The visual and oculomotor systems. Peter H. Schiller, year The visual cortex

Size: px
Start display at page:

Download "The visual and oculomotor systems. Peter H. Schiller, year The visual cortex"

Transcription

1 The visual and oculomotor systems Peter H. Schiller, year 2006 The visual cortex

2 V1 Anatomical Layout

3 Monkey brain central sulcus Central Sulcus V1 Principalis principalis Arcuate Lunate lunate Figure by MIT OCW.

4 Monkey brain, back view Monkey brain, back view 8 o 4 o Lunate 2 o 1 o Vertical Horizontal Figure by MIT OCW.

5 V1 Receptive Field Organization

6 Receptive field plots of cat V1 cells using small spots Simple Simple Complex Figure by MIT OCW.

7 Asessing orientation and direction specificity of a V1 cell receptive field

8

9 Asessing spatial frequency selectivity of a V1 cell

10 Responses of a simple and complex cell to gratings of different spatial frequencies S CX Number of Discharges UNIT SP cy/deg UNIT ms Figure by MIT OCW.

11 Transforms in V1 Orientation Direction Spatial Frequency Binocularity ON/OFF Convergence Midget/Parasol Convergence

12 Striate Cortex Output Cell Intracortical LEFT EYE INPUT Midget ON Midget OFF Parasol ON Parasol OFF Midget ON Midget OFF Parasol ON Parasol OFF RIGHT EYE INPUT luminance color orientation spatial frequency depth motion

13 V1 Cytoarchitecture

14 Original Hubel-Wiesel "Ice-Cube" Model Orientation Columns Ocular Dominance Columns Left Eye Right Eye 4c 4c 5 6 L parasol midget R parasol midget 500

15 Cytochrome oxidase patches in monkey V1 Cytochrome oxidase patches in monkey V1 5 mm Figure by MIT OCW.

16 Radial Model Orientation Columns Ocular Dominance Columns Left Eye Right Eye 4c 4c 5 6 L parasol midget R parasol midget 500

17 Original Hubel-Wiesel "Ice-Cube" Model Cortical Left Eye Right Eye Sub-cortical Radical Model 1 mm Left Eye Right Eye Swirl Model Midget Parasol Three models of columnar organization in V1 Figure by MIT OCW.

18 Extrastriate cortex

19 Methods for delineating extrastriate areas achitectonics connections topographic mapping physiological characterization lesions and behavioral testing cerebral accidents and behavioral testing imaging

20 Visual functions studied

21 Basic visual capacities color brightness pattern texture motion depth Intermediate visual capacities constancy selection recognition transposition comparison location

22 Layout of visual areas

23 Central Sulcus LIP V2 V1 Lunate V4 Figure by MIT OCW.

24 Major cortical visual areas: Occipital V1 V2 V3 V4 MT (medial temporal) Temporal IT (inferotemporal) Parietal LIP (lateral intraparietal) VIP (ventral intraparietal) MST (medial superior temporal) Frontal FEF (frontal eye fields)

25 Connections among adjacent visual areas Receptive field locations and sizes at successive penetrations in V1 and V2. V1 V2 V

26 Area V2

27 stripes: thin inter thick V 2 V Ca 4Cb parasol midget 500

28 Functional Segregation in Area V2 Attribute Percent of cells Stripes Thin Pale Thick Orientation End stopping Color Direction Disparity Source: Peterhans, in Cerebral Cortex, Vol 12, 1997, sum of five studies

29 Area V4

30 Central Sulcus LIP V2 V1 Lunate V4 Figure by MIT OCW.

31 Area V4 attributes: 1. Large receptive fields 2. Complex receptive field properties 3. Responses are task and intent modulated 4. Response can also be modulated by eye movements 5. Not just a color area

32 Area MT and MST

33 Central Sulcus LIP STS V1 Principalis Arcuate V4 Lunate Figure by MIT OCW.

34 Direction specificity as a function of track distance in MT ALBRIGHT, DESIMONE, AND GROSS Axis of Motion (degrees) * * * * * * ,200 1,600 2,000 2,400 2,800 3,200 3,600 4,000 4,400 4,800 Track Distance Figure by MIT OCW.

