Image Analysis based on Spectral and Spatial Grouping

Size: px
Start display at page:

Download "Image Analysis based on Spectral and Spatial Grouping"

Transcription

1 Image Analysis based on Spectral and Spatial Grouping B. Naga Jyothi 1, K.S.R. Radhika 2 and Dr. I. V.Murali Krishna 3 1 Assoc. Prof., Dept. of ECE, DMS SVHCE, Machilipatnam, A.P., India 2 Assoc. Prof., Dept. of CSE, DMS SVHCE, Machilipatnam, A.P., India 3 Director (Retd.,), IST/R&D Center, JNTU, Hyderabad, India. ABSTRACT The paper aims to present image classification using region wise information. Effort is made to use spectral labelled & classified image as well as spatial information as the basis for classification.using a selected sample set, the image is first divided into several groups in the spectral space using mahalanobis distance as a measure of similarity.the output is then segmented by growing pixels with equal IDs basing on some specific connectivity. The entire image information is then available as region information. Each region is defined by a no. of attributes such as unique ID, size,the list of all its member pixels,the mean intensity and covariance matrix of the spectral values in that region. A structure is used to hold the segmentation information and the entire data is saved as a file. Secondly, a region labelled image consisting of region IDs is created. Finally the regions are classified using Euclidean distance measure. Keywords: Spectral Classification, Region Labelling, Euclidean Distance, Training Samples 1. INTRODUCTION Depending on the image primitive used viz, pixel or object based, image classification methods are of two main categories. Pixel based classification methods use only the spectral patterns to classify the individual pixels. Object based methods try to group pixels into objects using an image segmentation process based on some similarity chosen and then use both the spectral, spatial and contextual information of these objects to classify the whole image. Object based methods eliminates mixed pixel problem suffered by most pixel based methods and hence are superior ways of image classification. 1.1 SUPERVISED CLASSIFICATION In supervised classification, the identity of land cover types are known prior through some means such as aerial photography, map analysis and personal experience etc. The analyst locates specific sites that represent homogeneous examples in the remotely sensed data. These areas are referred as training samples and the spectral characteristics of these areas are used to train the classification algorithm of the remainder of the image. Multivariate statistical parameters such as mean, standard deviation, covariance matrices, correlation matrices are calculated for each training site. Every pixel both within and outside the training sites is then evaluated and assigned to the class of which it has the highest likelihood of being a member. Thematic classification of an image involves the following steps: [Ref: 3] Feature extraction: Transformation of the multispectral image by a spatial or spectral transform to a feature image. Examples are selection of subset of bands, a PCT to reduce the data dimensionality, or a spatial smoothing filter. This step is optional i.e., the multispectral image can be used directly, if desired Training: Selection of pixels to train the classifier to recognize the different themes, or classes, and determination of decision boundaries which partition the feature space according to the training pixel properties. This step is either supervised by the analyst or unsupervised with the aid of a computer algorithm. For supervised training, the analyst must select representative pixels for each of the categories. It is important that the training area be a homogenous sample of the respective class, but at the same time include the range of variability for the class. Labelling: Application of the feature space decision boundaries to the entire image to label all the pixels. If the training was supervised, the labels are already associated with the feature space regions; if it was unsupervised, the analyst must now assign labels to the regions. The output map consists of one label for each pixel. 1.2 INPUT IMAGE DETAILS The input image [Ref.1: is Landsat 7 pan image of Pyongyang, North Korea acquired in September [Fig:1] This is a natural-color image using ETM+ bands 3, 2, 1. In this image, Pyongyang appears grey in color Volume 2, Issue 3, March 2013 Page 486

2 and is surrounded by vegetation (in green). The Taedong River, shown in dark blue, almost black travels through the city. 2. METHODOLOGY Fig: 1 Input Image 2.1 SPECTRAL CLASSIFICATION [ Ref.2 Lonesome M. Malambo 2009]. Spectral grouping is done by determining the closeness of each image pixel to each of the samples selected from the input image. Samples are selected based on the expected number of classes in the image and are assigned different IDs. Each pixel is assigned to its closest sample ID based on Mahalanobis distance measure of closeness. The Mahalanobis distance D as defined below, is used a measure of closeness or similarity.. (1) In (1), x is the pixel spectral vector, μ is the mean spectral vector of a sample in a multi band image, Σ is the covariance matrix of the sample, T denotes the transpose of the matrix. The output is an image composed of sample IDs. 2.2 IMAGE SEGMENTATION Spatial grouping uses the image created from the spectral grouping as the input. Equal IDs are grown in the region growing process with specific neighbor connectivity. A structure is used to hold the segmented image information. Each region is defined by an unique ID, list of its member pixels, mean and covariance of intensities in the region. Finally a region label image comprising of region IDs is obtained. The region wise information can be saved to a file for further processing. 2.3 IMAGE CLASSIFICATION Specific regions are selected to serve as training samples for region classification. Regions are classified using Euclidean distance. Each region is compared to the training samples and is assigned to the closest class. 3. IMPLEMENTATION The programming uses MATLAB [Ref.2 Lonesome M. Malambo 2009]. The sequence of steps involved in the developed code are as follows: The loaded input image is smoothed using a Gaussian filter to reduce noise. Samples are selected from different classes Viz., vegetation, water, settlement and barren regions [Fig:2] and their statistics are computed [ Table:1 ] The samples are Labelled and Mahalanobis distance is calculated between each pixel and each instance of sample set. Pixels close to a sample are assigned the same sample ID. The result is an image composed of sample IDs [Fig:3 spectral classified image] Region growing is done with only equal ID pixels using 8-neighbor connectivity. Segmented information regarding individual regions is loaded into a structure. Each region has its own ID, member pixels, mean and covariance of intensities in it. [ Table: 2 ] A region label image with region IDs is formed. Then segmented image is observed [Fig:4]. For region classification,training Samples are selected from different Regions Viz., vegetation, water, settlement and barren regions using MATLAB s getpts function An image region is classified based on its Euclidean distance to a training sample. Regions close to a sample are assigned the same sample ID. Volume 2, Issue 3, March 2013 Page 487

