Intro to Probability Instructor: Alexandre Bouchard

Size: px
Start display at page:

Download "Intro to Probability Instructor: Alexandre Bouchard"

Transcription

1 Intro to Probability Instructor: Alexandre Bouchard

2 Announcements Webwork out Graded midterm available after lecture

3 Regrading policy IF you would like a partial regrading, you should, BEFORE or ON Friday March 15, hand in to me at the beginning of a lecture: your exam a clean piece of paper stapled to it that clearly (i) explains the question(s) you would like us to regrade AND (ii) the issue(s) you would like to raise NOTE: for fairness, the new grade for the question could stay the same, increase, or, in certain cases, decrease

4 Plan for today Multivariate distributions, continued Independence of continuous random variables

5 Review: joint and marginal densities

6 Def 23 Today: density (for two random variables) The function f(x, y) is a joint density for X, Y if for any subset A of the plane: Z P ((X, Y ) 2 A) = (x,y)2a f(x, y) dx dy volume = probability Example: A = [a, b] x [c, d] height = density Notation for rectangle with one side equal to [a, b] and the other equal to [c,d] x b a c d y

7 Ex 60 Example: uniform density on a subset B of the plane Example: B y density x x height = density = 1/ area(b) y f(x, y) = 1 B(x, y) area(b) Recall: 1 B (x, y) = 1 if (x, y) 2 B 0 o.w.

8 Ex 59 Motivating problem A man and a woman try to meet at a certain place between 1:00pm and 2:00pm. Suppose each person pick an arrival time between 1:00pm and 2:00pm uniformly at random, and waits for the other at most 10 minutes. What is the probability that they meet?

9 Def 24 Example of marginal densities Marginal of X 0.6 Marginal fx(x) density x of Y fy(y) Height of the marginal at x = 0 obtained by integrating the joint density over y at x = 0: Y 0.0 y 0.0 f X (x) = Z +1 1 f(x, y) dy X density

10 Independence vs. dependence for continuous random variables

11 Def 25 Equivalent definitions X and Y are independent Useful to show that r.v. s are NOT indep For all intervals, A1, A2: P (X 2 A 1,Y 2 A 2 )=P(X 2 A 1 )P (Y 2 A 2 ) Useful to show that r.v. s are indep The joint density of (X, Y) can be written as: f(x, y) =h(x)k(y)

12 Ex 65 Example: two random variables that are independent y why? d The joint density of (X, Y) can be written as: c f(x, y) =h(x)k(y) a b x h(x) k(y) f(x, y) = 1 B(x, y) area(b) = 1[a,b] (x) area(b) 1 [c,d] (y)

13 Ex 66 Example: two random variables that are NOT independent why? y A2 For some intervals, A1, A2: P (X 2 A 1,Y 2 A 2 )=P (X 2 A 1 )P (Y 2 A 2 ) A1 x Pick A1, A2 as shown on the left Which one(s) of these are zero? (use material from earlier today) P (X 2 A 1,Y 2 A 2 ) P (X 2 A 1 )P )P (Y 2 A 2 )

14 Examples of nonuniform joint density

15 Ex 67a Example Suppose (X,Y) has joint density: f(x, y) =2e x 2y for x > 0 and y > 0 P(X > 1, Y < 1)?

16 Ex 67b Example Suppose (X,Y) has joint density: f(x, y) =2e x 2y for x > 0 and y > 0 P(X > 1, Y < 1)? P(X < Y)? X indep of Y? e -1 (1 - e -2 ) A. 1/2 B. 1/3 C. 1/4 D. 1/5

17 Ex 67b Example Suppose (X,Y) has joint density: f(x, y) =2e x 2y for x > 0 and y > 0 P(X > 1, Y < 1)? P(X < Y)? X indep of Y? e -1 (1 - e -2 ) A. 1/2 B. 1/3 C. 1/4 D. 1/5

18 A useful trick Known facts: Densities integrate to 1 For any λ > 0, λ exp(-λx) 1[0, )(x) is a density (the exponential density) Note: We can we use these two facts to get, without any effort: Z 1 0 e 5.2x dx = 1 5.2

19 Ex 53 Review: transformations Suppose I tell you that is the distribution of Richter scales What is the distribution of the amplitudes? For simplicity: Assume Richter scale X ~ Uniform(0, 1) What is the distribution of Y = exp(x)?

