Development of a Semi-Automatic Segmentation Method for Retinal OCT Images Tested in Patients with Diabetic Macular Edema

Size: px
Start display at page:

Download "Development of a Semi-Automatic Segmentation Method for Retinal OCT Images Tested in Patients with Diabetic Macular Edema"

Transcription

1 Development of a Semi-Automatic Segmentation Method for Retinal OCT Images Tested in Patients with Diabetic Macular Edema Yijun Huang 1,2 *, Ronald P. Danis 1,2, Jeong W. Pak 1, Shiyu Luo 1, James White 1, Xian Zhang 3, Ashwini Narkar 1, Amitha Domalpally 1 1 Fundus Photograph Reading Center, Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 2 McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 3 Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America Abstract Purpose: To develop EdgeSelect, a semi-automatic method for the segmentation of retinal layers in spectral domain optical coherence tomography images, and to compare the segmentation results with a manual method. Methods: SD-OCT (Heidelberg Spectralis) scans of 28 eyes (24 patients with diabetic macular edema and 4 normal subjects) were imported into a customized MATLAB application, and were manually segmented by three graders at the layers corresponding to the inner limiting membrane (ILM), the inner segment/ellipsoid interface (ISe), the retinal/retinal pigment epithelium interface (RPE), and the Bruch s membrane (BM). The scans were then segmented independently by the same graders using EdgeSelect, a semi-automated method allowing the graders to guide/correct the layer segmentation interactively. The inter-grader reproducibility and agreement in locating the layer positions between the manual and EdgeSelect methods were assessed and compared using the Wilcoxon signed rank test. Results: The inter-grader reproducibility using the EdgeSelect method for retinal layers varied from 0.15 to 1.21 mm, smaller than those using the manual method ( mm). The Wilcoxon test indicated the EdgeSelect method had significantly better reproducibility than the manual method. The agreement between the manual and EdgeSelect methods in locating retinal layers ranged from 0.08 to 1.32 mm. There were small differences between the two methods in locating the ILM (p = 0.012) and BM layers (p,0.001), but these were statistically indistinguishable in locating the ISe (p = 0.896) and RPE layers (p = 0.771). Conclusions: The EdgeSelect method resulted in better reproducibility and good agreement with a manual method in a set of eyes of normal subjects and with retinal disease, suggesting that this approach is feasible for OCT image analysis in clinical trials. Citation: Huang Y, Danis RP, Pak JW, Luo S, White J, et al. (2013) Development of a Semi-Automatic Segmentation Method for Retinal OCT Images Tested in Patients with Diabetic Macular Edema. PLoS ONE 8(12): e doi: /journal.pone Editor: Orhan Aktas, University of Düsseldorf, Germany Received April 21, 2013; Accepted October 29, 2013; Published December 26, 2013 Copyright: ß 2013 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research was supported by an unrestricted fund provided by Research to Prevent Blindness Foundation to Department of Ophthalmology, University of Wisconsin - Madison; the funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors were grateful that the data was collected and provided by DRCR.net for analysis; DRCR.net has no role in the study design, data analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * yhuang@rc.ophth.wisc.edu Introduction Optical Coherence Tomography (OCT) - determined retinal layer thickness measurements have used in clinical trials as quantitative, morphologic endpoints for the diagnosis and classification of retinal diseases and for monitoring treatment effects [1,2,3,4,5,6], including studies in patients with diabetic macular edema. In order for the retinal layer thickness be measured properly, accuracy of the applied layer segmentation method becomes an important determinant especially when structural-altering retinal lesion is present. With the advent of spectral domain OCT, a number of research groups and manufacturers have engaged in developing layer segmentation strategies [7,8,9,10,11,12,13]. To date, published and commercially available segmentation methods fall into two groups, either fully automated or manual. With a fully-automated method, computer algorithm determines the desired layers with no human supervision. While it is very convenient and practical in the traditional clinical practice settings, the segmentation results using automatic algorithms are prone to layer misidentification errors, especially in eyes with intermediate to severe retinal lesions where the error rate ranges from 30% to 80% [14,15,16,17,18]. The layer misidentification, while confounded by other OCT imaging and operating errors such as weak signal quality, eye movement, and decentration, are mostly caused by the complexity of morphological configuration and reflectivity changes of retinal PLOS ONE 1 December 2013 Volume 8 Issue 12 e82922

2 lesions that are beyond the reach of traditional image segmentation techniques. Manual segmentation by human graders has been considered the gold standard in many previous reports [12,13,19]. Manual segmentation by human graders usually requires the grader to identify the layers either by free-hand drawing [12], or placing seed points and the computer interpolating the layers via pointfitting algorithms [13]. While the gross errors of layer misidentification frequented in the automated methods are avoided, the manual methods are usually time- and labor-intensive, and generally yield higher inter-grader variability. Taking into consideration the advantages and drawbacks of both approaches, we developed a semi-automatic, interactive segmentation method (called herein EdgeSelect). We tested the performance of the EdgeSelect method and compared it against a manual method for detection of the inner and outer boundaries of the retina. Methods Study dataset and preparation Retina volume scans from 28 eyes consisting of 4 normal subjects and 24 patients with diabetic macular edema were obtained using Heidelberg Spectralis OCT devices (Heidelberg Engineering Inc, Heidelberg, Germany). The patient scans were provided by the Diabetic Retinopathy Clinical Research Network (DRCR.net) from participants enrolled in a study comparing the measurements from spectral domain and time domain OCTs. The volume scans consist of horizontal raster lines covering a mm area centered at the fovea (Figure 1A), of which each B scan was captured with 9-frame averaging (ART = 9). Scans were obtained with certified photographers to minimize the OCT data acquisition artifacts [15,20]. The data samples were saved in the Heidelberg proprietary.e2e format. They were exported from a Heidelberg Heyex review software (version 5.1) in.vol format and converted to the DICOM (Digital Imaging and Communication in Medicine) [21] OPT (ophthalmic tomography) format using a custom application built in MATLAB (MATLAB R2011b, The MathWorks, Natick, MA). The standardized OCT images were then segmented by three graders independently for the layers of the inner limiting membrane (ILM), the inner segment/ellipsoid interface (ISe), the retina/retinal pigment epithelium interface (RPE), and Bruch s membrane (BM), using both manual and EdgeSelect segmentation methods (Figure 1B). The study was conducted in accordance with Health Insurance Portability and Accountability Act (HIPAA) requirements and the tenets of the Declaration of Helsinki. All images were obtained under informed written consent and de-identified through the DRCR.net clinical trial protocol, and the study protocol was approved by the institutional review board of the University of Wisconsin-Madison. Figure 1. A representative OCT image with layers segmented using EdgeSelect. (A) OCT images were captured with horizontal raster lines covering mm area centered at the fovea. (B) A representative B scan is shown by the red line in (A). The inner limiting membrane (ILM), the inner-segment/ellipsoid interface (ISe), the retinal/ retinal pigment epithelium interface (RPE), and the Bruch s membrane (BM), were segmented. doi: /journal.pone g001 Segmentation Procedures The manual method. The manual segmentation method used in this study was similar to the method described by Hood, et. al. [13] Graders used the computer mouse to place the seed points at a desired OCT layer, and the computer automatically interpolated the layer based on a spline fitting algorithm. The graders continued to add/delete seed points until the resultant spline line adequately demarcated the layer. The graders segmented each of the four layers for all B-scans in the volumetric data before continuing on the next layer. The EdgeSelect method. Several weeks after the graders performed the manual segmentation of the scans, they resegmented them for the same four layers using the EdgeSelect method. The general steps of the EdgeSelect method to generate the retinal layers are illustrated and described in Figure 2 by segmenting the ILM layer in a representative B-scan. It is of note that the steps leading to interactive edge selection and layer generation are based on automatic image processing routines and require no grader intervention. 1. To reduce speckle noise, OCT images were smoothed by applying a 363 pixel boxcar averaging filter. 2. The layer locations in OCT images were defined as the transition between two regions with difference in reflectance intensity, which were identified in EdgeSelect as the zerocrossing pixels when a Laplacian of Gaussian filter was applied [22]. The zero-crossing pixels correspond to the local maximum gradient in intensity. Figure 2B shows the zerocrossing binary image derived from the original OCT image. 3. Each of the zero-crossing pixels were assigned values with a weighting scheme based on the intensity and gradient of the neighboring pixels. The weighting scheme was designed based on the characteristics of the desired layer. For ILM, a gradient filter enhancing the transition from low reflectivity to high reflectivity was used. The weighted zero-crossing map was plotted in Figure 2C; many spurious edges were suppressed by the weighting scheme. 4. The weighted zero-crossing map was then applied with a Canny-edge detection scheme [23]: only the pixels connected with pixels with strong weight were considered as edge. PLOS ONE 2 December 2013 Volume 8 Issue 12 e82922