3 Finally the result is a region (object) classified image. [Fig:5]. 4. RESULTS Fig: 2 Selected samples from different classes in the input image Sample 1: Vegetation Sample 2: water Sample 3: Settlement Sample 4: Barren Fig: 3 Output of Spectral Classification Vegetation: dark blue Water: light blue Settlement: yellow Barren: red Table: 1 Sample statistics for spectral Classification Volume 2, Issue 3, March 2013 Page 488

4 Fig: 4 Output of region growing process & segmented image Vegetation: yellow Water: light blue Settlement: dark blue Barren: orange Table: 2 Sample set of Region wise information Fig: 5 Output of region classification process & Final region (object) classified image Vegetation: light blue Water: dark blue Settlement: yellow Barren: red Volume 2, Issue 3, March 2013 Page 489

5 5. CONCLUSION Good results have been obtained as can be seen by comparing the input and output classified images. This is because the image is classified on the region (object) level and usually more information is used for classification.the final classified result is influenced by the samples considered in the spectral grouping, final classification process and also the number of samples taken for each class. REFERENCES [1] + NASA Home Multimedia. [2] Lonesome M.Malambo A region based Approach to Image Classification, Applied Geoinformatics for Society and Environment 2009-Stuttgart University of Applied Sciences. [3] Robert A. Schowengerdt. Remote Sensing: Models and Methods for Image Processing (3rd Ed.). Academic Press USA, pg: 388,396. [4] John R. Jensen Introductory Digital Image Processing, A Remote Sensing Perspective, Third Edition, PPH [5] B. Naga Jyothi, Dr. G. R. Babu, Dr. I. V. Murali Krishna, Thematic classification of multispectral imagery, International Journal of Electronics and computer Science Engineering, V1N , 2012 [6] KSR Radhika, B.Naga Jyothi, et.al. Accuracy Assessment of per pixel Based Classification Conference Proceedings, NC-Velasiem-2k12: Pg [7] MathWorks.Image Processing Toolbox Mathworks.com [8] D. LU and Q. WENG A survey of image classification methods and techniques for improving classification performance International Journal of Remote Sensing Vol. 28, No. 5, , 10 March 2007 ACKNOWLEDGEMENTS The authors acknowledge "Landsat imagery courtesy of NASA Goddard Space Flight Center and U.S. Geological Survey" or "USGS/NASA Landsat" for the images. Volume 2, Issue 3, March 2013 Page 490

GE 113 REMOTE SENSING

GE 113 REMOTE SENSING GE 113 REMOTE SENSING Topic 8. Image Classification and Accuracy Assessment Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information

More information

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching.

Remote Sensing. The following figure is grey scale display of SPOT Panchromatic without stretching. Remote Sensing Objectives This unit will briefly explain display of remote sensing image, geometric correction, spatial enhancement, spectral enhancement and classification of remote sensing image. At

More information

Classification in Image processing: A Survey

Classification in Image processing: A Survey Classification in Image processing: A Survey Rashmi R V, Sheela Sridhar Department of computer science and Engineering, B.N.M.I.T, Bangalore-560070 Department of computer science and Engineering, B.N.M.I.T,

More information

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego

Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana. Geob 373 Remote Sensing. Dr Andreas Varhola, Kathry De Rego 1 Land Cover Analysis to Determine Areas of Clear-cut and Forest Cover in Olney, Montana Geob 373 Remote Sensing Dr Andreas Varhola, Kathry De Rego Zhu an Lim (14292149) L2B 17 Apr 2016 2 Abstract Montana

More information

MULTISPECTRAL IMAGE PROCESSING I

MULTISPECTRAL IMAGE PROCESSING I TM1 TM2 337 TM3 TM4 TM5 TM6 Dr. Robert A. Schowengerdt TM7 Landsat Thematic Mapper (TM) multispectral images of desert and agriculture near Yuma, Arizona MULTISPECTRAL IMAGE PROCESSING I SENSORS Multispectral

More information

Detection of Compound Structures in Very High Spatial Resolution Images

Detection of Compound Structures in Very High Spatial Resolution Images Detection of Compound Structures in Very High Spatial Resolution Images Selim Aksoy Department of Computer Engineering Bilkent University Bilkent, 06800, Ankara, Turkey saksoy@cs.bilkent.edu.tr Joint work

More information

Image Classification (Decision Rules and Classification)

Image Classification (Decision Rules and Classification) Exercise #5D Image Classification (Decision Rules and Classification) Objective Choose how pixels will be allocated to classes Learn how to evaluate the classification Once signatures have been defined

More information

F2 - Fire 2 module: Remote Sensing Data Classification

F2 - Fire 2 module: Remote Sensing Data Classification F2 - Fire 2 module: Remote Sensing Data Classification F2.1 Task_1: Supervised and Unsupervised classification examples of a Landsat 5 TM image from the Center of Portugal, year 2005 F2.1 Task_2: Burnt

More information

SEMI-SUPERVISED CLASSIFICATION OF LAND COVER BASED ON SPECTRAL REFLECTANCE DATA EXTRACTED FROM LISS IV IMAGE

SEMI-SUPERVISED CLASSIFICATION OF LAND COVER BASED ON SPECTRAL REFLECTANCE DATA EXTRACTED FROM LISS IV IMAGE SEMI-SUPERVISED CLASSIFICATION OF LAND COVER BASED ON SPECTRAL REFLECTANCE DATA EXTRACTED FROM LISS IV IMAGE B. RayChaudhuri a *, A. Sarkar b, S. Bhattacharyya (nee Bhaumik) c a Department of Physics,

