneidera, Ruslan Belikovb, Domenick J. Tenerellic Steward Observatory, University of Arizona, 933 Cherry

More information

Binocular and Scope Performance 57. Diffraction Effects

Binocular and Scope Performance 57. Diffraction Effects Binocular and Scope Performance 57 Diffraction Effects The resolving power of a perfect optical system is determined by diffraction that results from the wave nature of light. An infinitely distant point

More information

Laboratory demonstration and characterization of phase-sorting interferometry

Laboratory demonstration and characterization of phase-sorting interferometry Laboratory demonstration and characterization of phase-sorting interferometry Gilles P.P.L. Otten a, Matthew A. Kenworthy a and Johanan L. Codona b a Leiden Observatory, P.O. Box 9513, 2300 RA Leiden,

More information

arxiv: v1 [astro-ph.im] 11 Jul 2018

arxiv: v1 [astro-ph.im] 11 Jul 2018 Phase-induced amplitude apodization complex mask coronagraph tolerancing and analysis Justin M. Knight a,b, Olivier Guyon a,b,c, Julien Lozi c, Nemanja Jovanovic d, and Jared R. Males b arxiv:1807.04379v1

More information

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measurement of low-order aberrations with an autostigmatic microscope William P. Kuhn Measurement of low-order aberrations with

More information

SPEED: the Segmented Pupil Experiment for Exoplanet Detection

SPEED: the Segmented Pupil Experiment for Exoplanet Detection SPEED: the Segmented Pupil Experiment for Exoplanet Detection P. Martinez *a, O. Preis a, C. Gouvret a, J. Dejongue a, J-B. Daban a, A. Spang a, F. Martinache a, M. Beaulieu a, P. Janin-Potiron a, L. Abe

More information

Wavefront control for highcontrast

Wavefront control for highcontrast Wavefront control for highcontrast imaging Lisa A. Poyneer In the Spirit of Bernard Lyot: The direct detection of planets and circumstellar disks in the 21st century. Berkeley, CA, June 6, 2007 p Gemini

More information

arxiv: v2 [astro-ph.ep] 17 Jun 2016

arxiv: v2 [astro-ph.ep] 17 Jun 2016 Astronomy & Astrophysics manuscript no. zelda2 c ESO 218 April, 218 arxiv:166.189v2 [astro-ph.ep] 17 Jun 216 Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike

More information

Bruce Macintosh for the GPI team Presented at the Spirit of Lyot conference June 7, 2007

Bruce Macintosh for the GPI team Presented at the Spirit of Lyot conference June 7, 2007 This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. Bruce Macintosh for the GPI

More information

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry Optics of Wavefront Austin Roorda, Ph.D. University of Houston College of Optometry Geometrical Optics Relationships between pupil size, refractive error and blur Optics of the eye: Depth of Focus 2 mm

More information

arxiv: v1 [astro-ph.im] 6 Nov 2009

arxiv: v1 [astro-ph.im] 6 Nov 2009 High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation arxiv:0911.1307v1 [astro-ph.im] 6 Nov 2009 Olivier Guyon National Astronomical Observatory of Japan, Subaru

More information

CHARA Collaboration Review New York 2007 CHARA Telescope Alignment

CHARA Collaboration Review New York 2007 CHARA Telescope Alignment CHARA Telescope Alignment By Laszlo Sturmann Mersenne (Cassegrain type) Telescope M2 140 mm R= 625 mm k = -1 M1/M2 provides an afocal optical system 1 m input beam and 0.125 m collimated output beam Aplanatic

More information

VATT Optical Performance During 98 Oct as Measured with an Interferometric Hartmann Wavefront Sensor

VATT Optical Performance During 98 Oct as Measured with an Interferometric Hartmann Wavefront Sensor VATT Optical Performance During 98 Oct as Measured with an Interferometric Hartmann Wavefront Sensor S. C. West, D. Fisher Multiple Mirror Telescope Observatory M. Nelson Vatican Advanced Technology Telescope

More information

arxiv: v1 [astro-ph.im] 5 Nov 2015

arxiv: v1 [astro-ph.im] 5 Nov 2015 Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph Eric Cady a, Camilo Mejia Prada a, Xin An a, Kunjithapatham Balasubramanian a, Rosemary Diaz a, N.