3 Figure 2D illustrates the edge candidates superimposed on the original OCT B-scan. 5. To generate the layer location, EdgeSelect used the Dijkstra s algorithm [24] interactively based on the edges selected by the user. The program automatically selected one edge candidate from the leftmost of the image as the source, and one from the rightmost of the image as the destination, and generated the shortest path from the source to the destination. The choices of the source and destination edges depends on the relative position of the desired layer within the retinal tissue. For example, if ILM layer is segmented, the program will choose the edges near the vitreal high reflectivity band; if ISe, RPE, or BM layers are segmented, the program will choose the edges near the posterior high reflectivity band. If the generated layer was satisfactory to demarcate the desired layer, no further human intervention was necessary. However, in diseased retinas where the layered structure was altered, the grader could pick additional or remove edge candidates from the initial set for the Dijkstra s algorithm to re-route the shortest path until the resultant layer was correct. This process is illustrated in Figure 2E and 2F. Figure 2E shows the resultant ILM layer from initial automatic edge selection. Because of the presence of a large cyst in the OCT image, the initial shortestpath failed to demarcate correctly the layer on the center portion of the image. The grader intervened by selecting the correct edge on the top of the cyst, and the ILM layer was recalculated automatically with the inclusion of the new edge candidate (Figure 2F). Data Analysis Comparison of the manual and EdgeSelect methods was performed by evaluating the inter-grader reproducibility for each method, and the agreement of the layer locations between the two methods. The inter-grader reproducibility of the mean layer location was calculated with concordance correlation coefficients. In addition, we also evaluated the variability at the pixel level. For a particular layer, the absolute difference in boundary location (DBL) at each pixel was calculated between any grader pairs, and the inter-grader reproducibility was defined as the value of the DBL averaged across the entire 3D volumetric data and among the three grader pairs. Scatter plots of the inter-grader reproducibility of each data sample was used to compare the manual and EdgeSelect method visually, and Wilcoxon signed rank test [25] was used to determine if the inter-grader reproducibility between the two methods differed, assuming the data sample distribution was not normal. We were also interested in determining whether the layers were accurately segmented using the EdgeSelect method, i.e., if the layer locations identified by the EdgeSelect method were in agreement with those by the manual method. At each pixel, we computed the layer location averaged among the three graders for the EdgeSelect and the manual methods independently. The agreement was measured by computing the absolute difference of the mean layer locations between the manual and the EdgeSelect methods at each pixel, and then averaged across the 3D data. Similarly, scattered plot of agreement of each data sample was used for visual inspection, and Wilcoxon signed rank test was used to determine the statistical difference between the two measurements. Results Inter-grader reproducibility Both the Manual and EdgeSelect methods exhibited high concordance correlation among graders in identifying the mean layer locations of the ILM, ISe, RPE and BM (Table 1). At the pixel level, reproducibility for the EdgeSelect method varied from 0.15 to 1.22 mm; in contrast, reproducibility for the manual method ranged from 3.36 to 6.43 mm. To further illustrate the difference in reproducibility between these two methods, the scatter plots of reproducibility for the four layers are shown in Figure 3. In each of the 28 data samples, reproducibility of the EdgeSelect method pixel-wise was better than that of the manual method. Wilcoxon test indicated the improvement was statistically significant (p,0.001) for each layer. Figure 2. Graphic representation of segmenting the inner limiting membrane (ILM) interface in a representative B scan using the EdgeSelect method. (A) A representative OCT B scan. (B) Detection of image contrast change using zero-crossing of a Laplacian-of-Gaussian (LoG) filter. (C) The detected edges are assigned different weights based on intensity/gradient characteristics. Higher intensity represents larger weight, corresponding to strong edges; lower intensity signals are assigned lesser weight corresponding to weak edges. (D) An edge candidate map (blue lines) is generated using a Canny-like filtering scheme, and is superimposed on the original OCT image. (E) The start and end edge candidates are initiated, and the path of the shortest distance via Dijkstra s algorithm (red line) is computed. (F) Human grader intervention adds additional seed edges, and the program regenerates automatically the updated shortest path until the proper layer segmentation is reached. doi: /journal.pone g002 PLOS ONE 3 December 2013 Volume 8 Issue 12 e82922