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 1 Patrick Olomoshola, 2 Taiwo Samuel Afolayan 1,2 Surveying & Geoinformatic Department, Faculty of Environmental Sciences, Rufus Giwa Polytechnic, Owo. Nigeria Abstract: This paper

More information

Statistical Analysis of SPOT HRV/PA Data

Statistical Analysis of SPOT HRV/PA Data Statistical Analysis of SPOT HRV/PA Data Masatoshi MORl and Keinosuke GOTOR t Department of Management Engineering, Kinki University, Iizuka 82, Japan t Department of Civil Engineering, Nagasaki University,

More information

Satellite image classification

Satellite image classification Satellite image classification EG2234 Earth Observation Image Classification Exercise 29 November & 6 December 2007 Introduction to the practical This practical, which runs over two weeks, is concerned

More information

Region Based Satellite Image Segmentation Using JSEG Algorithm

Region Based Satellite Image Segmentation Using JSEG Algorithm Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 5, May 2015, pg.1012

More information

Adaptive Feature Analysis Based SAR Image Classification

Adaptive Feature Analysis Based SAR Image Classification I J C T A, 10(9), 2017, pp. 973-977 International Science Press ISSN: 0974-5572 Adaptive Feature Analysis Based SAR Image Classification Debabrata Samanta*, Abul Hasnat** and Mousumi Paul*** ABSTRACT SAR

More information

Cellular automata applied in remote sensing to implement contextual pseudo-fuzzy classication - The Ninth International Conference on Cellular

Cellular automata applied in remote sensing to implement contextual pseudo-fuzzy classication - The Ninth International Conference on Cellular INDEX Introduction Spectral and Contextual Classification of Satellite Images Classical aplications of Cellular Automata in Remote Sensing Classification of Satellite Images with Cellular Automata (ACA)

More information

University of Technology Building & Construction Department / Remote Sensing & GIS lecture

University of Technology Building & Construction Department / Remote Sensing & GIS lecture 8. Image Enhancement 8.1 Image Reduction and Magnification. 8.2 Transects (Spatial Profile) 8.3 Spectral Profile 8.4 Contrast Enhancement 8.4.1 Linear Contrast Enhancement 8.4.2 Non-Linear Contrast Enhancement

More information

M. Ellen Dean and Roger M. Hoffer Department of Forestry and Natural Resources. Purdue University, West Lafayette, Indiana

M. Ellen Dean and Roger M. Hoffer Department of Forestry and Natural Resources. Purdue University, West Lafayette, Indiana Evaluation of Thematic Mapper Data and Computer-aided Analysis Techniques for Mapping Forest Cover M. Ellen Dean and Roger M. Hoffer Department of Forestry and Natural Resources Laboratory for Applications

More information

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images

Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Urban Classification of Metro Manila for Seismic Risk Assessment using Satellite Images Fumio YAMAZAKI/ yamazaki@edm.bosai.go.jp Hajime MITOMI/ mitomi@edm.bosai.go.jp Yalkun YUSUF/ yalkun@edm.bosai.go.jp

More information

A. Dalrin Ampritta 1 and Dr. S.S. Ramakrishnan 2 1,2 INTRODUCTION

A. Dalrin Ampritta 1 and Dr. S.S. Ramakrishnan 2 1,2 INTRODUCTION Improving the Thematic Accuracy of Land Use and Land Cover Classification by Image Fusion Using Remote Sensing and Image Processing for Adapting to Climate Change A. Dalrin Ampritta 1 and Dr. S.S. Ramakrishnan

More information

International Journal of Computer Engineering and Applications,

International Journal of Computer Engineering and Applications, COLOR IMAGE SEGMENTATION BY CLUSTERING APPROACH AND COUNTING THE NUMBER OF COLORS IN A COLOR IMAGE D. Jayasree 1, Ch. Rajasekhara rao 2, K. Krishnam raju 3 P.G. Student, Department of ECE, AITAM Engineering

More information

SOM Based Segmentation Method to Identify Water Region in LANDSAT Images

SOM Based Segmentation Method to Identify Water Region in LANDSAT Images T. V. Janahiraman and K. Win / IJECCT 2011, Vol. 2 (1) 13 SOM Based Segmentation Method to Identify Water Region in LANDSAT Images Tiagrajah V. Janahiraman 1, Kong Win 1 1 Dept of Electronic and Communication

More information

Keywords: - Gaussian Mixture model, Maximum likelihood estimator, Multiresolution analysis

Keywords: - Gaussian Mixture model, Maximum likelihood estimator, Multiresolution analysis Volume 4, Issue 2, February 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Expectation

More information

Keywords: Agriculture, Olive Trees, Supervised Classification, Landsat TM, QuickBird, Remote Sensing.