35 Layout of directions in MT Direction Column Direction Column } Axis of Motion Column Figure by MIT OCW.

36 Inferotemporal cortex

37 Central Sulcus LIP STS MT MST V1 Principalis Arcuate V4 Lunate IT Figure by MIT OCW.

38 central sulcus LIP STS MT MST principalis V1 arcuate V4 lunate IT

39 Summary: 1. The contralateral visual hemifield is laid out topographically in V1 of each hemisphere. 2. V1 transforms are: orientation, direction, spatial frequency, binocularity, ON/OFF convergence and midget/parasol convergence. 3. V1 is organized in a modular fashion. Three models of the layout of the modules are the ice cube, radial and swirl models 4. There are more than 30 visual areas that make more than 300 interconnections. 5. Extrastriate areas do not specialize in any single function. 6. The receptive field size of neurons increases greatly in progressively higher visual areas. 7. Area MT is involved in the analysis of motion, depth, and flicker. 8. Area V4 engages in many aspects of analysis; neurons have dynamic properties. 9. In inferotemporal cortex high level analysis takes place that includes object recognition. 10. Single cells in cortex are multifunctional.

40 central sulcus LIP STS principalis V1 arcuate V4 lunate IT

Review, the visual and oculomotor systems

Review, the visual and oculomotor systems The visual and oculomotor systems Peter H. Schiller, year 2013 Review, the visual and oculomotor systems 1 Basic wiring of the visual system 2 Primates Image removed due to copyright restrictions. Please

More information

Cortical sensory systems

Cortical sensory systems Cortical sensory systems Motorisch Somatosensorisch Sensorimotor Visuell Sensorimotor Visuell Visuell Auditorisch Olfaktorisch Auditorisch Olfaktorisch Auditorisch Mensch Katze Ratte Primary Visual Cortex

More information

Lecture 5. The Visual Cortex. Cortical Visual Processing

Lecture 5. The Visual Cortex. Cortical Visual Processing Lecture 5 The Visual Cortex Cortical Visual Processing 1 Lateral Geniculate Nucleus (LGN) LGN is located in the Thalamus There are two LGN on each (lateral) side of the brain. Optic nerve fibers from eye

More information

Outline. The visual pathway. The Visual system part I. A large part of the brain is dedicated for vision

Outline. The visual pathway. The Visual system part I. A large part of the brain is dedicated for vision The Visual system part I Patrick Kanold, PhD University of Maryland College Park Outline Eye Retina LGN Visual cortex Structure Response properties Cortical processing Topographic maps large and small

More information

Vision III. How We See Things (short version) Overview of Topics. From Early Processing to Object Perception

Vision III. How We See Things (short version) Overview of Topics. From Early Processing to Object Perception Vision III From Early Processing to Object Perception Chapter 10 in Chaudhuri 1 1 Overview of Topics Beyond the retina: 2 pathways to V1 Subcortical structures (LGN & SC) Object & Face recognition Primary

More information

vertical horizonta fovea Figure by MIT OCW.

vertical horizonta fovea Figure by MIT OCW. Visual Prosthetics 90 5 4 3 Lunate Sulcus Central Sulcus 2 1 180 0 vertical 270 horizonta 8 7 6 5 fovea 4 3 2 1 V1 Figure by MIT OCW. Present two visual targets Present one visual target and stimulate

More information

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot Chapter 6 Vision Exam 1 Anatomy of vision Primary visual cortex (striate cortex, V1) Prestriate cortex, Extrastriate cortex (Visual association coretx ) Second level association areas in the temporal and

More information

3 THE VISUAL BRAIN. No Thing to See. Copyright Worth Publishers 2013 NOT FOR REPRODUCTION

3 THE VISUAL BRAIN. No Thing to See. Copyright Worth Publishers 2013 NOT FOR REPRODUCTION 3 THE VISUAL BRAIN No Thing to See In 1988 a young woman who is known in the neurological literature as D.F. fell into a coma as a result of carbon monoxide poisoning at her home. (The gas was released

More information

IN VISION, AS IN OTHER mental operations, we experience

IN VISION, AS IN OTHER mental operations, we experience Chapter 28 Perception of Motion, Depth, and Form 549 28 A Stripes in area 8 Perception of Motion, Depth, and Form lnterblob Blob V2 V The Parvocellular and Magnocellular Pathways Feed nto Two Processing

More information

Psych 333, Winter 2008, Instructor Boynton, Exam 1

Psych 333, Winter 2008, Instructor Boynton, Exam 1 Name: Class: Date: Psych 333, Winter 2008, Instructor Boynton, Exam 1 Multiple Choice There are 35 multiple choice questions worth one point each. Identify the letter of the choice that best completes

More information

The Physiology of the Senses Lecture 3: Visual Perception of Objects

The Physiology of the Senses Lecture 3: Visual Perception of Objects The Physiology of the Senses Lecture 3: Visual Perception of Objects www.tutis.ca/senses/ Contents Objectives... 2 What is after V1?... 2 Assembling Simple Features into Objects... 4 Illusory Contours...

