Integrated Micro Machines Inc.

Size: px
Start display at page:

Download "Integrated Micro Machines Inc."

Transcription

1 Integrated Micro Machines Inc. Segmented Galvanometer-Driven Deformable Mirrors Keith O Hara The segmented mirror array developed for an optical cross connect Requirements for the cross-connect Requirements for adaptive optics Adapting the technology 2

2 The Optical Cross-Connect Mirror Array Mirror Array Collimators on single-mode fibers 3

3 Cross Connect Core output collimator array input collimator array MEMS Mirror Arrays 4

4 Built of Linear Arrays Cards are stacked to form arrays of mirrors. 5

5 Mirror Array 3 H x 3.5 W x 3 D 6

6 Reconfiguration Time Optical coupling into single-mode fiber Time, 20milliseconds per division 7

7 Cross-Connect Requirements Array of mirrors Range of ±4º in tip and tilt (our design moves ±100µm in piston) Resolution ±0.001 this is ±0.03µm over a 3mm aperture Reconfigure within 20msec Hold stable calibration Digital bus scaleable to large arrays 8

8 Adaptive Optics Requirements High fill-factor Match the deformed wavefront with range ±100 λ accuracy ±λ/20 Reconfigure to follow the defomation Hold stable calibration Digital bus scaleable to large arrays 10

9 Mirror Array 3 H x 3.5 W x 3 D 13

10 Zoom In 14

11 Modular Assembly MEMS mirrors assembled in 1xN arrays. Solder balls provide both electrical interconnect and gap to enable movement. 18

12 Adapted for Adaptive Optics Mirror Segment Tip/tilt, ±Z actuator Inductive Position Sensor Exploded View 20

13 Single Mirror Prototype First prototypes had R > 20meter Peak Valley <50nm 1/3 550 nm λ/6 550 nm figure λ/9 850 nm figure λ/ nm figure λ/5 850 nm wavefront λ/ nm wavefront 22

14 Mirror Movies (1) (3) (2) (4) 23

15 Mirror Movies (1) (3) 100um (2) (4) 24

16 Array Mirror Prototype 26

17 Bowl Shape Bowl Shape 27

18 Flat Segments Fitting a Surface L= segment size D= aperture diameter (Residual Error) = B n,m (L 2 /D 2 ) (Desired Correction) n\m B n,m giving the residual error for each Zernike polynomial 28

19 Number of Segments Required RMS wavefront corrections for human eyes [J. Porter et al., J. Opt. Soc. Am. A. 18 (8), (2001)] 4 µm in the n = 2 Zernike polynomials, 0.15 µm in n = 3, 0.15 µm in n = 4, 0.05 µm in n = 5. Residual error = 10 µm L 2 /D 2 (mainly in the n=2 terms) Fitting error below λ/10 at 0.5µm L/D < 1/15 29

20 Outlook for Galvanometer-Driven Segmented Mirrors Galvanometer Drive Piston (stroke) greater than ±50µm Segment sizes of 3mm and above (could require too long an optical path for retinal imaging) Segmented mirror Modular construction Can follow branch cuts in the wavefront but, diffraction artifacts limit use in astronomy Integrated control electronics Digital interface Local servo control (~1kHz) of 3 DoF per mirror Local intelligence allows a convenient command set (Zernike coefficients, for example) Calibration stored digitally with temperature compensation if necessary Free Space Optical Communication Retinal Imaging 33

21 Summary of IMMI s Array Tip/Tilt range ±6deg with 0.001deg resolution Piston (stroke) greater than ±50µm with 0.015µm resolution Tip/Tilt/Piston all under a fast 1kHz closed-loop servo control Control electronics for each mirror are integrated onto an ASIC. Mirror flatness is <λ/30, typical rms flatness of <20nm over a 3mm diameter mirror Mirror surface can be coated with metals and/or dielectrics. Fill factor 98% IMMI array is scalable and modular Initial calibration Can absorb instrument error Is stable over time Is stored digitally in EPROM memory Absorbs temperature changes from 0 to 80C Digital bus can update 128 mirror segments in 62.5ms 34

A Segmented, Deployable, Primary Mirror for Earth Observation from a Cubesat Platform

A Segmented, Deployable, Primary Mirror for Earth Observation from a Cubesat Platform A Segmented, Deployable, Primary Mirror for Earth Observation from a Cubesat Platform Noah Schwarz, David Pearson, Stephen Todd, Andy Vick, David Lunney, Donald MacLeod United Kingdom Astronomy Technology

More information

Non-adaptive Wavefront Control

Non-adaptive Wavefront Control OWL Phase A Review - Garching - 2 nd to 4 th Nov 2005 Non-adaptive Wavefront Control (Presented by L. Noethe) 1 Specific problems in ELTs and OWL Concentrate on problems which are specific for ELTs and,