Keywords: Agriculture, Olive Trees, Supervised Classification, Landsat TM, QuickBird, Remote Sensing. Classification of agricultural fields by using Landsat TM and QuickBird sensors. The case study of olive trees in Lesvos island. Christos Vasilakos, University of the Aegean, Department of Environmental

More information

On the use of synthetic images for change detection accuracy assessment

On the use of synthetic images for change detection accuracy assessment On the use of synthetic images for change detection accuracy assessment Hélio Radke Bittencourt 1, Daniel Capella Zanotta 2 and Thiago Bazzan 3 1 Departamento de Estatística, Pontifícia Universidade Católica

More information

Advanced Techniques in Urban Remote Sensing

Advanced Techniques in Urban Remote Sensing Advanced Techniques in Urban Remote Sensing Manfred Ehlers Institute for Geoinformatics and Remote Sensing (IGF) University of Osnabrueck, Germany mehlers@igf.uni-osnabrueck.de Contents Urban Remote Sensing:

More information

Raster is faster but vector is corrector

Raster is faster but vector is corrector Account not required Raster is faster but vector is corrector The old GIS adage raster is faster but vector is corrector comes from the two different fundamental GIS models: vector and raster. Each of

More information

Land Cover Type Changes Related to. Oil and Natural Gas Drill Sites in a. Selected Area of Williams County, ND

Land Cover Type Changes Related to. Oil and Natural Gas Drill Sites in a. Selected Area of Williams County, ND Land Cover Type Changes Related to Oil and Natural Gas Drill Sites in a Selected Area of Williams County, ND FR 3262/5262 Lab Section 2 By: Andrew Kernan Tyler Kaebisch Introduction: In recent years, there

More information

Augment the Spatial Resolution of Multispectral Image Using PCA Fusion Method and Classified It s Region Using Different Techniques.

Augment the Spatial Resolution of Multispectral Image Using PCA Fusion Method and Classified It s Region Using Different Techniques. Augment the Spatial Resolution of Multispectral Image Using PCA Fusion Method and Classified It s Region Using Different Techniques. Israa Jameel Muhsin 1, Khalid Hassan Salih 2, Ebtesam Fadhel 3 1,2 Department

More information

CHAPTER 7: Multispectral Remote Sensing

CHAPTER 7: Multispectral Remote Sensing CHAPTER 7: Multispectral Remote Sensing REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall Overview of How Digital Remotely Sensed Data are Transformed

More information

Image Extraction using Image Mining Technique

Image Extraction using Image Mining Technique IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 9 (September. 2013), V2 PP 36-42 Image Extraction using Image Mining Technique Prof. Samir Kumar Bandyopadhyay,

More information

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data.

Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. Spatial Analyst is an extension in ArcGIS specially designed for working with raster data. 1 Do you remember the difference between vector and raster data in GIS? 2 In Lesson 2 you learned about the difference

More information

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI

University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI University of Texas at San Antonio EES 5053 Term Project CORRELATION BETWEEN NDVI AND SURFACE TEMPERATURES USING LANDSAT ETM + IMAGERY NEWFEL MAZARI Introduction and Objectives The present study is a correlation

More information

AUTOMATIC DETECTION OF HEDGES AND ORCHARDS USING VERY HIGH SPATIAL RESOLUTION IMAGERY

AUTOMATIC DETECTION OF HEDGES AND ORCHARDS USING VERY HIGH SPATIAL RESOLUTION IMAGERY AUTOMATIC DETECTION OF HEDGES AND ORCHARDS USING VERY HIGH SPATIAL RESOLUTION IMAGERY Selim Aksoy Department of Computer Engineering, Bilkent University, Bilkent, 06800, Ankara, Turkey saksoy@cs.bilkent.edu.tr

More information

This week we will work with your Landsat images and classify them using supervised classification.

This week we will work with your Landsat images and classify them using supervised classification. GEPL 4500/5500 Lab 4: Supervised Classification: Part I: Selecting Training Sets Due: 4/6/04 This week we will work with your Landsat images and classify them using supervised classification. There are

More information

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur.

Sommersemester Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur. Basics of Remote Sensing Some literature references Franklin, SE 2001 Remote Sensing for Sustainable Forest Management Lewis Publishers 407p Lillesand, Kiefer 2000 Remote Sensing and Image Interpretation

More information

Urban Feature Classification Technique from RGB Data using Sequential Methods

Urban Feature Classification Technique from RGB Data using Sequential Methods Urban Feature Classification Technique from RGB Data using Sequential Methods Hassan Elhifnawy Civil Engineering Department Military Technical College Cairo, Egypt Abstract- This research produces a fully

More information

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010

APCAS/10/21 April 2010 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION. Siem Reap, Cambodia, April 2010 APCAS/10/21 April 2010 Agenda Item 8 ASIA AND PACIFIC COMMISSION ON AGRICULTURAL STATISTICS TWENTY-THIRD SESSION Siem Reap, Cambodia, 26-30 April 2010 The Use of Remote Sensing for Area Estimation by Robert

More information

INTEGRATED DEM AND PAN-SHARPENED SPOT-4 IMAGE IN URBAN STUDIES

INTEGRATED DEM AND PAN-SHARPENED SPOT-4 IMAGE IN URBAN STUDIES INTEGRATED DEM AND PAN-SHARPENED SPOT-4 IMAGE IN URBAN STUDIES G. Doxani, A. Stamou Dept. Cadastre, Photogrammetry and Cartography, Aristotle University of Thessaloniki, GREECE gdoxani@hotmail.com, katerinoudi@hotmail.com

More information

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY

IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY IMPROVEMENT IN THE DETECTION OF LAND COVER CLASSES USING THE WORLDVIEW-2 IMAGERY Ahmed Elsharkawy 1,2, Mohamed Elhabiby 1,3 & Naser El-Sheimy 1,4 1 Dept. of Geomatics Engineering, University of Calgary

More information

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec )

Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Supervised Land Cover Classification An introduction to digital image classification using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes

More information

LAND USE MAP PRODUCTION BY FUSION OF MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES AND TEXTURE ANALYSIS OF HIGH RESOLUTION IMAGES

LAND USE MAP PRODUCTION BY FUSION OF MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES AND TEXTURE ANALYSIS OF HIGH RESOLUTION IMAGES LAND USE MAP PRODUCTION BY FUSION OF MULTISPECTRAL CLASSIFICATION OF LANDSAT IMAGES AND TEXTURE ANALYSIS OF HIGH RESOLUTION IMAGES Xavier OTAZU, Roman ARBIOL Institut Cartogràfic de Catalunya, Spain xotazu@icc.es,