4 Figure 3. Comparison of the inter-grader reproducibility between the manual and the EdgeSelect methods in all 28 data samples. The filled symbols are data points from patients and the open symbols are from normal subjects. ILM: inner limiting membrane; ISe: the innersegment/ellipsoid interface; RPE: the retinal/retinal pigment epithelium interface; BM: the Bruch s membrane. doi: /journal.pone g003 It was also noted that the inter-grader reproducibility reported here was similar in magnitude to the MEAN (mean(dlbl)) reported by Hood et. al. [13], in which it was reported to be mm. Since the MEAN (mean(dlbl)) by Hood et. al. was defined as the absolute difference between grader and the mean location of all graders, and in our report the inter-grader reproducibility was defined as the absolute difference between grader pairs, the value of the inter-grader reproducibility is twice Table 1. Mean, standard deviation, and concordance correlation of the inter-grader reproducibility of the EdgeSelect and the Manual methods. Layer Concordance Mean (mm) Std. Dev. (mm) Corr. EdgeSelect ILM ISe RPE BM Manual ILM ISe RPE BM Layers are: inner limiting membrane (ILM), inner segment/ellipsoid interface (ISe), retina/retinal pigment epithelium interface (RPE), and Bruch s membrane (BM). doi: /journal.pone t001 as large as the MEAN (mean(dlbl)). Not surprisingly, the range of the inter-grader reproducibility for the manual method, mm, was congruent with those reported by Hood et. al., as the manual methods employed in these two reports were virtually identical. Agreement Figure 4 shows the agreement in identifying layer locations between the manual and EdgeSelect methods. The mean difference for the ILM, ISe, RPE, and BM layers were mm (mean 6 1 std. dev.), mm, mm, and mm, respectively. There was a small difference between the manual and EdgeSelect methods in identifying the ILM (p = 0.012, Wilcoxon test) and BM layers (p,0.001), but the ISe and RPE layers were statistically indistinguishable between the two methods (p = and p = 0.771). The small difference between the two methods in locating the ILM and BM layers was presumably due to the disparity that EdgeSelect method objectively found the location of the local maximum gradient in reflectance, while the results of the manual method were influenced by the human perception of an edge, in particular where there was an asymmetrical intensity profile of the neighboring pixels. Additional analysis is done for comparing the inter-grader variability and agreement in patient and normal subject groups independently. The results is provided as Table S1. PLOS ONE 4 December 2013 Volume 8 Issue 12 e82922

5 Figure 4. Agreement in segmented layer locations between the manual and EdgeSelect methods. Solid lines indicate the mean difference of the agreement between the two methods and the dashed lines indicate mean 6 2 standard deviations. The filled symbols are data points from patients and the open symbols are from normal subjects. ILM: inner limiting membrane; ISe: the inner-segment/ellipsoid interface; RPE: the retinal/retinal pigment epithelium interface; BM: the Bruch s membrane. doi: /journal.pone g004 Discussion Accurate segmentation of OCT retinal images has been a challenge for OCT device manufacturers and research groups. An ideal algorithm or strategy incorporates elements to ensure high accuracy in layer identification in various clinical conditions as well as low inter-session variability. Among the existing methods, automatic segmentation algorithms have the computational superiority and usually produce perfect inter-session reliability when applied to the same OCT image. However, in diseased eyes where retinal lesions are heterogeneous and complex, automated methods frequently fail to identify retinal layers properly, and the human observer remains the best decision-maker for definition and control of the desired segmented results. In contrast, manual methods usually have limited layer misidentification errors, but tend to have high inter-grader variability and are usually time and effort consuming. In this report, we described the EdgeSelect method, which allows graders to incorporate their clinical knowledge to guide the selection of the proper edge candidates of a particular layer, but delegates the calculation of the exact pixel location of the layer path to the computer via using the Dijkstra s algorithm interactively. When comparing with a manual method, the EdgeSelect method demonstrated better inter-grader reproducibility, while maintaining good agreement with the manual method. When compared to an automatic method, the EdgeSelect method should perform at the same level of efficiency in the retinas with normal or near-normal structure, as the initial automatic edge selection is likely accurate and hence no human intervention is needed. In diseased retinas, the advantage of the interactive nature of the EdgeSelect method becomes evident, especially where patchy or locally discontinuous layer signals are common. Using EdgeSelect, we anticipate increased efficiency in layer segmentation, which should allow segmentation of large 3D data sets to become feasible for graders. Lastly, the EdgeSelect method relies on local transition of the reflectance signal to determine the proper edges, which is less likely to be device dependent. Together with methods of data standardization and homogenization [26], EdgeSelect can be applied universally to images from different SD-OCT devices, which would allow all OCT images to be processed using the same software algorithm for harmonization of the measurements. Supporting Information Table S1 The inter-grader variability and agreement between EdgeSelect and manual measurement is analyzed independently for the patient and normal subjects groups. (DOCX) PLOS ONE 5 December 2013 Volume 8 Issue 12 e82922

6 Author Contributions Conceived and designed the experiments: YH RPD. Performed the experiments: YH RPD JWP SL JW AD. Analyzed the data: YH RPD XZ AN. Wrote the paper: YH. References 1. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Progress in retinal and eye research 27: Browning DJ, Glassman AR, Aiello LP, Bressler NM, Bressler SB, et al. (2008) Optical coherence tomography measurements and analysis methods in optical coherence tomography studies of diabetic macular edema. Ophthalmology 115: , 1371 e Keane PA, Patel PJ, Liakopoulos S, Heussen FM, Sadda SR, et al. (2012) Evaluation of age-related macular degeneration with optical coherence tomography. Survey of ophthalmology 57: Lim JI, Tan O, Fawzi AA, Hopkins JJ, Gil-Flamer JH, et al. (2008) A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients. American journal of ophthalmology 146: Albrecht P, Ringelstein M, Müller A, Keser N, Dietlein T, et al. (2012) Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Multiple Sclerosis Journal 18: Nolan R, Gelfand JM, Green AJ (2013) Fingolimod treatment in multiple sclerosis leads to increased macular volume. Neurology 80: Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, et al. (2010) Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics express 18: Garvin MK, Abramoff MD, Wu X, Russell SR, Burns TL, et al. (2009) Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE transactions on medical imaging 28: Vermeer KA, van der Schoot J, Lemij HG, de Boer JF (2011) Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images. Biomedical optics express 2: Yang Q, Reisman CA, Chan K, Ramachandran R, Raza A, et al. (2011) Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa. Biomedical optics express 2: Ahlers C, Simader C, Geitzenauer W, Stock G, Stetson P, et al. (2008) Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography. The British journal of ophthalmology 92: Sadda SR, Joeres S, Wu Z, Updike P, Romano P, et al. (2007) Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading. Investigative ophthalmology & visual science 48: Hood DC, Cho J, Raza AS, Dale EA, Wang M (2011) Reliability of a computeraided manual procedure for segmenting optical coherence tomography scans. Optometry and vision science : official publication of the American Academy of Optometry 88: Sadda SR, Wu Z, Walsh AC, Richine L, Dougall J, et al. (2006) Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology 113: Han IC, Jaffe GJ (2010) Evaluation of artifacts associated with macular spectraldomain optical coherence tomography. Ophthalmology 117: e Ho J, Sull AC, Vuong LN, Chen Y, Liu J, et al. (2009) Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology 116: Lammer J, Scholda C, Prunte C, Benesch T, Schmidt-Erfurth U, et al. (2011) Retinal thickness and volume measurements in diabetic macular edemfa: a comparison of four optical coherence tomography systems. Retina 31: Krebs I, Hagen S, Brannath W, Haas P, Womastek I, et al. (2010) Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration. Ophthalmology 117: Seigo MA, Sotirchos ES, Newsome S, Babiarz A, Eckstein C, et al. (2012) In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. Journal of neurology 259: Tewarie P, Balk L, Costello F, Green A, Martin R, et al. (2012) The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One 7: e NEMA (2013) Digital Imaging and Communication in Medicine (DICOM) Standard. 22. Rogowska J (2008) Overview and Fundamentals of Medical Image Segmentation. In: Bankman I, editor. Handbook of Medical Image Processing and Analysis: Academic press. pp Canny J (1986) A computational approach to edge detection. IEEE transactions on pattern analysis and machine intelligence 8: Sniedovich M (2006) Dijkstra s algorithm revisited: the dynamic programming connexion. Control and Cybernetics 35: Siegel S (1956) Non-parametric statistics for the behavioral sciences. New York: McGraw-Hill. 26. Huang Y, Gangaputra S, Lee KE, Narkar AR, Klein R, et al. (2012) Signal quality assessment of retinal optical coherence tomography images. Investigative ophthalmology & visual science 53: PLOS ONE 6 December 2013 Volume 8 Issue 12 e82922