More information

Adaptive Optics for LIGO

Adaptive Optics for LIGO Adaptive Optics for LIGO Justin Mansell Ginzton Laboratory LIGO-G990022-39-M Motivation Wavefront Sensor Outline Characterization Enhancements Modeling Projections Adaptive Optics Results Effects of Thermal

More information

MODULAR ADAPTIVE OPTICS TESTBED FOR THE NPOI

MODULAR ADAPTIVE OPTICS TESTBED FOR THE NPOI MODULAR ADAPTIVE OPTICS TESTBED FOR THE NPOI Jonathan R. Andrews, Ty Martinez, Christopher C. Wilcox, Sergio R. Restaino Naval Research Laboratory, Remote Sensing Division, Code 7216, 4555 Overlook Ave

More information

Proposed Adaptive Optics system for Vainu Bappu Telescope

Proposed Adaptive Optics system for Vainu Bappu Telescope Proposed Adaptive Optics system for Vainu Bappu Telescope Essential requirements of an adaptive optics system Adaptive Optics is a real time wave front error measurement and correction system The essential

More information

Open-loop performance of a high dynamic range reflective wavefront sensor

Open-loop performance of a high dynamic range reflective wavefront sensor Open-loop performance of a high dynamic range reflective wavefront sensor Jonathan R. Andrews 1, Scott W. Teare 2, Sergio R. Restaino 1, David Wick 3, Christopher C. Wilcox 1, Ty Martinez 1 Abstract: Sandia

More information

Computer Generated Holograms for Optical Testing

Computer Generated Holograms for Optical Testing Computer Generated Holograms for Optical Testing Dr. Jim Burge Associate Professor Optical Sciences and Astronomy University of Arizona jburge@optics.arizona.edu 520-621-8182 Computer Generated Holograms

More information

Large-Actuator-Count MEMS. Deformable Mirror Development

Large-Actuator-Count MEMS. Deformable Mirror Development Large-Actuator-Count MEMS www.irisao.com Deformable Mirror Development Michael A. Helmbrecht Iris AO, Inc. www.irisao.com michael.helmbrecht@irisao.com info@irisao.com NIH/NEI Phase II SBIR: 2 R44 EY015381-02A1

More information

Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror

Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror Ultra-Flat Tip-Tilt-Piston MEMS Deformable Mirror Mirror Technology Days June 16 th, 2009 Jason Stewart Steven Cornelissen Paul Bierden Boston Micromachines Corp. Thomas Bifano Boston University Mirror

More information

Testing an off-axis parabola with a CGH and a spherical mirror as null lens

Testing an off-axis parabola with a CGH and a spherical mirror as null lens Testing an off-axis parabola with a CGH and a spherical mirror as null lens Chunyu Zhao a, Rene Zehnder a, James H. Burge a, Hubert M. Martin a,b a College of Optical Sciences, University of Arizona 1630

More information

CHARA AO Calibration Process

CHARA AO Calibration Process CHARA AO Calibration Process Judit Sturmann CHARA AO Project Overview Phase I. Under way WFS on telescopes used as tip-tilt detector Phase II. Not yet funded WFS and large DM in place of M4 on telescopes

More information

Adaptive Optics for ELTs with Low-Cost and Lightweight Segmented Deformable Mirrors

Adaptive Optics for ELTs with Low-Cost and Lightweight Segmented Deformable Mirrors 1st AO4ELT conference, 06006 (20) DOI:.51/ao4elt/2006006 Owned by the authors, published by EDP Sciences, 20 Adaptive Optics for ELTs with Low-Cost and Lightweight Segmented Deformable Mirrors Gonçalo

More information

High contrast imaging lab

High contrast imaging lab High contrast imaging lab Ay122a, November 2016, D. Mawet Introduction This lab is an introduction to high contrast imaging, and in particular coronagraphy and its interaction with adaptive optics sytems.

More information

Development of a Deformable Mirror for High-Power Lasers

Development of a Deformable Mirror for High-Power Lasers Development of a Deformable Mirror for High-Power Lasers Dr. Justin Mansell and Robert Praus MZA Associates Corporation Mirror Technology Days August 1, 2007 1 Outline Introduction & Project Goal Deformable

More information

OPTINO. SpotOptics VERSATILE WAVEFRONT SENSOR O P T I N O

OPTINO. SpotOptics VERSATILE WAVEFRONT SENSOR O P T I N O Spotptics he software people for optics VERSALE WAVEFR SESR Accurate metrology in single and double pass Lenses, mirrors and laser beams Any focal length and diameter Large dynamic range Adaptable for

More information

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions Difrotec Product & Services Ultra high accuracy interferometry & custom optical solutions Content 1. Overview 2. Interferometer D7 3. Benefits 4. Measurements 5. Specifications 6. Applications 7. Cases