More information

CERTAIN INVESTIGATIONS ON REMOTE SENSING BASED WAVELET COMPRESSION TECHNIQUES FOR CLASSIFICATION OF AGRICULTURAL LAND AREA

CERTAIN INVESTIGATIONS ON REMOTE SENSING BASED WAVELET COMPRESSION TECHNIQUES FOR CLASSIFICATION OF AGRICULTURAL LAND AREA CERTAIN INVESTIGATIONS ON REMOTE SENSING BASED WAVELET COMPRESSION TECHNIQUES FOR CLASSIFICATION OF AGRICULTURAL LAND AREA 1 R.KOUSALYADEVI, 2 J.SUGANTHI 1 Research Scholar & Associate Professor, Department

More information

What is Remote Sensing? Contents. Image Fusion in Remote Sensing. 1. Optical imagery in remote sensing. Electromagnetic Spectrum

What is Remote Sensing? Contents. Image Fusion in Remote Sensing. 1. Optical imagery in remote sensing. Electromagnetic Spectrum Contents Image Fusion in Remote Sensing Optical imagery in remote sensing Image fusion in remote sensing New development on image fusion Linhai Jing Applications Feb. 17, 2011 2 1. Optical imagery in remote

More information

Remote Sensing in an

Remote Sensing in an Chapter 6: Displaying Data Remote Sensing in an ArcMap Environment Remote Sensing Analysis in an ArcMap Environment Tammy E. Parece Image source: landsat.usgs.gov Tammy Parece James Campbell John McGee

More information

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION

NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION NORMALIZING ASTER DATA USING MODIS PRODUCTS FOR LAND COVER CLASSIFICATION F. Gao a, b, *, J. G. Masek a a Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA b Earth

More information

Several Different Remote Sensing Image Classification Technology Analysis

Several Different Remote Sensing Image Classification Technology Analysis Vol. 4, No. 5; October 2011 Several Different Remote Sensing Image Classification Technology Analysis Xiangwei Liu Foundation Department, PLA University of Foreign Languages, Luoyang 471003, China E-mail:

More information

A Novel Method for Enhancing Satellite & Land Survey Images Using Color Filter Array Interpolation Technique (CFA)

A Novel Method for Enhancing Satellite & Land Survey Images Using Color Filter Array Interpolation Technique (CFA) A Novel Method for Enhancing Satellite & Land Survey Images Using Color Filter Array Interpolation Technique (CFA) Suma Chappidi 1, Sandeep Kumar Mekapothula 2 1 PG Scholar, Department of ECE, RISE Krishna

More information

An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods

An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods 19 An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods T.Arunachalam* Post Graduate Student, P.G. Dept. of Computer Science, Govt Arts College, Melur - 625 106 Email-Arunac682@gmail.com

More information

Remote Sensing in an

Remote Sensing in an Chapter 20: Accuracy Assessment Remote Sensing in an ArcMap Environment Remote Sensing Analysis in an ArcMap Environment Tammy E. Parece Image source: landsat.usgs.gov Tammy Parece James Campbell John

More information

Comparing of Landsat 8 and Sentinel 2A using Water Extraction Indexes over Volta River

Comparing of Landsat 8 and Sentinel 2A using Water Extraction Indexes over Volta River Journal of Geography and Geology; Vol. 10, No. 1; 2018 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education Comparing of Landsat 8 and Sentinel 2A using Water Extraction

More information

GEOG432: Remote sensing Lab 3 Unsupervised classification

GEOG432: Remote sensing Lab 3 Unsupervised classification GEOG432: Remote sensing Lab 3 Unsupervised classification Goal: This lab involves identifying land cover types by using agorithms to identify pixels with similar Digital Numbers (DN) and spectral signatures

More information

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post

Remote Sensing. Odyssey 7 Jun 2012 Benjamin Post Remote Sensing Odyssey 7 Jun 2012 Benjamin Post Definitions Applications Physics Image Processing Classifiers Ancillary Data Data Sources Related Concepts Outline Big Picture Definitions Remote Sensing

More information

In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear

In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear CHERNOBYL NUCLEAR POWER PLANT ACCIDENT Long Term Effects on Land Use Patterns Project Introduction: In late April of 1986 a nuclear accident damaged a reactor at the Chernobyl nuclear power plant in Ukraine.

More information

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD

TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD TEMPORAL ANALYSIS OF MULTI EPOCH LANDSAT GEOCOVER IMAGES IN ZONGULDAK TESTFIELD Şahin, H. a*, Oruç, M. a, Büyüksalih, G. a a Zonguldak Karaelmas University, Zonguldak, Turkey - (sahin@karaelmas.edu.tr,

More information

Guided Image Filtering for Image Enhancement

Guided Image Filtering for Image Enhancement International Journal of Research Studies in Science, Engineering and Technology Volume 1, Issue 9, December 2014, PP 134-138 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) Guided Image Filtering for

More information

Remote Sensing in an

Remote Sensing in an Chapter 15: Spatial Enhancement of Landsat Imagery Remote Sensing in an ArcMap Environment Remote Sensing Analysis in an ArcMap Environment Tammy E. Parece Image source: landsat.usgs.gov Tammy Parece James