More information

Chapter 8: Perceiving Motion

Chapter 8: Perceiving Motion Chapter 8: Perceiving Motion Motion perception occurs (a) when a stationary observer perceives moving stimuli, such as this couple crossing the street; and (b) when a moving observer, like this basketball

More information

1: Definition of an area of visual cortex. 2: Discovery of areas in monkey visual cortex; functional specialisation

1: Definition of an area of visual cortex. 2: Discovery of areas in monkey visual cortex; functional specialisation M U L T I P L E V I S U A L A R E A S 1: Definition of an area of visual cortex 2: Discovery of areas in monkey visual cortex; functional specialisation 3: Use of imaging to chart areas in human visual

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neural development and visual system Lecture 2 Topics Development Gastrulation Neural

More information

Maps in the Brain Introduction

Maps in the Brain Introduction Maps in the Brain Introduction 1 Overview A few words about Maps Cortical Maps: Development and (Re-)Structuring Auditory Maps Visual Maps Place Fields 2 What are Maps I Intuitive Definition: Maps are

More information

VISION. John Gabrieli Melissa Troyer 9.00

VISION. John Gabrieli Melissa Troyer 9.00 VISION John Gabrieli Melissa Troyer 9.00 Objectives Purposes of vision Problems that the visual system has to overcome Neural organization of vision Human Perceptual Abilities Detect a candle, 30 miles

More information

The Visual System. Computing and the Brain. Visual Illusions. Give us clues as to how the visual system works

The Visual System. Computing and the Brain. Visual Illusions. Give us clues as to how the visual system works The Visual System Computing and the Brain Visual Illusions Give us clues as to how the visual system works We see what we expect to see http://illusioncontest.neuralcorrelate.com/ Spring 2010 2 1 Visual

More information

Uniformity of Monkey Striate Cortex: A Parallel Relationship between Field Size, Scatter, and Magnification Factor

Uniformity of Monkey Striate Cortex: A Parallel Relationship between Field Size, Scatter, and Magnification Factor Uniformity of Monkey Striate Cortex: A Parallel Relationship between Field Size, Scatter, and Magnification Factor DAVID H. HUBEL AND TORSTEN N. WIESEL Drpccrtmmt of Nezcrobzobgy, Huructrd Mtdzccil School,

More information

Fundamentals of Computer Vision B. Biological Vision. Prepared By Louis Simard

Fundamentals of Computer Vision B. Biological Vision. Prepared By Louis Simard Fundamentals of Computer Vision 308-558B Biological Vision Prepared By Louis Simard 1. Optical system 1.1 Overview The ocular optical system of a human is seen to produce a transformation of the light

More information

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex 1.Vision Science 2.Visual Performance 3.The Human Visual System 4.The Retina 5.The Visual Field and

More information

PERCEIVING MOTION CHAPTER 8

PERCEIVING MOTION CHAPTER 8 Motion 1 Perception (PSY 4204) Christine L. Ruva, Ph.D. PERCEIVING MOTION CHAPTER 8 Overview of Questions Why do some animals freeze in place when they sense danger? How do films create movement from still

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION a b STS IOS IOS STS c "#$"% "%' STS posterior IOS dorsal anterior ventral d "( "& )* e f "( "#$"% "%' "& )* Supplementary Figure 1. Retinotopic mapping of the non-lesioned hemisphere. a. Inflated 3D representation

More information

CS510: Image Computation. Ross Beveridge Jan 16, 2018

CS510: Image Computation. Ross Beveridge Jan 16, 2018 CS510: Image Computation Ross Beveridge Jan 16, 2018 Class Goals Prepare you to do research in computer vision Provide big picture (comparison to humans) Give you experience reading papers Familiarize

More information

Spatial coding: scaling, magnification & sampling

Spatial coding: scaling, magnification & sampling Spatial coding: scaling, magnification & sampling Snellen Chart Snellen fraction: 20/20, 20/40, etc. 100 40 20 10 Visual Axis Visual angle and MAR A B C Dots just resolvable F 20 f 40 Visual angle Minimal

More information

Fundamentals of Computer Vision

Fundamentals of Computer Vision Fundamentals of Computer Vision COMP 558 Course notes for Prof. Siddiqi's class. taken by Ruslana Makovetsky (Winter 2012) What is computer vision?! Broadly speaking, it has to do with making a computer

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 9: Motion perception Course Information 2 Class web page: http://cogsci.ucsd.edu/ desa/101a/index.html

More information

Sequence Regularity and Geometry of Orientation Columns in the Monkey Striate Cortex

Sequence Regularity and Geometry of Orientation Columns in the Monkey Striate Cortex Sequence Regularity and Geometry of Orientation Columns in the Monkey Striate Cortex DAVID H. HUBEL AND TORSTEN N. WIESEL Department of Nrurobiology, Hnrvard Medical School, 25 Shnttuck Strret, Boston,