More information

SpotOptics. The software people for optics OPAL O P A L

SpotOptics. The software people for optics OPAL O P A L Spotptics The software people for optics UTMTED WVEFRNT SENSR ccurate metrology of standard and aspherical lenses (single pass) ccurate metrology of spherical and flat mirrors (double pass) =0.3 to =50

More information

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Application Note AN004: Fiber Coupling Improvement Introduction AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%. Industrial lasers used for cutting, welding, drilling,

More information

PROCEEDINGS OF SPIE. Double drive modes unimorph deformable mirror with high actuator count for astronomical application

PROCEEDINGS OF SPIE. Double drive modes unimorph deformable mirror with high actuator count for astronomical application PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Double drive modes unimorph deformable mirror with high actuator count for astronomical application Ying Liu, Jianqiang Ma, Junjie

More information

Breadboard adaptive optical system based on 109-channel PDM: technical passport

Breadboard adaptive optical system based on 109-channel PDM: technical passport F L E X I B L E Flexible Optical B.V. Adaptive Optics Optical Microsystems Wavefront Sensors O P T I C A L Oleg Soloviev Chief Scientist Röntgenweg 1 2624 BD, Delft The Netherlands Tel: +31 15 285 15-47

More information

Deformable MEMS Micromirror Array for Wavelength and Angle Insensitive Retro-Reflecting Modulators Trevor K. Chan & Joseph E. Ford

Deformable MEMS Micromirror Array for Wavelength and Angle Insensitive Retro-Reflecting Modulators Trevor K. Chan & Joseph E. Ford Photonics Systems Integration Lab UCSD Jacobs School of Engineering Deformable MEMS Micromirror Array for Wavelength and Angle Insensitive Retro-Reflecting Modulators Trevor K. Chan & Joseph E. Ford PHOTONIC

More information

Predicting the Performance of Space Coronagraphs. John Krist (JPL) 17 August st International Vortex Workshop

Predicting the Performance of Space Coronagraphs. John Krist (JPL) 17 August st International Vortex Workshop Predicting the Performance of Space Coronagraphs John Krist (JPL) 17 August 2016 1 st International Vortex Workshop Determine the Reality of a Coronagraph through End-to-End Modeling Use End-to-End modeling

More information

Segmented deformable mirrors for Ground layer Adaptive Optics

Segmented deformable mirrors for Ground layer Adaptive Optics Segmented deformable mirrors for Ground layer Adaptive Optics Edward Kibblewhite, University of Chicago Adaptive Photonics LLC Ground Layer AO Shack Hartmann Images of 5 guide stars in Steward Observatory

More information

AY122A - Adaptive Optics Lab

AY122A - Adaptive Optics Lab AY122A - Adaptive Optics Lab Purpose In this lab, after an introduction to turbulence and adaptive optics for astronomy, you will get to experiment first hand the three main components of an adaptive optics

More information

Adaptive optic correction using microelectromechanical deformable mirrors

Adaptive optic correction using microelectromechanical deformable mirrors Adaptive optic correction using microelectromechanical deformable mirrors Julie A. Perreault Boston University Electrical and Computer Engineering Boston, Massachusetts 02215 Thomas G. Bifano, MEMBER SPIE

More information

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax:

Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore Tel: Fax: Sintec Optronics Technology Pte Ltd 10 Bukit Batok Crescent #07-02 The Spire Singapore 658079 Tel: +65 63167112 Fax: +65 63167113 High-power Nd:YAG Self-floating Laser Cutting Head We supply the laser

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

Optimization of coupling between Adaptive Optics and Single Mode Fibers ---

Optimization of coupling between Adaptive Optics and Single Mode Fibers --- Optimization of coupling between Adaptive Optics and Single Mode Fibers --- Non common path aberrations compensation through dithering K. Saab 1, V. Michau 1, C. Petit 1, N. Vedrenne 1, P. Bério 2, M.

More information

Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory

Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory J. Astrophys. Astr. (2008) 29, 353 357 Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory A. R. Bayanna, B. Kumar, R. E. Louis, P. Venkatakrishnan & S. K. Mathew Udaipur Solar

More information

Vibration-compensated interferometer for measuring cryogenic mirrors

Vibration-compensated interferometer for measuring cryogenic mirrors Vibration-compensated interferometer for measuring cryogenic mirrors Chunyu Zhao and James H. Burge Optical Sciences Center, University of Arizona, 1630 E. University Blvd, Tucson, AZ 85721 Abstract An

More information

Cornell Caltech Atacama Telescope Primary Mirror Surface Sensing and Controllability

Cornell Caltech Atacama Telescope Primary Mirror Surface Sensing and Controllability Cornell Caltech Atacama Telescope Primary Mirror Surface Sensing and Controllability Daniel MacDonald, a David Woody, b C. Matt Bradford, a Richard Chamberlin, b Mark Dragovan, a Paul Goldsmith, a Simon