More information

EFFICIENT IMAGE ENHANCEMENT TECHNIQUES FOR MICRO CALCIFICATION DETECTION IN MAMMOGRAPHY

EFFICIENT IMAGE ENHANCEMENT TECHNIQUES FOR MICRO CALCIFICATION DETECTION IN MAMMOGRAPHY EFFICIENT IMAGE ENHANCEMENT TECHNIQUES FOR MICRO CALCIFICATION DETECTION IN MAMMOGRAPHY K.Nagaiah 1, Dr. K. Manjunathachari 2, Dr.T.V.Rajinikanth 3 1 Research Scholar, Dept of ECE, JNTU, Hyderabad,Telangana,

More information

A New Framework for Color Image Segmentation Using Watershed Algorithm

A New Framework for Color Image Segmentation Using Watershed Algorithm A New Framework for Color Image Segmentation Using Watershed Algorithm Ashwin Kumar #1, 1 Department of CSE, VITS, Karimnagar,JNTUH,Hyderabad, AP, INDIA 1 ashwinvrk@gmail.com Abstract Pradeep Kumar 2 2

More information

* Tokai University Research and Information Center

* Tokai University Research and Information Center Effects of tial Resolution to Accuracies for t HRV and Classification ta Haruhisa SH Kiyonari i KASA+, uji, and Toshibumi * Tokai University Research and nformation Center 2-28-4 Tomigaya, Shi, T 151,

More information

IceTrendr - Polygon. 1 contact: Peder Nelson Anne Nolin Polygon Attribution Instructions

IceTrendr - Polygon. 1 contact: Peder Nelson Anne Nolin Polygon Attribution Instructions INTRODUCTION We want to describe the process that caused a change on the landscape (in the entire area of the polygon outlined in red in the KML on Google Earth), and we want to record as much as possible

More information

Removing Thick Clouds in Landsat Images

Removing Thick Clouds in Landsat Images Removing Thick Clouds in Landsat Images S. Brindha, S. Archana, V. Divya, S. Manoshruthy & R. Priya Dept. of Electronics and Communication Engineering, Avinashilingam Institute for Home Science and Higher

More information

AN OBJECT-ORIENTED CLASSIFICATION METHOD ON HIGH RESOLUTION SATELLITE DATA , China -

AN OBJECT-ORIENTED CLASSIFICATION METHOD ON HIGH RESOLUTION SATELLITE DATA , China - 25 th ACRS 2004 Chiang Mai, Thailand 347 AN OBJECT-ORIENTED CLASSIFICATION METHOD ON HIGH RESOLUTION SATELLITE DATA Sun Xiaoxia a Zhang Jixian a Liu Zhengjun a a Chinese Academy of Surveying and Mapping,

More information

Land cover change methods. Ned Horning

Land cover change methods. Ned Horning Land cover change methods Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.

More information

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES

USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES USE OF DIGITAL AERIAL IMAGES TO DETECT DAMAGES DUE TO EARTHQUAKES Fumio Yamazaki 1, Daisuke Suzuki 2 and Yoshihisa Maruyama 3 ABSTRACT : 1 Professor, Department of Urban Environment Systems, Chiba University,

More information

A Spatial Mean and Median Filter For Noise Removal in Digital Images

A Spatial Mean and Median Filter For Noise Removal in Digital Images A Spatial Mean and Median Filter For Noise Removal in Digital Images N.Rajesh Kumar 1, J.Uday Kumar 2 Associate Professor, Dept. of ECE, Jaya Prakash Narayan College of Engineering, Mahabubnagar, Telangana,

More information

Mapping Open Water Bodies with Optical Remote Sensing

Mapping Open Water Bodies with Optical Remote Sensing Mapping Open Water Bodies with Optical Remote Sensing M. O Donnell 1,2 and E. Podest 1 1.Jet Propulsion Laboratory, California Institute of Technology 2 Alliance Gertz-Ressler High School, Los Angeles,

More information

Chapter 3 Interpreting Images

Chapter 3 Interpreting Images Chapter 3 Interpreting Images 3.1 Introduction With few exceptions the reason we record images of the earth in various wavebands is so that we can build up a picture of features on the surface. Sometimes

More information

DISCRIMINANT FUNCTION CHANGE IN ERDAS IMAGINE

DISCRIMINANT FUNCTION CHANGE IN ERDAS IMAGINE DISCRIMINANT FUNCTION CHANGE IN ERDAS IMAGINE White Paper April 20, 2015 Discriminant Function Change in ERDAS IMAGINE For ERDAS IMAGINE, Hexagon Geospatial has developed a new algorithm for change detection

More information

CLASSIFICATION OF VEGETATION AREA FROM SATELLITE IMAGES USING IMAGE PROCESSING TECHNIQUES ABSTRACT

CLASSIFICATION OF VEGETATION AREA FROM SATELLITE IMAGES USING IMAGE PROCESSING TECHNIQUES ABSTRACT CLASSIFICATION OF VEGETATION AREA FROM SATELLITE IMAGES USING IMAGE PROCESSING TECHNIQUES Arpita Pandya Research Scholar, Computer Science, Rai University, Ahmedabad Dr. Priya R. Swaminarayan Professor

More information

ECC419 IMAGE PROCESSING

ECC419 IMAGE PROCESSING ECC419 IMAGE PROCESSING INTRODUCTION Image Processing Image processing is a subclass of signal processing concerned specifically with pictures. Digital Image Processing, process digital images by means

More information

DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES

DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES DISTINGUISHING URBAN BUILT-UP AND BARE SOIL FEATURES FROM LANDSAT 8 OLI IMAGERY USING DIFFERENT DEVELOPED BAND INDICES Mark Daryl C. Janiola (1), Jigg L. Pelayo (1), John Louis J. Gacad (1) (1) Central

More information

Analysis of Change in Central Texas Using Image Differencing and Unsupervised Classification