More information

The Aberration Structure of the Keratoconic Eye

The Aberration Structure of the Keratoconic Eye The Aberration Structure of the Keratoconic Eye Geunyoung Yoon, Ph.D. Department of Ophthalmology Center for Visual Science Institute of Optics Department of Biomedical Engineering University of Rochester

More information

WaveMaster IOL. Fast and accurate intraocular lens tester

WaveMaster IOL. Fast and accurate intraocular lens tester WaveMaster IOL Fast and accurate intraocular lens tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is a new instrument providing real time analysis

More information

Optimal apodizations for on-axis vector vortex coronagraphs

Optimal apodizations for on-axis vector vortex coronagraphs Optimal apodizations for on-axis vector vortex coronagraphs Kevin Fogarty a, Laurent Pueyo b, Dimitri Mawet c a Johns Hopkins Universty Department of Physics and Astronomy, 3400 N. Charles St, Baltimore,

More information

Focal Plane and non-linear Curvature Wavefront Sensing for High Contrast Coronagraphic Adaptive Optics Imaging

Focal Plane and non-linear Curvature Wavefront Sensing for High Contrast Coronagraphic Adaptive Optics Imaging Focal Plane and non-linear Curvature Wavefront Sensing for High Contrast Coronagraphic Adaptive Optics Imaging Olivier Guyon Subaru Telescope 640 N. A'ohoku Pl. Hilo, HI 96720 USA Abstract Wavefronts can

More information

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester WaveMaster IOL Fast and Accurate Intraocular Lens Tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is an instrument providing real time analysis of

More information

High Contrast Imaging

High Contrast Imaging High Contrast Imaging Suppressing diffraction (rings and other patterns) Doing this without losing light Suppressing scattered light Doing THIS without losing light Diffraction rings arise from the abrupt

More information

Speckle Phase Sensing in Vortex Coronagraphy

Speckle Phase Sensing in Vortex Coronagraphy Speckle Phase Sensing in Vortex Coronagraphy Gene Serabyn Jet Propulsion Laboratory California Ins=tute of Technology Oct 6, 2014 Copyright 2014 California Institute of Technology. U.S. Government sponsorship

More information

The Extreme Adaptive Optics test bench at CRAL

The Extreme Adaptive Optics test bench at CRAL The Extreme Adaptive Optics test bench at CRAL Maud Langlois, Magali Loupias, Christian Delacroix, E. Thiébaut, M. Tallon, Louisa Adjali, A. Jarno 1 XAO challenges Strehl: 0.7

More information

What is Wavefront Aberration? Custom Contact Lenses For Vision Improvement Are They Feasible In A Disposable World?

What is Wavefront Aberration? Custom Contact Lenses For Vision Improvement Are They Feasible In A Disposable World? Custom Contact Lenses For Vision Improvement Are They Feasible In A Disposable World? Ian Cox, BOptom, PhD, FAAO Distinguished Research Fellow Bausch & Lomb, Rochester, NY Acknowledgements Center for Visual

More information

arxiv: v1 [astro-ph.im] 28 Mar 2018

arxiv: v1 [astro-ph.im] 28 Mar 2018 Astronomy & Astrophysics manuscript no. scar_ii_lab_verification c ESO 2018 March 29, 2018 The Single-mode Complex Amplitude Refinement (SCAR) coronagraph II. Lab verification, and toward the characterization

More information

Optical design of Dark Matter Telescope: improving manufacturability of telescope