More information

THE ORGANIZATION OF THE SECOND VISUAL AREA (V II) IN THE OWL MONKEY: A SECOND ORDER TRANSFORMATION OF THE VISUAL HEMIFIELD

THE ORGANIZATION OF THE SECOND VISUAL AREA (V II) IN THE OWL MONKEY: A SECOND ORDER TRANSFORMATION OF THE VISUAL HEMIFIELD Brain Research, 76 (1974) 247-265 Elsevier Scientific Publishing Company, Amsterdam Printed in The Netherlands 247 THE ORGANIZATION OF THE SECOND VISUAL AREA (V II) IN THE OWL MONKEY: A SECOND ORDER TRANSFORMATION

More information

Chapter Six Chapter Six

Chapter Six Chapter Six Chapter Six Chapter Six Vision Sight begins with Light The advantages of electromagnetic radiation (Light) as a stimulus are Electromagnetic energy is abundant, travels VERY quickly and in fairly straight

More information

A Primer on Human Vision: Insights and Inspiration for Computer Vision

A Primer on Human Vision: Insights and Inspiration for Computer Vision A Primer on Human Vision: Insights and Inspiration for Computer Vision Guest&Lecture:&Marius&Cătălin&Iordan&& CS&131&8&Computer&Vision:&Foundations&and&Applications& 27&October&2014 detection recognition

More information

Anatomical Demonstration of Orientation Columns in Macaque Monkey

Anatomical Demonstration of Orientation Columns in Macaque Monkey Anatomical Demonstration of Orientation Columns in Macaque Monkey DAVID H. HUBEL, TORSTEN N. WIESEL AND MICHAEL P. STRYKER Department ofneurobiology, Harvard Medical School, Boston, Massachusetts 02115

More information

Domain-Specificity versus Expertise in Face Processing

Domain-Specificity versus Expertise in Face Processing Domain-Specificity versus Expertise in Face Processing Dan O Shea and Peter Combs 18 Feb 2008 COS 598B Prof. Fei Fei Li Inferotemporal Cortex and Object Vision Keiji Tanaka Annual Review of Neuroscience,

More information

A Primer on Human Vision: Insights and Inspiration for Computer Vision

A Primer on Human Vision: Insights and Inspiration for Computer Vision A Primer on Human Vision: Insights and Inspiration for Computer Vision Guest Lecture: Marius Cătălin Iordan CS 131 - Computer Vision: Foundations and Applications 27 October 2014 detection recognition

More information

Neural basis of pattern vision

Neural basis of pattern vision ENCYCLOPEDIA OF COGNITIVE SCIENCE 2000 Macmillan Reference Ltd Neural basis of pattern vision Visual receptive field#visual system#binocularity#orientation selectivity#stereopsis Kiper, Daniel Daniel C.

More information

Color Processing in Macaque Striate Cortex: Relationships to Ocular Dominance, Cytochrome Oxidase, and Orientation

Color Processing in Macaque Striate Cortex: Relationships to Ocular Dominance, Cytochrome Oxidase, and Orientation J Neurophysiol 87: 3126 3137, 2002; 10.1152/jn.09569.1999. Color Processing in Macaque Striate Cortex: Relationships to Ocular Dominance, Cytochrome Oxidase, and Orientation CAROLE E. LANDISMAN AND DANIEL

More information

1/21/2019. to see : to know what is where by looking. -Aristotle. The Anatomy of Visual Pathways: Anatomy and Function are Linked

1/21/2019. to see : to know what is where by looking. -Aristotle. The Anatomy of Visual Pathways: Anatomy and Function are Linked The Laboratory for Visual Neuroplasticity Massachusetts Eye and Ear Infirmary Harvard Medical School to see : to know what is where by looking -Aristotle The Anatomy of Visual Pathways: Anatomy and Function

More information

Functional Anatomy of Macaque Striate Cortex. II. Retinotopic Organization

Functional Anatomy of Macaque Striate Cortex. II. Retinotopic Organization The Journal of Neuroscience, May 1988, 8(5): 1531-1568 Functional Anatomy of Macaque Striate Cortex. II. Retinotopic Organization Roger B. H. Tootell, Eugene Switkes,2 Martin S. Silverman,3ra and Susan

More information

Vision. Sensation & Perception. Functional Organization of the Eye. Functional Organization of the Eye. Functional Organization of the Eye

Vision. Sensation & Perception. Functional Organization of the Eye. Functional Organization of the Eye. Functional Organization of the Eye Vision Sensation & Perception Part 3 - Vision Visible light is the form of electromagnetic radiation our eyes are designed to detect. However, this is only a narrow band of the range of energy at different