Blood Vessel Tree Reconstruction in Retinal OCT Data

Blood Vessel Tree Reconstruction in Retinal OCT Data Blood Vessel Tree Reconstruction in Retinal OCT Data Gazárek J, Kolář R, Jan J, Odstrčilík J, Taševský P Department of Biomedical Engineering, FEEC, Brno University of Technology xgazar03@stud.feec.vutbr.cz

More information

Automatic and manual segmentation of healthy retinas using high-definition optical coherence tomography

Automatic and manual segmentation of healthy retinas using high-definition optical coherence tomography Automatic and manual segmentation of healthy retinas using high-definition optical coherence tomography Isabelle Golbaz, 1 Christian Ahlers, 1 Nina Goesseringer, 2 Geraldine Stock, 1 Wolfgang Geitzenauer,

More information

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Automatic functions make examinations short and simple. Perform the examination with only two simple mouse clicks! 1. START

More information

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY

Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Going beyond the surface of your retina OCT-HS100 OPTICAL COHERENCE TOMOGRAPHY Full Auto OCT High specifications in a very compact design Automatic functions make examinations short and simple. Perform

More information

Image Database and Preprocessing

Image Database and Preprocessing Chapter 3 Image Database and Preprocessing 3.1 Introduction The digital colour retinal images required for the development of automatic system for maculopathy detection are provided by the Department of

More information

Fundus Photograph Reading Center

Fundus Photograph Reading Center Spectral Domain Optical Coherence Tomography (SD-OCT) Heidelberg Spectralis 8010 Excelsior Drive, Suite 100, Madison WI 53717 Telephone: (608) 410-0560 Fax: (608) 410-0566 Table of Contents 1. Heidelberg

More information

Fovea and Optic Disc Detection in Retinal Images with Visible Lesions

Fovea and Optic Disc Detection in Retinal Images with Visible Lesions Fovea and Optic Disc Detection in Retinal Images with Visible Lesions José Pinão 1, Carlos Manta Oliveira 2 1 University of Coimbra, Palácio dos Grilos, Rua da Ilha, 3000-214 Coimbra, Portugal 2 Critical

More information

Medical imaging has long played a critical role in diagnosing

Medical imaging has long played a critical role in diagnosing Three-Dimensional Optical Coherence Tomography (3D-OCT) Image Enhancement with Segmentation-Free Contour Modeling C-Mode Hiroshi Ishikawa, 1,2 Jongsick Kim, 1,2 Thomas R. Friberg, 1,2 Gadi Wollstein, 1

More information

The TRC-NW8F Plus: As a multi-function retinal camera, the TRC- NW8F Plus captures color, red free, fluorescein

The TRC-NW8F Plus: As a multi-function retinal camera, the TRC- NW8F Plus captures color, red free, fluorescein The TRC-NW8F Plus: By Dr. Beth Carlock, OD Medical Writer Color Retinal Imaging, Fundus Auto-Fluorescence with exclusive Spaide* Filters and Optional Fluorescein Angiography in One Single Instrument W

More information

A new method for segmentation of retinal blood vessels using morphological image processing technique

A new method for segmentation of retinal blood vessels using morphological image processing technique A new method for segmentation of retinal blood vessels using morphological image processing technique Roya Aramesh Faculty of Computer and Information Technology Engineering,Qazvin Branch,Islamic Azad

More information

Submission of Figures to the Japanese Journal of Ophthalmology

Submission of Figures to the Japanese Journal of Ophthalmology Submission of Figures to the Japanese Journal of Ophthalmology 1. All figures should be ready for publication without the need for changes by either the editors or publishers. 2. There should be no text

More information

Fourier Domain (Spectral) OCT OCT: HISTORY. Could OCT be a Game Maker OCT in Optometric Practice: A THE TECHNOLOGY BEHIND OCT

Fourier Domain (Spectral) OCT OCT: HISTORY. Could OCT be a Game Maker OCT in Optometric Practice: A THE TECHNOLOGY BEHIND OCT Could OCT be a Game Maker OCT in Optometric Practice: A Hands On Guide Murray Fingeret, OD Nick Rumney, MSCOptom Fourier Domain (Spectral) OCT New imaging method greatly improves resolution and speed of

More information

Detection of License Plates of Vehicles

Detection of License Plates of Vehicles 13 W. K. I. L Wanniarachchi 1, D. U. J. Sonnadara 2 and M. K. Jayananda 2 1 Faculty of Science and Technology, Uva Wellassa University, Sri Lanka 2 Department of Physics, University of Colombo, Sri Lanka

More information

CHAPTER 4 LOCATING THE CENTER OF THE OPTIC DISC AND MACULA

CHAPTER 4 LOCATING THE CENTER OF THE OPTIC DISC AND MACULA 90 CHAPTER 4 LOCATING THE CENTER OF THE OPTIC DISC AND MACULA The objective in this chapter is to locate the centre and boundary of OD and macula in retinal images. In Diabetic Retinopathy, location of

More information

Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes

Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes Article DOI: 10.1167/tvst.4.4.3 Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes Bhavna J. Antony 1,2, Paul F. Stetson

More information

Gaussian and Fast Fourier Transform for Automatic Retinal Optic Disc Detection

Gaussian and Fast Fourier Transform for Automatic Retinal Optic Disc Detection Gaussian and Fast Fourier Transform for Automatic Retinal Optic Disc Detection Arif Muntasa 1, Indah Agustien Siradjuddin 2, and Moch Kautsar Sophan 3 Informatics Department, University of Trunojoyo Madura,

More information

imagespectrum ADVANCED DIGITAL IMAGE MANAGEMENT SYSTEM Get a Better Handle on the Big Picture

imagespectrum ADVANCED DIGITAL IMAGE MANAGEMENT SYSTEM Get a Better Handle on the Big Picture ADVANCED DIGITAL IMAGE MANAGEMENT SYSTEM Get a Better Handle on the Big Picture SECURELY STREAMLINE YOUR PRACTICE WORKFLOW imagespectrum enables eye care practices, clinics, and even entire hospital departments

More information

OPTIC DISC LOCATION IN DIGITAL FUNDUS IMAGES

OPTIC DISC LOCATION IN DIGITAL FUNDUS IMAGES OPTIC DISC LOCATION IN DIGITAL FUNDUS IMAGES Miss. Tejaswini S. Mane 1,Prof. D. G. Chougule 2 1 Department of Electronics, Shivaji University Kolhapur, TKIET,Wrananagar (India) 2 Department of Electronics,