Analysis of Change in Central Texas Using Image Differencing and Unsupervised Classification Stephen F. Austin State University SFA ScholarWorks Faculty Presentations Spatial Science 2000 Analysis of Change in Central Texas Using Image Differencing and Unsupervised Classification Bonnie Brown

More information

A Hierarchical Fuzzy Classification Approach for High-Resolution Multispectral Data Over Urban Areas

A Hierarchical Fuzzy Classification Approach for High-Resolution Multispectral Data Over Urban Areas 1920 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 9, SEPTEMBER 2003 A Hierarchical Fuzzy Classification Approach for High-Resolution Multispectral Data Over Urban Areas Aaron K. Shackelford,

More information

FOREST MAPPING IN MONGOLIA USING OPTICAL AND SAR IMAGES

FOREST MAPPING IN MONGOLIA USING OPTICAL AND SAR IMAGES FOREST MAPPING IN MONGOLIA USING OPTICAL AND SAR IMAGES D.Enkhjargal 1, D.Amarsaikhan 1, G.Bolor 1, N.Tsetsegjargal 1 and G.Tsogzol 1 1 Institute of Geography and Geoecology, Mongolian Academy of Sciences

More information

Wavelet Based Classification of Multispectral Satellite Image Using Fuzzy Incorporated Hierarchical Clustering With SVM Classifier

Wavelet Based Classification of Multispectral Satellite Image Using Fuzzy Incorporated Hierarchical Clustering With SVM Classifier Wavelet Based Classification of Multispectral Satellite Image Using Fuzzy Incorporated Hierarchical Clustering With SVM Classifier S.Sindhu 1, Dr.S.Vasuki 2. Abstract Multispectral satellite images are

More information

GE 113 REMOTE SENSING. Topic 7. Image Enhancement

GE 113 REMOTE SENSING. Topic 7. Image Enhancement GE 113 REMOTE SENSING Topic 7. Image Enhancement Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information Technology Caraga State

More information

Detecting Land Cover Changes by extracting features and using SVM supervised classification

Detecting Land Cover Changes by extracting features and using SVM supervised classification Detecting Land Cover Changes by extracting features and using SVM supervised classification ABSTRACT Mohammad Mahdi Mohebali MSc (RS & GIS) Shahid Beheshti Student mo.mohebali@gmail.com Ali Akbar Matkan,

More information

large area By Juan Felipe Villegas E Scientific Colloquium Forest information technology

large area By Juan Felipe Villegas E Scientific Colloquium Forest information technology A comparison of three different Land use classification methods based on high resolution satellite images to find an appropriate methodology to be applied on a large area By Juan Felipe Villegas E Scientific

More information

C AssesSeg concurrent computing version of AssesSeg: a benchmark between the new and previous version

C AssesSeg concurrent computing version of AssesSeg: a benchmark between the new and previous version C AssesSeg concurrent computing version of AssesSeg: a benchmark between the new and previous version Antonio Novelli 1, Manuel A. Aguilar 2, Fernando J. Aguilar 2, Abderrahim Nemmaoui 2, Eufemia Tarantino

More information

Application of Satellite Image Processing to Earth Resistivity Map

Application of Satellite Image Processing to Earth Resistivity Map Application of Satellite Image Processing to Earth Resistivity Map KWANCHAI NORSANGSRI and THANATCHAI KULWORAWANICHPONG Power System Research Unit School of Electrical Engineering Suranaree University

More information

A COMPARISON OF COVERTYPE DELINEATIONS FROM AUTOMATED IMAGE SEGMENTATION OF INDEPENDENT AND MERGED IRS AND LANDSAT TM IMAGE-BASED DATA SETS

A COMPARISON OF COVERTYPE DELINEATIONS FROM AUTOMATED IMAGE SEGMENTATION OF INDEPENDENT AND MERGED IRS AND LANDSAT TM IMAGE-BASED DATA SETS A COMPARISON OF COVERTYPE DELINEATIONS FROM AUTOMATED IMAGE SEGMENTATION OF INDEPENDENT AND MERGED IRS AND LANDSAT TM IMAGE-BASED DATA SETS M. Riley, Space Imaging Solutions USDA Forest Service, Region

More information

University of Wisconsin-Madison, Nelson Institute for Environmental Studies September 2, 2014

University of Wisconsin-Madison, Nelson Institute for Environmental Studies September 2, 2014 University of Wisconsin-Madison, Nelson Institute for Environmental Studies September 2, 2014 The Earth from Above Introduction to Environmental Remote Sensing Lectures: Tuesday, Thursday 2:30-3:45 pm,

More information

According to the proposed AWB methods as described in Chapter 3, the following

According to the proposed AWB methods as described in Chapter 3, the following Chapter 4 Experiment 4.1 Introduction According to the proposed AWB methods as described in Chapter 3, the following experiments were designed to evaluate the feasibility and robustness of the algorithms.

More information

Hyperspectral image processing and analysis

Hyperspectral image processing and analysis Hyperspectral image processing and analysis Lecture 12 www.utsa.edu/lrsg/teaching/ees5083/l12-hyper.ppt Multi- vs. Hyper- Hyper-: Narrow bands ( 20 nm in resolution or FWHM) and continuous measurements.

More information

A (very) brief introduction to Remote Sensing: From satellites to maps!