More information

Brain Research, 57 (1973) Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

Brain Research, 57 (1973) Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands Brain Research, 57 (1973) 191-202 197 Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands Short Communications The middle temporal visual area (MY) in the bush baby, Galago senegalens;s

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

Vision V Perceiving Movement

Vision V Perceiving Movement Vision V Perceiving Movement Overview of Topics Chapter 8 in Goldstein (chp. 9 in 7th ed.) Movement is tied up with all other aspects of vision (colour, depth, shape perception...) Differentiating self-motion

More information

Neuromorphic Implementation of Orientation Hypercolumns

Neuromorphic Implementation of Orientation Hypercolumns University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering June 2005 Neuromorphic Implementation of Orientation Hypercolumns Thomas Yu Wing Choi Hong Kong University

More information

Outline 2/21/2013. The Retina

Outline 2/21/2013. The Retina Outline 2/21/2013 PSYC 120 General Psychology Spring 2013 Lecture 9: Sensation and Perception 2 Dr. Bart Moore bamoore@napavalley.edu Office hours Tuesdays 11:00-1:00 How we sense and perceive the world

More information

7Motion Perception. 7 Motion Perception. 7 Computation of Visual Motion. Chapter 7

7Motion Perception. 7 Motion Perception. 7 Computation of Visual Motion. Chapter 7 7Motion Perception Chapter 7 7 Motion Perception Computation of Visual Motion Eye Movements Using Motion Information The Man Who Couldn t See Motion 7 Computation of Visual Motion How would you build a

More information

Electrophysiological Studies of Human Face Perception. I: Potentials Generated in Occipitotemporal Cortex by Face and Non-face Stimuli

Electrophysiological Studies of Human Face Perception. I: Potentials Generated in Occipitotemporal Cortex by Face and Non-face Stimuli Electrophysiological Studies of Human Face Perception. I: Potentials Generated in Occipitotemporal Cortex by Face and Non-face Stimuli This and the following two papers describe event-related potentials

More information

Lecture IV. Sensory processing during active versus passive movements

Lecture IV. Sensory processing during active versus passive movements Lecture IV Sensory processing during active versus passive movements The ability to distinguish sensory inputs that are a consequence of our own actions (reafference) from those that result from changes

More information

Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception

Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception Segregation of Form, Color, Movement, and Depth: Anatomy, Physiology, and Perception Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate

More information

VISUAL NEURAL SIMULATOR

VISUAL NEURAL SIMULATOR VISUAL NEURAL SIMULATOR Tutorial for the Receptive Fields Module Copyright: Dr. Dario Ringach, 2015-02-24 Editors: Natalie Schottler & Dr. William Grisham 2 page 2 of 36 3 Introduction. The goal of this

More information

Neuromorphic Implementation of Orientation Hypercolumns. Thomas Yu Wing Choi, Paul A. Merolla, John V. Arthur, Kwabena A. Boahen, and Bertram E.

Neuromorphic Implementation of Orientation Hypercolumns. Thomas Yu Wing Choi, Paul A. Merolla, John V. Arthur, Kwabena A. Boahen, and Bertram E. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 52, NO. 6, JUNE 2005 1049 Neuromorphic Implementation of Orientation Hypercolumns Thomas Yu Wing Choi, Paul A. Merolla, John V. Arthur,

More information

VISUAL NEURAL SIMULATOR

VISUAL NEURAL SIMULATOR VISUAL NEURAL SIMULATOR Tutorial for the Receptive Fields Module Copyright: Dr. Dario Ringach, 2015-02-24 Editors: Natalie Schottler & Dr. William Grisham 2 page 2 of 38 3 Introduction. The goal of this

More information

Monocular occlusion cues alter the influence of terminator motion in the barber pole phenomenon

Monocular occlusion cues alter the influence of terminator motion in the barber pole phenomenon Vision Research 38 (1998) 3883 3898 Monocular occlusion cues alter the influence of terminator motion in the barber pole phenomenon Lars Lidén *, Ennio Mingolla Department of Cogniti e and Neural Systems

More information

Visual Perception. Martin Čadík. Czech Technical University in Prague, Czech Republic

Visual Perception. Martin Čadík. Czech Technical University in Prague, Czech Republic Visual Perception Martin Čadík Czech Technical University in Prague, Czech Republic Content HVS Visual Illusions, Form, Brightness Adaptation - HDRI Colour Vision Depth, Motion Image Quality Assessment

More information

Distributed representation of objects in the human ventral visual pathway (face perception functional MRI object recognition)

Distributed representation of objects in the human ventral visual pathway (face perception functional MRI object recognition) Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9379 9384, August 1999 Neurobiology Distributed representation of objects in the human ventral visual pathway (face perception functional MRI object recognition)

More information

Parvocellular layers (3-6) Magnocellular layers (1 & 2)

Parvocellular layers (3-6) Magnocellular layers (1 & 2) Parvocellular layers (3-6) Magnocellular layers (1 & 2) Dorsal and Ventral visual pathways Figure 4.15 The dorsal and ventral streams in the cortex originate with the magno and parvo ganglion cells and

More information

A novel role for visual perspective cues in the neural computation of depth

A novel role for visual perspective cues in the neural computation of depth a r t i c l e s A novel role for visual perspective cues in the neural computation of depth HyungGoo R Kim 1, Dora E Angelaki 2 & Gregory C DeAngelis 1 npg 215 Nature America, Inc. All rights reserved.