More information

OPAL. SpotOptics. AUTOMATED WAVEFRONT SENSOR Single and double pass O P A L

OPAL. SpotOptics. AUTOMATED WAVEFRONT SENSOR Single and double pass O P A L Spotptics The software people for optics UTMTED WVEFRNT SENSR Single and double pass ccurate metrology of standard and aspherical lenses ccurate metrology of spherical and flat mirrors =0.3 to =60 mm F/1

More information

MAORY ADAPTIVE OPTICS

MAORY ADAPTIVE OPTICS MAORY ADAPTIVE OPTICS Laura Schreiber, Carmelo Arcidiacono, Giovanni Bregoli, Fausto Cortecchia, Giuseppe Cosentino (DiFA), Emiliano Diolaiti, Italo Foppiani, Matteo Lombini, Mauro Patti (DiFA-OABO) MAORY

More information

Long-Range Adaptive Passive Imaging Through Turbulence

Long-Range Adaptive Passive Imaging Through Turbulence / APPROVED FOR PUBLIC RELEASE Long-Range Adaptive Passive Imaging Through Turbulence David Tofsted, with John Blowers, Joel Soto, Sean D Arcy, and Nathan Tofsted U.S. Army Research Laboratory RDRL-CIE-D

More information

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator

Figure 7 Dynamic range expansion of Shack- Hartmann sensor using a spatial-light modulator Figure 4 Advantage of having smaller focal spot on CCD with super-fine pixels: Larger focal point compromises the sensitivity, spatial resolution, and accuracy. Figure 1 Typical microlens array for Shack-Hartmann

More information

Puntino. Shack-Hartmann wavefront sensor for optimizing telescopes. The software people for optics

Puntino. Shack-Hartmann wavefront sensor for optimizing telescopes. The software people for optics Puntino Shack-Hartmann wavefront sensor for optimizing telescopes 1 1. Optimize telescope performance with a powerful set of tools A finely tuned telescope is the key to obtaining deep, high-quality astronomical

More information

Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials

Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials Ultralight Weight Optical Systems using Nano-Layered Synthesized Materials Natalie Clark, PhD NASA Langley Research Center and James Breckinridge University of Arizona, College of Optical Sciences Overview

More information

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009 Synopsis of METHOD AND APPARATUS FOR IMPROVING VISION AND THE RESOLUTION OF RETINAL IMAGES by David R. Williams and Junzhong Liang from the US Patent Number: 5,777,719 issued in July 7, 1998 Ron Liu OPTI521-Introductory

More information

ΘΘIntegrating closedloop adaptive optics into a femtosecond laser chain

ΘΘIntegrating closedloop adaptive optics into a femtosecond laser chain Θ ΘΘIntegrating closedloop adaptive optics into a femtosecond laser chain www.imagine-optic.com The Max Planck Institute of Quantum Optics (MPQ) has developed an Optical Parametric Chirped Pulse Amplification

More information

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester WaveMaster IOL Fast and Accurate Intraocular Lens Tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is an instrument providing real time analysis of

More information

Glass Membrane Mirrors beyond NGST

Glass Membrane Mirrors beyond NGST Glass Membrane Mirrors beyond NGST J.H. Burge, J. R. P. Angel, B. Cuerden, N. J Woolf Steward Observatory, University of Arizona Much of the technology and hardware are in place for manufacturing the primary

More information

WaveMaster IOL. Fast and accurate intraocular lens tester

WaveMaster IOL. Fast and accurate intraocular lens tester WaveMaster IOL Fast and accurate intraocular lens tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is a new instrument providing real time analysis

More information

Calibration of AO Systems

Calibration of AO Systems Calibration of AO Systems Application to NAOS-CONICA and future «Planet Finder» systems T. Fusco, A. Blanc, G. Rousset Workshop Pueo Nu, may 2003 Département d Optique Théorique et Appliquée ONERA, Châtillon

More information

Copyright 2006 Society of Photo Instrumentation Engineers.

Copyright 2006 Society of Photo Instrumentation Engineers. Copyright 2006 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 6304 and is made available as an electronic reprint with permission of SPIE. One print or

More information

Design parameters Summary

Design parameters Summary 634 Entrance pupil diameter 100-m Entrance pupil location Primary mirror Exit pupil location On M6 Focal ratio 6.03 Plate scale 2.924 mm / arc second (on-axis) Total field of view 10 arc minutes (unvignetted)

More information

Variable zoom system with aberration correction capability

Variable zoom system with aberration correction capability Journal of Modern Optics 2012, 1 7, ifirst Variable zoom system with aberration correction capability Yang Lu*, Christopher R. Stockbridge, Samuel M. Hoffman and Thomas G. Bifano Mechanical Engineering,