More information

Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm

Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

Automatic Detection Of Optic Disc From Retinal Images. S.Sherly Renat et al.,

Automatic Detection Of Optic Disc From Retinal Images. S.Sherly Renat et al., International Journal of Technology and Engineering System (IJTES) Vol 7. No.3 2015 Pp. 203-207 gopalax Journals, Singapore available at : www.ijcns.com ISSN: 0976-1345 AUTOMATIC DETECTION OF OPTIC DISC

More information

Segmentation of Microscopic Bone Images

Segmentation of Microscopic Bone Images International Journal of Electronics Engineering, 2(1), 2010, pp. 11-15 Segmentation of Microscopic Bone Images Anand Jatti Research Scholar, Vishveshvaraiah Technological University, Belgaum, Karnataka

More information

Diabetic Retinopathy Clinical Research Network (DRCR.net) UWF Optos 200Tx Imaging Protocol. Version 3.0 9/19/16

Diabetic Retinopathy Clinical Research Network (DRCR.net) UWF Optos 200Tx Imaging Protocol. Version 3.0 9/19/16 Diabetic Retinopathy Clinical Research Network (DRCR.net) UWF Optos 200Tx Imaging Protocol Version 3.0 9/19/16 DRCR.net UWF 200 Tx Imaging Protocol V3.0 9-19-15 Final Page 1 of 14 Table of Contents Background...

More information

Digital Imaging and Communications in Medicine (DICOM)

Digital Imaging and Communications in Medicine (DICOM) Digital Imaging and Communications in Medicine (DICOM) Supplement 197: Ophthalmic Optical Coherence Tomography for Angiographic Imaging Storage SOP Classes Prepared by: DICOM Standards Committee 1300 N.

More information

Clinical evaluation and management of glaucoma is largely

Clinical evaluation and management of glaucoma is largely Macular Segmentation with Optical Coherence Tomography Hiroshi Ishikawa, 1,2 Daniel M. Stein, 1 Gadi Wollstein, 1,2 Siobahn Beaton, 1,2 James G. Fujimoto, 3 and Joel S. Schuman 1,2 PURPOSE. To develop

More information

Drusen Detection in a Retinal Image Using Multi-level Analysis

Drusen Detection in a Retinal Image Using Multi-level Analysis Drusen Detection in a Retinal Image Using Multi-level Analysis Lee Brandon 1 and Adam Hoover 1 Electrical and Computer Engineering Department Clemson University {lbrando, ahoover}@clemson.edu http://www.parl.clemson.edu/stare/

More information

OCT - Anatomy of a Scan. OCT - Anatomy of a Scan. OCT Imaging. OCT Imaging

OCT - Anatomy of a Scan. OCT - Anatomy of a Scan. OCT Imaging. OCT Imaging OCT - Anatomy of a Scan Timothy J. Bennett, CRA, OCT-C, FOPS Penn State Eye Center Hershey, PA OCT - Anatomy of a Scan A systematic approach to understanding what we see in retinal OCT images including

More information

Real Time Deconvolution of In-Vivo Ultrasound Images

Real Time Deconvolution of In-Vivo Ultrasound Images Paper presented at the IEEE International Ultrasonics Symposium, Prague, Czech Republic, 3: Real Time Deconvolution of In-Vivo Ultrasound Images Jørgen Arendt Jensen Center for Fast Ultrasound Imaging,

More information

Artifacts Reduced Interpolation Method for Single-Sensor Imaging System

Artifacts Reduced Interpolation Method for Single-Sensor Imaging System 2016 International Conference on Computer Engineering and Information Systems (CEIS-16) Artifacts Reduced Interpolation Method for Single-Sensor Imaging System Long-Fei Wang College of Telecommunications

More information

Retinal blood vessel extraction

Retinal blood vessel extraction Retinal blood vessel extraction Surya G 1, Pratheesh M Vincent 2, Shanida K 3 M. Tech Scholar, ECE, College, Thalassery, India 1,3 Assistant Professor, ECE, College, Thalassery, India 2 Abstract: Image

More information

Diabetic Retinopathy Clinical Research Network (DRCR.net) UWF Optos Imaging Protocol. Version /14/14

Diabetic Retinopathy Clinical Research Network (DRCR.net) UWF Optos Imaging Protocol. Version /14/14 Diabetic Retinopathy Clinical Research Network (DRCR.net) UWF Optos Imaging Protocol Version 1.0 10/14/14 DRCR.net UWF Imaging Protocol FINAL 10-14-14 Page 1 of 14 Table of Contents Background... 3 P200Tx

More information

Automatic No-Reference Quality Assessment for Retinal Fundus Images Using Vessel Segmentation

Automatic No-Reference Quality Assessment for Retinal Fundus Images Using Vessel Segmentation Automatic No-Reference Quality Assessment for Retinal Fundus Images Using Vessel Segmentation Thomas Köhler 1,2, Attila Budai 1,2, Martin F. Kraus 1,2, Jan Odstrčilik 4,5, Georg Michelson 2,3, Joachim

More information

Novel 3D Computerized Threshold Amsler Grid Test CA, USA

Novel 3D Computerized Threshold Amsler Grid Test CA, USA Novel 3D Computerized Threshold Amsler Grid Test Wolfgang Fink 1,2 and Alfredo A. Sadun 2 1 California Institute of Technology, Pasadena, CA, USA 2 Doheny Eye Institute, Keck School of Medicine, University

More information

Preprocessing and Segregating Offline Gujarati Handwritten Datasheet for Character Recognition

Preprocessing and Segregating Offline Gujarati Handwritten Datasheet for Character Recognition Preprocessing and Segregating Offline Gujarati Handwritten Datasheet for Character Recognition Hetal R. Thaker Atmiya Institute of Technology & science, Kalawad Road, Rajkot Gujarat, India C. K. Kumbharana,

More information

Performance Evaluation of Edge Detection Techniques for Square Pixel and Hexagon Pixel images

Performance Evaluation of Edge Detection Techniques for Square Pixel and Hexagon Pixel images Performance Evaluation of Edge Detection Techniques for Square Pixel and Hexagon Pixel images Keshav Thakur 1, Er Pooja Gupta 2,Dr.Kuldip Pahwa 3, 1,M.Tech Final Year Student, Deptt. of ECE, MMU Ambala,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Computational high-resolution optical imaging of the living human retina Nathan D. Shemonski 1,2, Fredrick A. South 1,2, Yuan-Zhi Liu 1,2, Steven G. Adie 3, P. Scott Carney 1,2, Stephen A. Boppart 1,2,4,5,*

More information

Image Modeling of the Human Eye

Image Modeling of the Human Eye Image Modeling of the Human Eye Rajendra Acharya U Eddie Y. K. Ng Jasjit S. Suri Editors ARTECH H O U S E BOSTON LONDON artechhouse.com Contents Preface xiiii CHAPTER1 The Human Eye 1.1 1.2 1. 1.4 1.5

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 16971 First edition 2015-04-15 Ophthalmic instruments Optical coherence tomograph for the posterior segment of the human eye Instruments ophtalmiques Tomographe à cohérence optique

More information

Introduction. Chapter Aim of the Thesis

Introduction. Chapter Aim of the Thesis Chapter 1 Introduction 1.1 Aim of the Thesis The main aim of this investigation was to develop a new instrument for measurement of light reflected from the retina in a living human eye. At the start of