More information

The Macaque Face Patch System: A Window into Object Representation

The Macaque Face Patch System: A Window into Object Representation The Macaque Face Patch System: A Window into Object Representation DORIS TSAO Division of Biology and Biological Engineering and Computation and Neural Systems, California Institute of Technology, Pasadena,

More information

SPATIAL VISION. ICS 280: Visual Perception. ICS 280: Visual Perception. Spatial Frequency Theory. Spatial Frequency Theory

SPATIAL VISION. ICS 280: Visual Perception. ICS 280: Visual Perception. Spatial Frequency Theory. Spatial Frequency Theory SPATIAL VISION Spatial Frequency Theory So far, we have considered, feature detection theory Recent development Spatial Frequency Theory The fundamental elements are spatial frequency elements Does not

More information

The Special Senses: Vision

The Special Senses: Vision OLLI Lecture 5 The Special Senses: Vision Vision The eyes are the sensory organs for vision. They collect light waves through their photoreceptors (located in the retina) and transmit them as nerve impulses

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2019 1 remaining Chapter 2 stuff 2 Mach Band

More information

TSBB15 Computer Vision

TSBB15 Computer Vision TSBB15 Computer Vision Lecture 9 Biological Vision!1 Two parts 1. Systems perspective 2. Visual perception!2 Two parts 1. Systems perspective Based on Michael Land s and Dan-Eric Nilsson s work 2. Visual

More information

Color. Color. Colorfull world IFT3350. Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Color. Color. Colorfull world IFT3350. Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3350 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

Functional Organization of Macaque V3 for Stereoscopic Depth

Functional Organization of Macaque V3 for Stereoscopic Depth Functional Organization of Macaque V3 for Stereoscopic Depth DANIEL L. ADAMS AND SEMIR ZEKI Wellcome Department of Cognitive Neurology, University College London, London WC1E 6BT, United Kingdom Received

More information

A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang

A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang A Vestibular Sensation: Probabilistic Approaches to Spatial Perception (II) Presented by Shunan Zhang Vestibular Responses in Dorsal Visual Stream and Their Role in Heading Perception Recent experiments

More information

PERCEIVING MOVEMENT. Ways to create movement

PERCEIVING MOVEMENT. Ways to create movement PERCEIVING MOVEMENT Ways to create movement Perception More than one ways to create the sense of movement Real movement is only one of them Slide 2 Important for survival Animals become still when they

More information

PHGY Physiology. SENSORY PHYSIOLOGY Vision. Martin Paré

PHGY Physiology. SENSORY PHYSIOLOGY Vision. Martin Paré PHGY 212 - Physiology SENSORY PHYSIOLOGY Vision Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare The Process of Vision Vision is the process

More information

Embodiment illusions via multisensory integration

Embodiment illusions via multisensory integration Embodiment illusions via multisensory integration COGS160: sensory systems and neural coding presenter: Pradeep Shenoy 1 The illusory hand Botvinnik, Science 2004 2 2 This hand is my hand An illusion of

More information

Topographical Analysis of Motion-Triggered Visual-Evoked Potentials in Man

Topographical Analysis of Motion-Triggered Visual-Evoked Potentials in Man Topographical Analysis of Motion-Triggered Visual-Evoked Potentials in Man Yasushi Nakamura and Kenji Ohtsuka Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan

More information

3. REPORT TYPE AND DATES COVERED November tic ELEGIE. Approved for pobao ralaomf DteteibwScra Onilmitwd

3. REPORT TYPE AND DATES COVERED November tic ELEGIE. Approved for pobao ralaomf DteteibwScra Onilmitwd REPORT DOCUMENTATION PAGE Form Approved OBM No. 0704-0188 Public reporting burden for this collection ol information is estimated to average 1 hour per response. Including the time for reviewing instructions,

More information

Modeling cortical maps with Topographica

Modeling cortical maps with Topographica Modeling cortical maps with Topographica James A. Bednar a, Yoonsuck Choe b, Judah De Paula a, Risto Miikkulainen a, Jefferson Provost a, and Tal Tversky a a Department of Computer Sciences, The University