More information

SpotOptics. The software people for optics L E N T I N O LENTINO

SpotOptics. The software people for optics L E N T I N O LENTINO Spotptics he software people for optics AUMAD WAVFR SSR Accurate Metrology of standard and aspherical lenses =0.3 to =20 mm F/1 to F/15 Accurate motor for z-movement Accurate XY and tilt stages for easy

More information

E-ELT Programme Science drivers

E-ELT Programme Science drivers E-ELT Overview Alistair McPherson PM E-ELT E-ELT Phase B Final Review, September 22 nd 2010 Slide 1 Science drivers Planets in other stellar systems Imaging and spectroscopy The quest for Earth-like exo-planets

More information

Measurement of Atmospheric Turbulence over a Horizontal Path using the Black Fringe Wavefront Sensor. Richard J. Tansey. Henry M.

Measurement of Atmospheric Turbulence over a Horizontal Path using the Black Fringe Wavefront Sensor. Richard J. Tansey. Henry M. Measurement of Atmospheric Turbulence over a Horizontal Path using the Black Fringe Wavefront Sensor Richard J. Tansey Henry M. Chan Miguel Virgen, Adam Phenis Lockheed Martin/Advanced Technology Center,3251

More information

Adaptive optics for laser-based manufacturing processes

Adaptive optics for laser-based manufacturing processes Adaptive optics for laser-based manufacturing processes Rainer Beck 1, Jon Parry 1, Rhys Carrington 1,William MacPherson 1, Andrew Waddie 1, Derryck Reid 1, Nick Weston 2, Jon Shephard 1, Duncan Hand 1

More information

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner Nmark AGV-HP High Accuracy, Thermally Stable Galvo Scanner Highest accuracy scanner available attains single-digit, micron-level accuracy over the field of view Optical feedback technology significantly

More information

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner

Nmark AGV-HP. High Accuracy, Thermally Stable Galvo Scanner Nmark AGV-HP Galvanometer Nmark AGV-HP High Accuracy, Thermally Stable Galvo Scanner Highest accuracy scanner available attains single-digit, micron-level accuracy over the field of view Optical feedback

More information

Chapter 5. Tracking system with MEMS mirror

Chapter 5. Tracking system with MEMS mirror Chapter 5 Tracking system with MEMS mirror Up to now, this project has dealt with the theoretical optimization of the tracking servo with MEMS mirror through the use of simulation models. For these models

More information

Robo-AO: Robotic Laser Guide Star Adaptive Optics on the Palomar 60 in Christoph Baranec (PI) & Nick Law (PS)

Robo-AO: Robotic Laser Guide Star Adaptive Optics on the Palomar 60 in Christoph Baranec (PI) & Nick Law (PS) Robo-AO: Robotic Laser Guide Star Adaptive Optics on the Palomar 60 in 2011 Christoph Baranec (PI) & Nick Law (PS) Why Robo-AO? Robotic high efficiency observing Adaptive Optics spatial resolution set

More information

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measurement of low-order aberrations with an autostigmatic microscope William P. Kuhn Measurement of low-order aberrations with

More information

Shack-Hartmann wavefront sensor: technical passport

Shack-Hartmann wavefront sensor: technical passport F L E X I B L E Flexible Optical B.V. Adaptive Optics Optical Microsystems Wavefront Sensors O P T I C A L Oleg Soloviev Chief Scientist Röntgenweg 1 2624 BD, Delft The Netherlands Tel: +31 15 285 15-47

More information

POCKET DEFORMABLE MIRROR FOR ADAPTIVE OPTICS APPLICATIONS

POCKET DEFORMABLE MIRROR FOR ADAPTIVE OPTICS APPLICATIONS POCKET DEFORMABLE MIRROR FOR ADAPTIVE OPTICS APPLICATIONS Leonid Beresnev1, Mikhail Vorontsov1,2 and Peter Wangsness3 1) US Army Research Laboratory, 2800 Powder Mill Road, Adelphi Maryland 20783, lberesnev@arl.army.mil,

More information

Modeling the multi-conjugate adaptive optics system of the E-ELT. Laura Schreiber Carmelo Arcidiacono Giovanni Bregoli

Modeling the multi-conjugate adaptive optics system of the E-ELT. Laura Schreiber Carmelo Arcidiacono Giovanni Bregoli Modeling the multi-conjugate adaptive optics system of the E-ELT Laura Schreiber Carmelo Arcidiacono Giovanni Bregoli MAORY E-ELT Multi Conjugate Adaptive Optics Relay Wavefront sensing based on 6 (4)

More information

Design and Manufacture of 8.4 m Primary Mirror Segments and Supports for the GMT

Design and Manufacture of 8.4 m Primary Mirror Segments and Supports for the GMT Design and Manufacture of 8.4 m Primary Mirror Segments and Supports for the GMT Introduction The primary mirror for the Giant Magellan telescope is made up an 8.4 meter symmetric central segment surrounded