More information

Hybrid Method based Retinal Optic Disc Detection

Hybrid Method based Retinal Optic Disc Detection Hybrid Method based Retinal Optic Disc Detection Arif Muntasa 1, Indah Agustien Siradjuddin, and Moch Kautsar Sophan 3 Informatics Department, University of Trunojoyo Madura, Bangkalan Madura Island, Indonesia

More information

MATLAB DIGITAL IMAGE/SIGNAL PROCESSING TITLES

MATLAB DIGITAL IMAGE/SIGNAL PROCESSING TITLES MATLAB DIGITAL IMAGE/SIGNAL PROCESSING TITLES -2018 S.NO PROJECT CODE 1 ITIMP01 2 ITIMP02 3 ITIMP03 4 ITIMP04 5 ITIMP05 6 ITIMP06 7 ITIMP07 8 ITIMP08 9 ITIMP09 `10 ITIMP10 11 ITIMP11 12 ITIMP12 13 ITIMP13

More information

Removal of Gaussian noise on the image edges using the Prewitt operator and threshold function technical

Removal of Gaussian noise on the image edges using the Prewitt operator and threshold function technical IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 15, Issue 2 (Nov. - Dec. 2013), PP 81-85 Removal of Gaussian noise on the image edges using the Prewitt operator

More information

Image Extraction using Image Mining Technique

Image Extraction using Image Mining Technique IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 9 (September. 2013), V2 PP 36-42 Image Extraction using Image Mining Technique Prof. Samir Kumar Bandyopadhyay,

More information

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS Image processing: The collection of routines and 8.1 INTRODUCTION In this chapter, we will study and discuss some fundamental techniques for image processing and image analysis, with a few examples of routines developed for certain purposes. 8.2 IMAGE

More information

Image Segmentation of Color Image using Threshold Based Edge Detection Algorithm in MatLab

Image Segmentation of Color Image using Threshold Based Edge Detection Algorithm in MatLab Image Segmentation of Color Image using Threshold Based Edge Detection Algorithm in MatLab Neha Yadav, M.Tech [1] Vikas Sindhu [2] UIET, MDU Rohtak Abstract: The basic feature of an image is Edge. Edges

More information

Content Based Image Retrieval Using Color Histogram

Content Based Image Retrieval Using Color Histogram Content Based Image Retrieval Using Color Histogram Nitin Jain Assistant Professor, Lokmanya Tilak College of Engineering, Navi Mumbai, India. Dr. S. S. Salankar Professor, G.H. Raisoni College of Engineering,

More information

The Confocal Tonal Shift

The Confocal Tonal Shift The Confocal Tonal Shift 17 CASE REPORT Timothy J. Bennett, CRA, OCT-C, FOPS Penn State Hershey Eye Center 500 University Drive, HU19 Hershey, PA 17033 717/531-5516 timbennett@eye-pix.com T Introduction

More information

Blood Vessel Segmentation of Retinal Images Based on Neural Network

Blood Vessel Segmentation of Retinal Images Based on Neural Network Blood Vessel Segmentation of Retinal Images Based on Neural Network Jingdan Zhang 1( ), Yingjie Cui 1, Wuhan Jiang 2, and Le Wang 1 1 Department of Electronics and Communication, Shenzhen Institute of

More information

Digital Imaging and Communications in Medicine (DICOM)

Digital Imaging and Communications in Medicine (DICOM) Digital Imaging and Communications in Medicine (DICOM) Supplement 197: Ophthalmic Tomography for Angiographic Imaging Storage SOP Classes Prepared by: DICOM Standards Committee 1300 N. 17 th Street Suite

More information

Optical coherence tomography

Optical coherence tomography Optical coherence tomography Peter E. Andersen Optics and Plasma Research Department Risø National Laboratory E-mail peter.andersen@risoe.dk Outline Part I: Introduction to optical coherence tomography

More information

VEHICLE LICENSE PLATE DETECTION ALGORITHM BASED ON STATISTICAL CHARACTERISTICS IN HSI COLOR MODEL

VEHICLE LICENSE PLATE DETECTION ALGORITHM BASED ON STATISTICAL CHARACTERISTICS IN HSI COLOR MODEL VEHICLE LICENSE PLATE DETECTION ALGORITHM BASED ON STATISTICAL CHARACTERISTICS IN HSI COLOR MODEL Instructor : Dr. K. R. Rao Presented by: Prasanna Venkatesh Palani (1000660520) prasannaven.palani@mavs.uta.edu

More information

Determination of Electrospun Fiber Diameter Distributions Using Image Analysis Processing

Determination of Electrospun Fiber Diameter Distributions Using Image Analysis Processing Macromolecular Research, Vol. 16, No. 4, pp 314-319 (2008) Determination of Electrospun Fiber Diameter Distributions Using Image Analysis Processing Eun Ho Shin Korea Apparel Testing and Research Institute,

More information

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT

Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT Isolator-Free 840-nm Broadband SLEDs for High-Resolution OCT M. Duelk *, V. Laino, P. Navaretti, R. Rezzonico, C. Armistead, C. Vélez EXALOS AG, Wagistrasse 21, CH-8952 Schlieren, Switzerland ABSTRACT

More information

Visualization of human retinal micro-capillaries with phase contrast high-speed optical coherence tomography

Visualization of human retinal micro-capillaries with phase contrast high-speed optical coherence tomography Visualization of human retinal micro-capillaries with phase contrast high-speed optical coherence tomography Dae Yu Kim 1,2, Jeff Fingler 3, John S. Werner 1,2, Daniel M. Schwartz 4, Scott E. Fraser 3,

More information

Image Smoothening and Sharpening using Frequency Domain Filtering Technique

Image Smoothening and Sharpening using Frequency Domain Filtering Technique Volume 5, Issue 4, April (17) Image Smoothening and Sharpening using Frequency Domain Filtering Technique Swati Dewangan M.Tech. Scholar, Computer Networks, Bhilai Institute of Technology, Durg, India.