More information

Biological Vision. Ahmed Elgammal Dept of Computer Science Rutgers University

Biological Vision. Ahmed Elgammal Dept of Computer Science Rutgers University Biological Vision Ahmed Elgammal Dept of Computer Science Rutgers University Outlines How do we see: some historical theories of vision Biological vision: theories and results from psychology and cognitive

More information

Introduction Chapter 1 General description of the sensory systems involved in the control of. movement... 17

Introduction Chapter 1 General description of the sensory systems involved in the control of. movement... 17 Table of Content Introduction... 11 Chapter 1 General description of the sensory systems involved in the control of movement... 17 1.1 Visual system and peripheral vision... 17 1.1.1 Anatomy and physiology

More information

Sensation and Perception

Sensation and Perception Sensation v. Perception Sensation and Perception Chapter 5 Vision: p. 135-156 Sensation vs. Perception Physical stimulus Physiological response Sensory experience & interpretation Example vision research

More information

CS 534: Computer Vision

CS 534: Computer Vision CS 534: Computer Vision Spring 2004 Ahmed Elgammal Dept of Computer Science Rutgers University Human Vision - 1 Human Vision Outline How do we see: some historical theories of vision Human vision: results

More information

Invariant Object Recognition in the Visual System with Novel Views of 3D Objects

Invariant Object Recognition in the Visual System with Novel Views of 3D Objects LETTER Communicated by Marian Stewart-Bartlett Invariant Object Recognition in the Visual System with Novel Views of 3D Objects Simon M. Stringer simon.stringer@psy.ox.ac.uk Edmund T. Rolls Edmund.Rolls@psy.ox.ac.uk,

More information

Stimulus-dependent position sensitivity in human ventral temporal cortex

Stimulus-dependent position sensitivity in human ventral temporal cortex Stimulus-dependent position sensitivity in human ventral temporal cortex Rory Sayres 1, Kevin S. Weiner 1, Brian Wandell 1,2, and Kalanit Grill-Spector 1,2 1 Psychology Department, Stanford University,

More information

Processing streams PSY 310 Greg Francis. Lecture 10. Neurophysiology

Processing streams PSY 310 Greg Francis. Lecture 10. Neurophysiology Processing streams PSY 310 Greg Francis Lecture 10 A continuous surface infolded on itself. Neurophysiology We are working under the following hypothesis What we see is determined by the pattern of neural

More information

Center Surround Antagonism Based on Disparity in Primate Area MT

Center Surround Antagonism Based on Disparity in Primate Area MT The Journal of Neuroscience, September 15, 1998, 18(18):7552 7565 Center Surround Antagonism Based on Disparity in Primate Area MT David C. Bradley and Richard A. Andersen Biology Division, California

More information

Visual, Somatosensory, and Bimodal Activities in the Macaque Parietal Area PEc

Visual, Somatosensory, and Bimodal Activities in the Macaque Parietal Area PEc Cerebral Cortex April 28;18:86-816 doi:1.193/cercor/bhm127 Advance Access publication July 27, 27 Visual, Somatosensory, and Bimodal Activities in the Macaque Parietal Area PEc Rossella Breveglieri, Claudio

More information

Three elemental illusions determine the Zöllner illusion

Three elemental illusions determine the Zöllner illusion Perception & Psychophysics 2000, 62 (3), 569-575 Three elemental illusions determine the Zöllner illusion AKIYOSHI KITAOKA Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan and MASAMI

More information

Introduction to Visual Perception

Introduction to Visual Perception The Art and Science of Depiction Introduction to Visual Perception Fredo Durand and Julie Dorsey MIT- Lab for Computer Science Vision is not straightforward The complexity of the problem was completely

More information

Looking behind a pathological blind spot in human retina 1

Looking behind a pathological blind spot in human retina 1 Vision Research 39 (1999) 1917 1925 Looking behind a pathological blind spot in human retina 1 Srimant P. Tripathy a, *, Dennis M. Levi b a Physiological Laboratory, Downing Site, Cambridge CB2 3EG, UK

More information

Perceiving Motion and Events

Perceiving Motion and Events Perceiving Motion and Events Chienchih Chen Yutian Chen The computational problem of motion space-time diagrams: image structure as it changes over time 1 The computational problem of motion space-time

More information

NeuroImage 44 (2009) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

NeuroImage 44 (2009) Contents lists available at ScienceDirect. NeuroImage. journal homepage: NeuroImage 44 (2009) 636 646 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg A rapid topographic mapping and eye alignment method using optical imaging

More information

Large Scale Imaging of the Retina. 1. The Retina a Biological Pixel Detector 2. Probing the Retina