More information

OMI-SWIR. SpotOptics FAST & ACCURATE WAVEFRONT SENSOR S W I R

OMI-SWIR. SpotOptics FAST & ACCURATE WAVEFRONT SENSOR S W I R potoptics OM- FAT & ACCUATE AVEFONT ENO Acquisition speed up to 300 Hz, analysis speed up to 200Hz Optimized for wavelength range with ngaas camera Accurate metrology in single pass (OM) and double pass

More information

1.6 Beam Wander vs. Image Jitter

1.6 Beam Wander vs. Image Jitter 8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

More information

Keck Telescope Wavefront Errors: Implications for NGAO

Keck Telescope Wavefront Errors: Implications for NGAO Keck Telescope Wavefront Errors: Implications for NGAO KECK ADAPTIVE OPTICS NOTE 482 Christopher Neyman and Ralf Flicker March 13, 2007 ABSTRACT This note details the effect of telescope static and dynamic

More information

Visible Nulling Coronagraph

Visible Nulling Coronagraph Brian Hicks 1 Rick Lyon 2 Matt Bolcar 2 Mark Clampin 2 Jeff Bolognese 2 Pete Dogoda 3 Daniel Dworzanski 4 Michael Helmbrecht 5 Corina Koca 2 Udayan Mallik 2 Ian Miller 6 Pete Petrone 3 1 NASA Postdoctoral

More information

Paper Synopsis. Xiaoyin Zhu Nov 5, 2012 OPTI 521

Paper Synopsis. Xiaoyin Zhu Nov 5, 2012 OPTI 521 Paper Synopsis Xiaoyin Zhu Nov 5, 2012 OPTI 521 Paper: Active Optics and Wavefront Sensing at the Upgraded 6.5-meter MMT by T. E. Pickering, S. C. West, and D. G. Fabricant Abstract: This synopsis summarized

More information

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing 01/01/2015 Deliverable D2.3 Active alignment unit for beam coupling and sensor integration based on adaptive optics D2.3 Active alignment unit for beam coupling and sensor integration based on adaptive

More information

Carbon Fiber Reinforced Polymer (CFRP) Optics Quality Assessment for Lightweight Deployable Optics

Carbon Fiber Reinforced Polymer (CFRP) Optics Quality Assessment for Lightweight Deployable Optics Carbon Fiber Reinforced Polymer (CFRP) Optics Quality Assessment for Lightweight Deployable Optics Jonathan R. Andrews 1, Ty Martinez 1, Sergio R. Restaino 1, Freddie Santiago 1, Christopher C. Wilcox

More information

IAC-08-C1.8.5 OPTICAL BEAM CONTROL FOR IMAGING SPACECRAFT WITH LARGE APERTURES

IAC-08-C1.8.5 OPTICAL BEAM CONTROL FOR IMAGING SPACECRAFT WITH LARGE APERTURES IAC-08-C1.8.5 OPTICAL BEAM CONTROL FOR IMAGING SPACECRAFT WITH LARGE APERTURES Jae Jun Kim Research Assistant Professor, jki1@nps.edu Anne Marie Johnson NRC Research Associate, ajohnson@nps.edu Brij N.

More information

Industrial quality control HASO for ensuring the quality of NIR optical components

Industrial quality control HASO for ensuring the quality of NIR optical components Industrial quality control HASO for ensuring the quality of NIR optical components In the sector of industrial detection, the ability to massproduce reliable, high-quality optical components is synonymous

More information

Intra-cavity active optics in lasers

Intra-cavity active optics in lasers Intra-cavity active optics in lasers W. Lubeigt, A. Kelly, V. Savitsky, D. Burns Institute of Photonics, University of Strathclyde Wolfson Centre,106 Rottenrow Glasgow G4 0NW, UK J. Gomes, G. Brown, D.

More information

DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY ABSTRACT

DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY ABSTRACT DESIGNING AND IMPLEMENTING AN ADAPTIVE OPTICS SYSTEM FOR THE UH HOKU KE`A OBSERVATORY University of Hawai`i at Hilo Alex Hedglen ABSTRACT The presented project is to implement a small adaptive optics system

More information

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004 Lithography 3 rd lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 List of content Fundamental principles Characteristics parameters Exposure systems 2 Fundamental principles Aerial Image Exposure

More information

Hartmann-Shack sensor ASIC s for real-time adaptive optics in biomedical physics

Hartmann-Shack sensor ASIC s for real-time adaptive optics in biomedical physics Hartmann-Shack sensor ASIC s for real-time adaptive optics in biomedical physics Thomas NIRMAIER Kirchhoff Institute, University of Heidelberg Heidelberg, Germany Dirk DROSTE Robert Bosch Group Stuttgart,