Optical design of Dark Matter Telescope: improving manufacturability of telescope Optical design of Dark Matter Telescope: improving manufacturability of telescope Lynn G. Seppala November 5, 2001 The attached slides contain some talking point that could be useful during discussions

More information

Breadboard adaptive optical system based on 109-channel PDM: technical passport

Breadboard adaptive optical system based on 109-channel PDM: technical passport F L E X I B L E Flexible Optical B.V. Adaptive Optics Optical Microsystems Wavefront Sensors O P T I C A L Oleg Soloviev Chief Scientist Röntgenweg 1 2624 BD, Delft The Netherlands Tel: +31 15 285 15-47

More information

High-contrast imaging with E-ELT/METIS. Olivier Absil Université de Liège

High-contrast imaging with E-ELT/METIS. Olivier Absil Université de Liège High-contrast imaging with E-ELT/METIS Olivier Absil Université de Liège 1st VORTEX international workshop Caltech August 2016 First E-ELT instruments approved Three «first light» instruments METIS consortium

More information

End-to-end simulations of the E-ELT/METIS coronagraphs

End-to-end simulations of the E-ELT/METIS coronagraphs End-to-end simulations of the E-ELT/METIS coronagraphs Brunella Carlomagno a, Olivier Absil a, Matthew Kenworthy c, Garreth Ruane d, Christoph U. Keller c, Gilles Otten c, Markus Feldt e, Stefan Hippler

More information

High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation

High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation High Contrast Imaging and Wavefront Control with a PIAA Coronagraph: Laboratory System Validation Olivier Guyon National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 guyon@naoj.org

More information

Calibration of AO Systems

Calibration of AO Systems Calibration of AO Systems Application to NAOS-CONICA and future «Planet Finder» systems T. Fusco, A. Blanc, G. Rousset Workshop Pueo Nu, may 2003 Département d Optique Théorique et Appliquée ONERA, Châtillon

More information

BEAM HALO OBSERVATION BY CORONAGRAPH

BEAM HALO OBSERVATION BY CORONAGRAPH BEAM HALO OBSERVATION BY CORONAGRAPH T. Mitsuhashi, KEK, TSUKUBA, Japan Abstract We have developed a coronagraph for the observation of the beam halo surrounding a beam. An opaque disk is set in the beam

More information

High contrast imaging lab

High contrast imaging lab High contrast imaging lab Ay122a, November 2016, D. Mawet Introduction This lab is an introduction to high contrast imaging, and in particular coronagraphy and its interaction with adaptive optics sytems.

More information

Non-adaptive Wavefront Control

Non-adaptive Wavefront Control OWL Phase A Review - Garching - 2 nd to 4 th Nov 2005 Non-adaptive Wavefront Control (Presented by L. Noethe) 1 Specific problems in ELTs and OWL Concentrate on problems which are specific for ELTs and,

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Geometric optics & aberrations

Geometric optics & aberrations Geometric optics & aberrations Department of Astrophysical Sciences University AST 542 http://www.northerneye.co.uk/ Outline Introduction: Optics in astronomy Basics of geometric optics Paraxial approximation

More information

Reference and User Manual May, 2015 revision - 3

Reference and User Manual May, 2015 revision - 3 Reference and User Manual May, 2015 revision - 3 Innovations Foresight 2015 - Powered by Alcor System 1 For any improvement and suggestions, please contact customerservice@innovationsforesight.com Some

More information

Explanation of Aberration and Wavefront

Explanation of Aberration and Wavefront Explanation of Aberration and Wavefront 1. What Causes Blur? 2. What is? 4. What is wavefront? 5. Hartmann-Shack Aberrometer 6. Adoption of wavefront technology David Oh 1. What Causes Blur? 2. What is?