A (very) brief introduction to Remote Sensing: From satellites to maps! Spatial Data Analysis and Modeling for Agricultural Development, with R - Workshop A (very) brief introduction to Remote Sensing: From satellites to maps! Earthlights DMSP 1994-1995 https://wikimedia.org/

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

Artificial Neural Network Model for Prediction of Land Surface Temperature from Land Use/Cover Images

Artificial Neural Network Model for Prediction of Land Surface Temperature from Land Use/Cover Images Artificial Neural Network Model for Prediction of Land Surface Temperature from Land Use/Cover Images 1 K.Sundara Kumar*, 2 K.Padma Kumari, 3 P.Udaya Bhaskar 1 Research Scholar, Dept. of Civil Engineering,

More information

REMOTE SENSING OF RIVERINE WATER BODIES

REMOTE SENSING OF RIVERINE WATER BODIES REMOTE SENSING OF RIVERINE WATER BODIES Bryony Livingston, Paul Frazier and John Louis Farrer Research Centre Charles Sturt University Wagga Wagga, NSW 2678 Ph 02 69332317, Fax 02 69332737 blivingston@csu.edu.au

More information

Managing and Monitoring Intertidal Oyster Reefs with Remote Sensing in Coastal South Carolina

Managing and Monitoring Intertidal Oyster Reefs with Remote Sensing in Coastal South Carolina Managing and Monitoring Intertidal Oyster Reefs with Remote Sensing in Coastal South Carolina A cooperative effort between: Coastal Services Center South Carolina Department of Natural Resources City of

More information

Linear features detection in CCD/CBERS-2 image using neural network. Carlos Frederico de Sá Volotão 1 Claudio Gelelete 2

Linear features detection in CCD/CBERS-2 image using neural network. Carlos Frederico de Sá Volotão 1 Claudio Gelelete 2 Linear features detection in CCD/CBERS-2 image using neural network Carlos Frederico de Sá Volotão 1 Claudio Gelelete 2 1 5ª Divisão de Levantamento 5DL Rua Maj Daemon, 81 Rio de Janeiro - RJ, Brasil volotao@hotmail.com

More information

DATA FUSION AND TEXTURE-DIRECTION ANALYSES FOR URBAN STUDIES IN VIETNAM

DATA FUSION AND TEXTURE-DIRECTION ANALYSES FOR URBAN STUDIES IN VIETNAM 1 DATA FUSION AND TEXTURE-DIRECTION ANALYSES FOR URBAN STUDIES IN VIETNAM Tran Dong Binh 1, Weber Christiane 1, Serradj Aziz 1, Badariotti Dominique 2, Pham Van Cu 3 1. University of Louis Pasteur, Department

More information

VALIDATION OF THE CLOUD AND CLOUD SHADOW ASSESSMENT SYSTEM FOR LANDSAT IMAGERY (CASA-L VERSION 1.3)

VALIDATION OF THE CLOUD AND CLOUD SHADOW ASSESSMENT SYSTEM FOR LANDSAT IMAGERY (CASA-L VERSION 1.3) GDA Corp. VALIDATION OF THE CLOUD AND CLOUD SHADOW ASSESSMENT SYSTEM FOR LANDSAT IMAGERY (-L VERSION 1.3) GDA Corp. has developed an innovative system for Cloud And cloud Shadow Assessment () in Landsat

More information

Preprocessing and Segregating Offline Gujarati Handwritten Datasheet for Character Recognition

Preprocessing and Segregating Offline Gujarati Handwritten Datasheet for Character Recognition Preprocessing and Segregating Offline Gujarati Handwritten Datasheet for Character Recognition Hetal R. Thaker Atmiya Institute of Technology & science, Kalawad Road, Rajkot Gujarat, India C. K. Kumbharana,

More information

DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA

DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA DIFFERENTIAL APPROACH FOR MAP REVISION FROM NEW MULTI-RESOLUTION SATELLITE IMAGERY AND EXISTING TOPOGRAPHIC DATA Costas ARMENAKIS Centre for Topographic Information - Geomatics Canada 615 Booth Str., Ottawa,

More information

HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS. International Atomic Energy Agency, Vienna, Austria

HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS. International Atomic Energy Agency, Vienna, Austria HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS G. A. Borstad 1, Leslie N. Brown 1, Q.S. Bob Truong 2, R. Kelley, 3 G. Healey, 3 J.-P. Paquette, 3 K. Staenz 4, and R. Neville 4 1 Borstad Associates Ltd.,

More information

Segmentation and classification models validation area mapping of peat lands as initial value of Fuzzy Kohonen Clustering Network

Segmentation and classification models validation area mapping of peat lands as initial value of Fuzzy Kohonen Clustering Network IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Segmentation and classification models validation area mapping of peat lands as initial value of Fuzzy Kohonen Clustering Network

More information

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0

CanImage. (Landsat 7 Orthoimages at the 1: Scale) Standards and Specifications Edition 1.0 CanImage (Landsat 7 Orthoimages at the 1:50 000 Scale) Standards and Specifications Edition 1.0 Centre for Topographic Information Customer Support Group 2144 King Street West, Suite 010 Sherbrooke, QC

More information

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS

REMOTE SENSING. Topic 10 Fundamentals of Digital Multispectral Remote Sensing MULTISPECTRAL SCANNERS MULTISPECTRAL SCANNERS REMOTE SENSING Topic 10 Fundamentals of Digital Multispectral Remote Sensing Chapter 5: Lillesand and Keifer Chapter 6: Avery and Berlin MULTISPECTRAL SCANNERS Record EMR in a number of discrete portions

More information

Digital Image Processing - A Remote Sensing Perspective

Digital Image Processing - A Remote Sensing Perspective ISSN 2278 0211 (Online) Digital Image Processing - A Remote Sensing Perspective D.Sarala Department of Physics & Electronics St. Ann s College for Women, Mehdipatnam, Hyderabad, India Sunita Jacob Head,

More information

GEOG432: Remote sensing Lab 3 Unsupervised classification

GEOG432: Remote sensing Lab 3 Unsupervised classification GEOG432: Remote sensing Lab 3 Unsupervised classification Goal: This lab involves identifying land cover types by using agorithms to identify pixels with similar Digital Numbers (DN) and spectral signatures

More information