More information

Payload Configuration, Integration and Testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat

Payload Configuration, Integration and Testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat SSC18-VIII-05 Payload Configuration, Integration and Testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat Jennifer Gubner Wellesley College, Massachusetts Institute of Technology 21 Wellesley

More information

Testing Aspheric Lenses: New Approaches

Testing Aspheric Lenses: New Approaches Nasrin Ghanbari OPTI 521 - Synopsis of a published Paper November 5, 2012 Testing Aspheric Lenses: New Approaches by W. Osten, B. D orband, E. Garbusi, Ch. Pruss, and L. Seifert Published in 2010 Introduction

More information

PRELIMINARY. EL-6-18-VIS-LD Dimensions (L x W x H) 18 x 19.3 x 8.7 mm Clear aperture 6 mm Weight 6.7 g Lifecycles (10-90% sinusoidal) >

PRELIMINARY. EL-6-18-VIS-LD Dimensions (L x W x H) 18 x 19.3 x 8.7 mm Clear aperture 6 mm Weight 6.7 g Lifecycles (10-90% sinusoidal) > Fast EL-6-18 The curvature of this shape changing polymer lens can be adjusted by applying current. The focal length is accordingly tuned to a desired value within milliseconds. The following table outlines

More information

MMTO Technical Memorandum #03-1

MMTO Technical Memorandum #03-1 MMTO Technical Memorandum #03-1 Fall 2002 f/9 optical performance of the 6.5m MMT analyzed with the top box Shack-Hartmann wavefront sensor S. C. West January 2003 Fall 2002 f/9 optical performance of

More information

Matthew R. Bolcar NASA GSFC

Matthew R. Bolcar NASA GSFC Matthew R. Bolcar NASA GSFC 14 November 2017 What is LUVOIR? Crab Nebula with HST ACS/WFC Credit: NASA / ESA Large UV / Optical / Infrared Surveyor (LUVOIR) A space telescope concept in tradition of Hubble

More information

Copyright 2005 Society of Photo Instrumentation Engineers.

Copyright 2005 Society of Photo Instrumentation Engineers. Copyright 2005 Society of Photo Instrumentation Engineers. This paper was published in SPIE Proceedings, Volume 5874 and is made available as an electronic reprint with permission of SPIE. One print or

More information

Infra Red Interferometers

Infra Red Interferometers Infra Red Interferometers for performance testing of infra-red materials and optical systems Specialist expertise in testing, analysis, design, development and manufacturing for Optical fabrication, Optical

More information

OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET

OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET OWL OPTICAL DESIGN, ACTIVE OPTICS AND ERROR BUDGET P. Dierickx, B. Delabre, L. Noethe European Southern Observatory Abstract We explore solutions for the optical design of the OWL 100-m telescope, and

More information

TCS beam shaping: optimum and achievable beam profiles for correcting thermo-refractive lensing (not thermo-elastic surface deformation)

TCS beam shaping: optimum and achievable beam profiles for correcting thermo-refractive lensing (not thermo-elastic surface deformation) LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY Laboratory / Scientific Collaboration -T1200103-v2 Date: 28-Feb-12 TCS beam shaping: optimum and achievable beam profiles for correcting thermo-refractive

More information

FAME. Freeform Active Mirror Element (WP5) OPTICON Board Granada, Oct 29 th Martin Black, Chris Miller, Hermine Schnetler

FAME. Freeform Active Mirror Element (WP5) OPTICON Board Granada, Oct 29 th Martin Black, Chris Miller, Hermine Schnetler FAME Freeform Active Mirror Element (WP5) OPTICON Board Granada, Oct 29 th 2014 On behalf of the FAME team: ATC: Konkoly Observatory: LAM: NOVA ASTRON: Martin Black, Chris Miller, Hermine Schnetler Evelin

More information

62xxH Series Galvanometer Scanners

62xxH Series Galvanometer Scanners Product Highlights Our popular xxh Series of closed loop, galvanometer-based scanners is consistently the industry s leading solution for high-performance laser beam steering. Each motor combines our moving

More information

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors

Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors Jason H. Karp, Eric J. Tremblay and Joseph E. Ford Photonics Systems Integration Lab University of California

More information

Robust Wave-front Correction in a Small-Scale Adaptive Optics System Using a Membrane Deformable Mirror

Robust Wave-front Correction in a Small-Scale Adaptive Optics System Using a Membrane Deformable Mirror Robust Wave-front Correction in a Small-Scale Adaptive Optics System Using a Membrane Deformable Mirror Seung-Kyu Park and Sung-Hoon Baik Korea Atomic Energy Research Institute, 105 Daedeokdaero, Yuseong-gu,

More information

PhD Defense. Low-order wavefront control and calibration for phase-mask coronagraphs. Garima Singh