More information

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline

Lecture 4: Geometrical Optics 2. Optical Systems. Images and Pupils. Rays. Wavefronts. Aberrations. Outline Lecture 4: Geometrical Optics 2 Outline 1 Optical Systems 2 Images and Pupils 3 Rays 4 Wavefronts 5 Aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Lecture 4: Geometrical

More information

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter:

October 7, Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA Dear Peter: October 7, 1997 Peter Cheimets Smithsonian Astrophysical Observatory 60 Garden Street, MS 5 Cambridge, MA 02138 Dear Peter: This is the report on all of the HIREX analysis done to date, with corrections

More information

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations.

Lecture 2: Geometrical Optics. Geometrical Approximation. Lenses. Mirrors. Optical Systems. Images and Pupils. Aberrations. Lecture 2: Geometrical Optics Outline 1 Geometrical Approximation 2 Lenses 3 Mirrors 4 Optical Systems 5 Images and Pupils 6 Aberrations Christoph U. Keller, Leiden Observatory, keller@strw.leidenuniv.nl

More information

Puntino. Shack-Hartmann wavefront sensor for optimizing telescopes. The software people for optics

Puntino. Shack-Hartmann wavefront sensor for optimizing telescopes. The software people for optics Puntino Shack-Hartmann wavefront sensor for optimizing telescopes 1 1. Optimize telescope performance with a powerful set of tools A finely tuned telescope is the key to obtaining deep, high-quality astronomical

More information

DIFFRACTION-BASED SENSITIVITY ANALYSIS OF APODIZED PUPIL-MAPPING SYSTEMS

DIFFRACTION-BASED SENSITIVITY ANALYSIS OF APODIZED PUPIL-MAPPING SYSTEMS The Astrophysical Journal, 652:833Y844, 26 November 2 # 26. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DIFFRACTION-BASED SENSITIVITY ANALYSIS OF APODIZED PUPIL-MAPPING

More information

OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET

OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET P. Dierickx, B. Delabre, L. Noethe European Southern Observatory Abstract We explore solutions for the optical design of the OWL 100-m telescope, and

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes 330 Chapter 12 12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes Similar to the JWST, the next-generation large-aperture space telescope for optical and UV astronomy has a segmented

More information

Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph

Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph Low Order Wavefront Sensing and Control for WFIRST-AFTA Coronagraph Fang Shi, Kunjithapatham Balasubramanian, Randall Bartos, Randall Hein, Brian Kern, John Krist, Raymond Lam, Douglas Moore, James Moore,

More information

Visible Nulling Coronagraph

Visible Nulling Coronagraph Brian Hicks 1 Rick Lyon 2 Matt Bolcar 2 Mark Clampin 2 Jeff Bolognese 2 Pete Dogoda 3 Daniel Dworzanski 4 Michael Helmbrecht 5 Corina Koca 2 Udayan Mallik 2 Ian Miller 6 Pete Petrone 3 1 NASA Postdoctoral

More information

EXCEDE Technology Milestone #1: Monochromatic Contrast Demonstration

EXCEDE Technology Milestone #1: Monochromatic Contrast Demonstration Technology Milestone Whitepaper EXCEDE Technology Milestone #1: Monochromatic Contrast Demonstration Glenn Schneider (The University of Arizona), PI Olivier Guyon (The University of Arizona) Ruslan Belikov

More information

Cardinal Points of an Optical System--and Other Basic Facts

Cardinal Points of an Optical System--and Other Basic Facts Cardinal Points of an Optical System--and Other Basic Facts The fundamental feature of any optical system is the aperture stop. Thus, the most fundamental optical system is the pinhole camera. The image

More information

Hartmann wavefront sensing Beamline alignment

Hartmann wavefront sensing Beamline alignment Hartmann wavefront sensing Beamline alignment Guillaume Dovillaire SOS Trieste October 4th, 2016 G. Dovillaire M COM PPT 2016.01 GD 1 SOS Trieste October 4th, 2016 G. Dovillaire M COM PPT 2016.01 GD 2