More information

An Efficient Pre-Processing Method to Extract Blood Vessel, Optic Disc and Exudates from Retinal Images

An Efficient Pre-Processing Method to Extract Blood Vessel, Optic Disc and Exudates from Retinal Images An Efficient Pre-Processing Method to Extract Blood Vessel, Optic Disc and Exudates from Retinal Images 1 K. Priya, 2 Dr. N. Jayalakshmi 1 (Research Scholar, Research & Development Centre, Bharathiar University,

More information

COMPARITIVE STUDY OF IMAGE DENOISING ALGORITHMS IN MEDICAL AND SATELLITE IMAGES

COMPARITIVE STUDY OF IMAGE DENOISING ALGORITHMS IN MEDICAL AND SATELLITE IMAGES COMPARITIVE STUDY OF IMAGE DENOISING ALGORITHMS IN MEDICAL AND SATELLITE IMAGES Jyotsana Rastogi, Diksha Mittal, Deepanshu Singh ---------------------------------------------------------------------------------------------------------------------------------

More information

A Review on Image Enhancement Technique for Biomedical Images

A Review on Image Enhancement Technique for Biomedical Images A Review on Image Enhancement Technique for Biomedical Images Pankaj V.Gosavi 1, Prof. V. T. Gaikwad 2 M.E (Pursuing) 1, Associate Professor 2 Dept. Information Technology 1, 2 Sipna COET, Amravati, India

More information

Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique

Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique Jeff Fingler 1,*, Robert J. Zawadzki 2, John S. Werner 2, Dan Schwartz 3, Scott

More information

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images Iranian Journal of Medical Physics Vol. 12, No. 3, Summer 2015, 167-177 Received: February 25, 2015; Accepted: July 8, 2015 Original Article Speckle Noise Reduction for the Enhancement of Retinal Layers

More information

UM-Based Image Enhancement in Low-Light Situations

UM-Based Image Enhancement in Low-Light Situations UM-Based Image Enhancement in Low-Light Situations SHWU-HUEY YEN * CHUN-HSIEN LIN HWEI-JEN LIN JUI-CHEN CHIEN Department of Computer Science and Information Engineering Tamkang University, 151 Ying-chuan

More information

THRESHOLD AMSLER GRID TESTING AND RESERVING POWER OF THE POTIC NERVE by MOUSTAFA KAMAL NASSAR. M.D. MENOFIA UNIVERSITY.

THRESHOLD AMSLER GRID TESTING AND RESERVING POWER OF THE POTIC NERVE by MOUSTAFA KAMAL NASSAR. M.D. MENOFIA UNIVERSITY. THRESHOLD AMSLER GRID TESTING AND RESERVING POWER OF THE POTIC NERVE by MOUSTAFA KAMAL NASSAR. M.D. MENOFIA UNIVERSITY. Since Amsler grid testing was introduced by Dr Marc Amsler on 1947and up till now,

More information

Volume 115(11) November 1997 pp

Volume 115(11) November 1997 pp http:/ /gateway l.ovid.com:80/ovidweb.cgi OPHTHALMOLOGY Copyright 1997 by the American Medical Association. All Rights Reserved. Applicable FARS/DFARS Restrictions Apply to Government Use. American Medical

More information

Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies

Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies The MIT Faculty has made this article openly available. Please share how

More information

Exudates Detection Methods in Retinal Images Using Image Processing Techniques

Exudates Detection Methods in Retinal Images Using Image Processing Techniques International Journal of Scientific & Engineering Research, Volume 1, Issue 2, November-2010 1 Exudates Detection Methods in Retinal Images Using Image Processing Techniques V.Vijayakumari, N. Suriyanarayanan

More information

Pattern Recognition 46 (2013) Contents lists available at SciVerse ScienceDirect. Pattern Recognition

Pattern Recognition 46 (2013) Contents lists available at SciVerse ScienceDirect. Pattern Recognition Pattern Recognition 46 (2013) 703 715 Contents lists available at SciVerse ScienceDirect Pattern Recognition journal homepage: www.elsevier.com/locate/pr An effective retinal blood vessel segmentation

More information

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS John Yong Jia Chen (Department of Electrical Engineering, San José State University, San José, California,

More information

Edge-Raggedness Evaluation Using Slanted-Edge Analysis

Edge-Raggedness Evaluation Using Slanted-Edge Analysis Edge-Raggedness Evaluation Using Slanted-Edge Analysis Peter D. Burns Eastman Kodak Company, Rochester, NY USA 14650-1925 ABSTRACT The standard ISO 12233 method for the measurement of spatial frequency

More information

Comparison of two algorithms in the automatic segmentation of blood vessels in fundus images

Comparison of two algorithms in the automatic segmentation of blood vessels in fundus images Comparison of two algorithms in the automatic segmentation of blood vessels in fundus images ABSTRACT Robert LeAnder, Myneni Sushma Chowdary, Swapnashri Mokkapati, and Scott E Umbaugh Effective timing

More information

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection e Scientific World Journal Volume 16, Article ID 356938, 7 pages http://dx.doi.org/1.1155/16/356938 Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection Avez Syed

More information

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012

Signal segmentation and waveform characterization. Biosignal processing, S Autumn 2012 Signal segmentation and waveform characterization Biosignal processing, 5173S Autumn 01 Short-time analysis of signals Signal statistics may vary in time: nonstationary how to compute signal characterizations?

More information

Despeckling vs Averaging of retinal UHROCT tomograms: advantages and limitations

Despeckling vs Averaging of retinal UHROCT tomograms: advantages and limitations Despeckling vs Averaging of retinal UHROCT tomograms: advantages and limitations Justin A. Eichel 1, Donghyun D. Lee 2, Alexander Wong 1, Paul W. Fieguth 1, David A. Clausi 1, and Kostadinka K. Bizheva

More information

Photoacoustic ophthalmoscopy for in vivo retinal imaging

Photoacoustic ophthalmoscopy for in vivo retinal imaging Photoacoustic ophthalmoscopy for in vivo retinal imaging Shuliang Jiao, 1,5 Minshan Jiang, 1 Jianming Hu, 1 Amani Fawzi, 1 Qifa Zhou, 2 K. Kirk Shung, 2 Carmen A. Puliafito, 1 and Hao F. Zhang 3,4 1 Department

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Tashakori, A., & Ektesabi, M. (2013). A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. Originally published

More information

Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania

Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania Yuanjie Zheng 1, Dwight Stambolian 2, Joan O'Brien 2, James Gee 1 1 Penn Image Computing & Science Lab, Department of Radiology, 2 Department of Ophthalmology, Perelman School of Medicine at the University

More information

Image Processing Of Oct Glaucoma Images And Information Theory Analysis

Image Processing Of Oct Glaucoma Images And Information Theory Analysis University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2009 Image Processing Of Oct Glaucoma Images And Information Theory Analysis Shuting Wang University of

More information

Iris Recognition using Histogram Analysis

Iris Recognition using Histogram Analysis Iris Recognition using Histogram Analysis Robert W. Ives, Anthony J. Guidry and Delores M. Etter Electrical Engineering Department, U.S. Naval Academy Annapolis, MD 21402-5025 Abstract- Iris recognition

More information

Edge Potency Filter Based Color Filter Array Interruption

Edge Potency Filter Based Color Filter Array Interruption Edge Potency Filter Based Color Filter Array Interruption GURRALA MAHESHWAR Dept. of ECE B. SOWJANYA Dept. of ECE KETHAVATH NARENDER Associate Professor, Dept. of ECE PRAKASH J. PATIL Head of Dept.ECE

More information

Automatic Locating the Centromere on Human Chromosome Pictures

Automatic Locating the Centromere on Human Chromosome Pictures Automatic Locating the Centromere on Human Chromosome Pictures M. Moradi Electrical and Computer Engineering Department, Faculty of Engineering, University of Tehran, Tehran, Iran moradi@iranbme.net S.