PhD Defense. Low-order wavefront control and calibration for phase-mask coronagraphs. Garima Singh PhD Defense 21st September 2015 Space Telescope Science Institute, Baltimore on Low-order wavefront control and calibration for phase-mask coronagraphs by Garima Singh PhD student and SCExAO member Observatoire

More information

Wavefront Sensor for the ESA-GAIA Mission

Wavefront Sensor for the ESA-GAIA Mission Wavefront Sensor for the ESA-GAIA Mission L.L.A. Vosteen*, Draaisma F.,Werkhoven, W.P., Riel L.J.M.., Mol, M.H., Ouden G. den TNO Science and Industry, Stieltjesweg 1,2600 AD Delft, The Netherlands ABSTRACT

More information

SCANLAB Perfect Scanning

SCANLAB Perfect Scanning mirrors in motion SCANLAB Perfect Scanning Galvanometer scanners High-performance laser scan systems Objectives and focusing units Components for system integration Software Customer-specific system development

More information

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic Optical Modulator Technical Whitepaper MEMS Optical Modulator Technology Overview The BMC MEMS Optical Modulator, shown in Figure 1, was designed for use in free space optical communication systems. The

More information

A liquid crystal spatial light phase modulator and its applications

A liquid crystal spatial light phase modulator and its applications Invited Paper A liquid crystal spatial light phase modulator and its applications Tsutomu Hara Central Research Laboratory; Hamamatsu Photonics K.K. 5000 Hirakuchi, Hamakita-City, Shizuoka-Prefecture,

More information

Experimental research on the sampling point number of LAMOST active optics wavefront test

Experimental research on the sampling point number of LAMOST active optics wavefront test Experimental research on the sampling point number of LAMOST active optics wavefront test Yong Zhang* a a National Astronomical Observatories / Nanjing Institute of Astronomical Optics and Technology,

More information

UM1380/ UM2380 UM1390/ UM2390 Datasheet

UM1380/ UM2380 UM1390/ UM2390 Datasheet UM1380/ UM2380 UM1390/ UM2390 Datasheet Description UM1380/ UM2380/ UM1390/ UM2390 spectro-module is a new OtO optical platform with 50% footprint down size compared to UM1280/UM2280 series. Besides the

More information

LIQUID CRYSTAL LENSES FOR CORRECTION OF P ~S~YOP

LIQUID CRYSTAL LENSES FOR CORRECTION OF P ~S~YOP LIQUID CRYSTAL LENSES FOR CORRECTION OF P ~S~YOP GUOQIANG LI and N. PEYGHAMBARIAN College of Optical Sciences, University of Arizona, Tucson, A2 85721, USA Email: gli@ootics.arizt~ii~.e~i~ Correction of

More information

Wavefront control for highcontrast

Wavefront control for highcontrast Wavefront control for highcontrast imaging Lisa A. Poyneer In the Spirit of Bernard Lyot: The direct detection of planets and circumstellar disks in the 21st century. Berkeley, CA, June 6, 2007 p Gemini

More information

Corner Rafts LSST Camera Workshop SLAC Sept 19, 2008

Corner Rafts LSST Camera Workshop SLAC Sept 19, 2008 Corner Rafts LSST Camera Workshop SLAC Sept 19, 2008 Scot Olivier LLNL 1 LSST Conceptual Design Review 2 Corner Raft Session Agenda 1. System Engineering 1. Tolerance analysis 2. Requirements flow-down

More information

Optical Bus for Intra and Inter-chip Optical Interconnects

Optical Bus for Intra and Inter-chip Optical Interconnects Optical Bus for Intra and Inter-chip Optical Interconnects Xiaolong Wang Omega Optics Inc., Austin, TX Ray T. Chen University of Texas at Austin, Austin, TX Outline Perspective of Optical Backplane Bus

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Physics 2306 Fall 1999 Final December 15, 1999

Physics 2306 Fall 1999 Final December 15, 1999 Physics 2306 Fall 1999 Final December 15, 1999 Name: Student Number #: 1. Write your name and student number on this page. 2. There are 20 problems worth 5 points each. Partial credit may be given if work

More information

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing D2.2. Ger Folkersma (Demcon)

ADALAM Sensor based adaptive laser micromachining using ultrashort pulse lasers for zero-failure manufacturing D2.2. Ger Folkersma (Demcon) D2.2 Automatic adjustable reference path system Document Coordinator: Contributors: Dissemination: Keywords: Ger Folkersma (Demcon) Ger Folkersma, Kevin Voss, Marvin Klein (Demcon) Public Reference path,

More information

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes

12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes 330 Chapter 12 12.4 Alignment and Manufacturing Tolerances for Segmented Telescopes Similar to the JWST, the next-generation large-aperture space telescope for optical and UV astronomy has a segmented

More information