More information

arxiv: v1 [astro-ph.im] 13 Oct 2016

arxiv: v1 [astro-ph.im] 13 Oct 2016 Astronomy & Astrophysics manuscript no. Wilby16_cMWS c ESO 2016 October 17, 2016 The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

More information

Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror

Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror Mirror Technology Days June 16 th, 2009 Jason Stewart Steven Cornelissen Paul Bierden Boston Micromachines Corp. Thomas Bifano Boston University Mirror

More information

arxiv: v1 [astro-ph.im] 8 Mar 2018

arxiv: v1 [astro-ph.im] 8 Mar 2018 Astronomy & Astrophysics manuscript no. Wilby18_LWE c ESO 2018 March 9, 2018 Laboratory verification of Fast & Furious phase diversity: Towards controlling the low wind effect in the SPHERE instrument

More information

Astronomical Observing Techniques Lecture 6: Op:cs

Astronomical Observing Techniques Lecture 6: Op:cs Astronomical Observing Techniques Lecture 6: Op:cs Christoph U. Keller keller@strw.leidenuniv.nl Outline 1. Geometrical Op

More information

Starshade Technology Development Status

Starshade Technology Development Status Starshade Technology Development Status Dr. Nick Siegler NASA Exoplanets Exploration Program Chief Technologist Jet Propulsion Laboratory California Institute of Technology Dr. John Ziemer NASA Exoplanets

More information

Review of Basic Principles in Optics, Wavefront and Wavefront Error

Review of Basic Principles in Optics, Wavefront and Wavefront Error Review of Basic Principles in Optics, Wavefront and Wavefront Error Austin Roorda, Ph.D. University of California, Berkeley Google my name to find copies of these slides for free use and distribution Geometrical

More information

Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials

Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials Natalie Clark, PhD NASA Langley Research Center and James Breckinridge University of Arizona, College of Optical Sciences Overview

More information

Aberrations and Visual Performance: Part I: How aberrations affect vision

Aberrations and Visual Performance: Part I: How aberrations affect vision Aberrations and Visual Performance: Part I: How aberrations affect vision Raymond A. Applegate, OD, Ph.D. Professor and Borish Chair of Optometry University of Houston Houston, TX, USA Aspects of this

More information

arxiv: v1 [astro-ph.im] 3 Jul 2014

arxiv: v1 [astro-ph.im] 3 Jul 2014 High-contrast imager for Complex Aperture Telescopes (HiCAT): 2. design overview and first light results arxiv:1407.0980v1 [astro-ph.im] 3 Jul 2014 Mamadou N Diaye a *, Elodie Choquet a, Sylvain Egron

More information

Point-spread Function modeling for the James Webb Space Telescope

Point-spread Function modeling for the James Webb Space Telescope Point-spread Function modeling for the James Webb Space Telescope Colin Cox and Philip Hodge Space Telescope Science Institute 9 November 2006 Leads Meeting 1 Objectives Provide a model of the JWST PSF

More information

Big League Cryogenics and Vacuum The LHC at CERN

Big League Cryogenics and Vacuum The LHC at CERN Big League Cryogenics and Vacuum The LHC at CERN A typical astronomical instrument must maintain about one cubic meter at a pressure of

More information

instruments Solar Physics course lecture 3 May 4, 2010 Frans Snik BBL 415 (710)

instruments Solar Physics course lecture 3 May 4, 2010 Frans Snik BBL 415 (710) Solar Physics course lecture 3 May 4, 2010 Frans Snik BBL 415 (710) f.snik@astro.uu.nl www.astro.uu.nl/~snik info from photons spatial (x,y) temporal (t) spectral (λ) polarization ( ) usually photon starved

More information

CHARA AO Calibration Process

CHARA AO Calibration Process CHARA AO Calibration Process Judit Sturmann CHARA AO Project Overview Phase I. Under way WFS on telescopes used as tip-tilt detector Phase II. Not yet funded WFS and large DM in place of M4 on telescopes

More information