More information

Wide-Band Enhancement of TV Images for the Visually Impaired

Wide-Band Enhancement of TV Images for the Visually Impaired Wide-Band Enhancement of TV Images for the Visually Impaired E. Peli, R.B. Goldstein, R.L. Woods, J.H. Kim, Y.Yitzhaky Schepens Eye Research Institute, Harvard Medical School, Boston, MA Association for

More information

Segmentation of Blood Vessel in Retinal Images and Detection of Glaucoma using BWAREA and SVM

Segmentation of Blood Vessel in Retinal Images and Detection of Glaucoma using BWAREA and SVM Segmentation of Blood Vessel in Retinal Images and Detection of Glaucoma using BWAREA and SVM P.Dhivyabharathi 1, Mrs. V. Priya 2 1 P. Dhivyabharathi, Research Scholar & Vellalar College for Women, Erode-12,

More information

Title: Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography

Title: Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography Title: Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography Authors: O. M. Carrasco-Zevallos 1, B. Keller 1, C. Viehland

More information

Introduction. scotoma. Effects of preferred retinal locus placement on text navigation and development of adventageous trained retinal locus

Introduction. scotoma. Effects of preferred retinal locus placement on text navigation and development of adventageous trained retinal locus Effects of preferred retinal locus placement on text navigation and development of adventageous trained retinal locus Gale R. Watson, et al. Journal of Rehabilitration Research & Development 2006 Introduction

More information

Introduction Approach Work Performed and Results

Introduction Approach Work Performed and Results Algorithm for Morphological Cancer Detection Carmalyn Lubawy Melissa Skala ECE 533 Fall 2004 Project Introduction Over half of all human cancers occur in stratified squamous epithelia. Approximately one

More information

Visual Optics. Visual Optics - Introduction

Visual Optics. Visual Optics - Introduction Visual Optics Jim Schwiegerling, PhD Ophthalmology & Optical Sciences University of Arizona Visual Optics - Introduction In this course, the optical principals behind the workings of the eye and visual

More information

Procedure to detect anatomical structures in optical fundus images

Procedure to detect anatomical structures in optical fundus images Procedure to detect anatomical structures in optical fundus images L. Gagnon *a, M. Lalonde *a, M. Beaulieu *a, M.-C. Boucher **b a Computer Research Institute of Montreal; b Dept. Of Ophthalmology, Maisonneuve-Rosemont

More information

AN EXPANDED-HAAR WAVELET TRANSFORM AND MORPHOLOGICAL DEAL BASED APPROACH FOR VEHICLE LICENSE PLATE LOCALIZATION IN INDIAN CONDITIONS

AN EXPANDED-HAAR WAVELET TRANSFORM AND MORPHOLOGICAL DEAL BASED APPROACH FOR VEHICLE LICENSE PLATE LOCALIZATION IN INDIAN CONDITIONS AN EXPANDED-HAAR WAVELET TRANSFORM AND MORPHOLOGICAL DEAL BASED APPROACH FOR VEHICLE LICENSE PLATE LOCALIZATION IN INDIAN CONDITIONS Mo. Avesh H. Chamadiya 1, Manoj D. Chaudhary 2, T. Venkata Ramana 3

More information

TEPZZ A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

TEPZZ A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) TEPZZ 769666A_T (11) EP 2 769 666 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 13(4) EPC (43) Date of publication: 27.08.14 Bulletin 14/3 (21) Application number: 128927.3

More information

Instruments Commonly Used For Examination of the Eye

Instruments Commonly Used For Examination of the Eye Instruments Commonly Used For Examination of the Eye There are many instruments that the eye doctor might use to evaluate the eye and the vision system. This report presents some of the more commonly used

More information

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications Antennas and Propagation, Article ID 19579, pages http://dx.doi.org/1.1155/21/19579 Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications Chung-Hsiu Chiu, 1 Chun-Cheng

More information

Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology

Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology Stefan Zotter, 1* Michael Pircher, 1 Teresa Torzicky, 1 Bernhard Baumann, 1 Hirofumi Yoshida, 3 Futoshi

More information

Weaving Density Evaluation with the Aid of Image Analysis

Weaving Density Evaluation with the Aid of Image Analysis Lenka Techniková, Maroš Tunák Faculty of Textile Engineering, Technical University of Liberec, Studentská, 46 7 Liberec, Czech Republic, E-mail: lenka.technikova@tul.cz. maros.tunak@tul.cz. Weaving Density

More information

On Fusion Algorithm of Infrared and Radar Target Detection and Recognition of Unmanned Surface Vehicle

On Fusion Algorithm of Infrared and Radar Target Detection and Recognition of Unmanned Surface Vehicle Journal of Applied Science and Engineering, Vol. 21, No. 4, pp. 563 569 (2018) DOI: 10.6180/jase.201812_21(4).0008 On Fusion Algorithm of Infrared and Radar Target Detection and Recognition of Unmanned

More information

A Novel Approach for MRI Image De-noising and Resolution Enhancement

A Novel Approach for MRI Image De-noising and Resolution Enhancement A Novel Approach for MRI Image De-noising and Resolution Enhancement 1 Pravin P. Shetti, 2 Prof. A. P. Patil 1 PG Student, 2 Assistant Professor Department of Electronics Engineering, Dr. J. J. Magdum

More information

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS

SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 - COMPUTERIZED IMAGING Section I: Chapter 2 RADT 3463 Computerized Imaging 1 SECTION I - CHAPTER 2 DIGITAL IMAGING PROCESSING CONCEPTS RADT 3463 COMPUTERIZED IMAGING Section I: Chapter 2 RADT

More information

Automatic optical measurement of high density fiber connector

Automatic optical measurement of high density fiber connector Key Engineering Materials Online: 2014-08-11 ISSN: 1662-9795, Vol. 625, pp 305-309 doi:10.4028/www.scientific.net/kem.625.305 2015 Trans Tech Publications, Switzerland Automatic optical measurement of

More information

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices J Inf Process Syst, Vol.12, No.1, pp.100~108, March 2016 http://dx.doi.org/10.3745/jips.04.0022 ISSN 1976-913X (Print) ISSN 2092-805X (Electronic) Number Plate Detection with a Multi-Convolutional Neural

More information

Target detection in side-scan sonar images: expert fusion reduces false alarms

Target detection in side-scan sonar images: expert fusion reduces false alarms Target detection in side-scan sonar images: expert fusion reduces false alarms Nicola Neretti, Nathan Intrator and Quyen Huynh Abstract We integrate several key components of a pattern recognition system

More information

DRCR.net Image Acquisition Protocol

DRCR.net Image Acquisition Protocol DRCR.net Image Acquisition Protocol Optical Coherence Tomography Angiography (OCT-A) Using: Optovue AngioVue Version 3.0 August 14, 2017 DRCR.net OCT-A Optovue AngioVue Procedure Manual 3.0 8-14-17 Table

More information

Segmentation of Liver CT Images

Segmentation of Liver CT Images Segmentation of Liver CT Images M.A.Alagdar 1, M.E.Morsy 2, M.M.Elzalabany 3 1,2,3 Electronics And Communications Department-.Faculty Of Engineering Mansoura University, Egypt. Abstract In this paper we

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK BLOOD VESSEL SEGMENTATION PROF. SAGAR P. MORE 1, PROF. S. M. AGRAWAL 2, PROF. M.

More information