Large Scale Imaging of the Retina. 1. The Retina a Biological Pixel Detector 2. Probing the Retina Large Scale Imaging of the Retina 1. The Retina a Biological Pixel Detector 2. Probing the Retina understand the language used by the eye to send information about the visual world to the brain use techniques

More information

Dual Mechanisms for Neural Binding and Segmentation

Dual Mechanisms for Neural Binding and Segmentation Dual Mechanisms for Neural inding and Segmentation Paul Sajda and Leif H. Finkel Department of ioengineering and Institute of Neurological Science University of Pennsylvania 220 South 33rd Street Philadelphia,

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Content removed due

More information

Retinotopy versus Face Selectivity in Macaque Visual Cortex

Retinotopy versus Face Selectivity in Macaque Visual Cortex Retinotopy versus Face Selectivity in Macaque Visual Cortex Reza Rajimehr 1,2, Natalia Y. Bilenko 1, Wim Vanduffel 1,3, and Roger B. H. Tootell 1 Abstract Retinotopic organization is a ubiquitous property

More information

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3355 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

PHGY Physiology. The Process of Vision. SENSORY PHYSIOLOGY Vision. Martin Paré. Visible Light. Ocular Anatomy. Ocular Anatomy.

PHGY Physiology. The Process of Vision. SENSORY PHYSIOLOGY Vision. Martin Paré. Visible Light. Ocular Anatomy. Ocular Anatomy. PHGY 212 - Physiology SENSORY PHYSIOLOGY Vision Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare The Process of Vision Vision is the process

More information

Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle

Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle Psychological Research (2013) 77:74 97 DOI 10.1007/s00426-011-0392-x REVIEW Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle

More information

The 2014 Nobel Prize in Physiology or Medicine

The 2014 Nobel Prize in Physiology or Medicine The 2014 Nobel Prize in Physiology or Medicine The 2014 Nobel Prize in Physiology or Medicine with one half to John O'Keefe and the other half jointly to May-Britt Moser and Edvard I. Moser for their discoveries

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Perception (Vision) Professor Daniel Leeds dleeds@fordham.edu JMH 332 Pathways to perception 3 (or fewer) synaptic steps 0 Input through sensory organ/tissue 1 Synapse onto

More information

Module 2. Lecture-1. Understanding basic principles of perception including depth and its representation.

Module 2. Lecture-1. Understanding basic principles of perception including depth and its representation. Module 2 Lecture-1 Understanding basic principles of perception including depth and its representation. Initially let us take the reference of Gestalt law in order to have an understanding of the basic

More information

Night-time pedestrian detection via Neuromorphic approach

Night-time pedestrian detection via Neuromorphic approach Night-time pedestrian detection via Neuromorphic approach WOO JOON HAN, IL SONG HAN Graduate School for Green Transportation Korea Advanced Institute of Science and Technology 335 Gwahak-ro, Yuseong-gu,

More information

The Somatosensory System. Structure and function

The Somatosensory System. Structure and function The Somatosensory System Structure and function L. Négyessy PPKE, 2011 Somatosensation Touch Proprioception Pain Temperature Visceral functions I. The skin as a receptor organ Sinus hair Merkel endings

More information

Human Vision. Human Vision - Perception

Human Vision. Human Vision - Perception 1 Human Vision SPATIAL ORIENTATION IN FLIGHT 2 Limitations of the Senses Visual Sense Nonvisual Senses SPATIAL ORIENTATION IN FLIGHT 3 Limitations of the Senses Visual Sense Nonvisual Senses Sluggish source

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Left aspl Right aspl Detailed description of the fmri activation during allocentric action observation in the aspl. Averaged activation (N=13) during observation of the allocentric

More information

NIH Public Access Author Manuscript Perception. Author manuscript; available in PMC 2010 January 5.

NIH Public Access Author Manuscript Perception. Author manuscript; available in PMC 2010 January 5. NIH Public Access Author Manuscript Published in final edited form as: Perception. 2008 ; 37(10): 1529 1559. Visual Prosthesis Peter H. Schiller and Edward J. Tehovnik Abstract There are more than 40 million

More information

Object Perception. 23 August PSY Object & Scene 1

Object Perception. 23 August PSY Object & Scene 1 Object Perception Perceiving an object involves many cognitive processes, including recognition (memory), attention, learning, expertise. The first step is feature extraction, the second is feature grouping

More information

Cortical Substrates of Perceptual Stability during Eye Movements

Cortical Substrates of Perceptual Stability during Eye Movements NeuroImage 14, S33 S39 (2001) doi:10.1006/nimg.2001.0840, available online at http://www.idealibrary.com on Cortical Substrates of Perceptual Stability during Eye Movements Peter Thier,*,1 Thomas Haarmeier,*,

More information