20 Review: recipe for transformations Suppose I tell you that is the distribution of Richter scales What is the distribution of the amplitudes? For simplicity: Assume Richter scale X ~ Uniform(0,1) What is the distribution of exp(x)? Recipe for finding the distribution of transforms of r.v. s 1 Find the CDF Density fx Richter: Amplitude: Differentiate to find the density

21 Review: recipe for transformations Suppose I tell you that is the distribution of Richter scales What is the distribution of the amplitudes? For simplicity: Assume Richter scale X ~ Uniform(0,1) What is the distribution of exp(x)? 1 Find the CDF F Y (y) =P (exp(x) apple y) = P (X apple log(y)) Why? = F X (log(y)) = 1 [1,e] (y) log(y)

22 Why P(exp(X) y) = P(X log(y)) Because (exp(x) y) = (X log(y)), which is true because: log is increasing, i.e. x 1 x 2 iff log(x 1 ) log(x 2 ) this means I can take log on both sides of the inequality: (exp(x) y) = (log(exp(x)) log(y)) log/exp are invertible: log(exp(z)) = z, so (log(exp(x)) log(y)) = (X log(y))

23 Review: recipe for transformations Suppose I tell you that is the distribution of Richter scales What is the distribution of the amplitudes? For simplicity: Assume Richter scale X ~ Uniform(0,1) What is the distribution of exp(x)? 2 Differentiate to find the density f Y (y) = df Y (y) dy at points where FY is differentiable =1 [1,e] (y) 1 y

24 Sums of independent discrete random variables (exact method)

25 Sum of independent r.v.s: summary Approximations: Central limit theorem (Normal approximation) Use software/ppl Exact methods: Binomial distribution (works only for sum of Bernoullis) Today: general, exact method CONVOLUTIONS

26 Ex 68 Simple example X: outcome of white dice Y: outcome of black dice Example: computing P(X + Y = 4)

27 Simple example

28 Application Not convinced? Play this game: Settler of Catan

29 Prop 16 General formula for discrete r.v.s If: Z = X + Y Then: p Z (z) = y = p X (z y) p Y (y).

30 Sums of independent continuous random variables

31 Sum of continuous r.v.s X: a continuous r.v. with density fx Y: a continuous r.v. with density fy Assume they are indep: f(x, y) = fx(x) fy(y) What is the density fz of the sum Z = X + Y? Recipe for finding the distribution of transforms of r.v. s 1 Find the CDF Density fx Richter: Amplitude: Differentiate to find the density

32 Ex 69 Example Let X and Y be independent and both uniform on [0, 1] y What is the density fz of the sum Z = X + Y? x

33 Example Let X and Y be independent and both uniform on [0, 1] y 1 Find the CDF What is the density fz of the sum Z = X + Y? x FZ(z) = P(Z z) example: z = 1 P( Z 1 ) = P( X + Y 1 ) =?

34 Example Let X and Y be independent and both uniform on [0, 1] y 1 Find the CDF P(Z z) for all z What is the density fz of the sum Z = X + Y? x example: z = 1 P( Z 1 ) = P( X + Y 1 ) y A = {(x,y) : x + y 1} = P( (X, Y) A ) = = Z A Z 1 = 1/2 f(x, y) dx dy Z x f(x, y) dy dx x

35 Example Let X and Y be independent and both uniform on [0, 1] y 1 Find the CDF P(Z z) for all z x What is the density fz of the sum Z = X + Y? P( Z z ) = P( X + Y z ) = Definition of the = CDF F(y) = Z 1 Z z 1 1 Z 1 1 Z 1 1 f X (x) x f X (x)f Y (y) dy Z z 1 f X (x)(f Y (z x f Y (y) dy x)) dx dx dx

36 Example Let X and Y be independent and both uniform on [0, 1] y x What is the density fz of the sum Z = X + Y? 1 Find the CDF Differentiate to find the 2 density FZ(z) = P( Z z ) f Z (z) = df Z(z) = dz Under regularity conditions, you = can interchange integrals and derivatives = = Z 1 1 Z 1 1 Z 1 1 Z 1 1 f X (x)f Y (z x)dx Chain rule of f X (x) df Y (z x) calculus dx dz d f X (x)f Y (z x) (z x) dx dz f X (x)f Y (z x)dx

37 Prop 16b Sum of continuous r.v.s X: a continuous r.v. with density fx Y: a continuous r.v. with density fy What is the density fz of the sum Z = X + Y? f Z (z) = = f X (z y) f Y (y) dy f X (x) f Y (z x) dx Terminology: convolution

38 Ex 69 Let X and Y be independent and both uniform on [0, 1] y What is the density fz of the sum Z = X + Y? x Note: Not equal to the sum of the densities!!!

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom

Joint Distributions, Independence Class 7, Jeremy Orloff and Jonathan Bloom Learning Goals Joint Distributions, Independence Class 7, 8.5 Jeremy Orloff and Jonathan Bloom. Understand what is meant by a joint pmf, pdf and cdf of two random variables. 2. Be able to compute probabilities

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Probability Review Probabilistic Events and Outcomes Example: Sample space: set of all possible outcomes of an experiment Event: subspace of a sample

More information

Mixture of Discrete and Continuous Random Variables

Mixture of Discrete and Continuous Random Variables Mixture of Discrete and Continuous Random Variables What does the CDF F X (x) look like when X is discrete vs when it s continuous? A r.v. could have a continuous component and a discrete component. Ex

More information

Conditional Distributions

Conditional Distributions Conditional Distributions X, Y discrete: the conditional pmf of X given Y y is defined to be p X Y (x y) P(X x, Y y) P(Y y) p(x, y) p Y (y), p Y (y) > 0. Given Y y, the randomness of X is described by

More information

Topic 6: Joint Distributions

Topic 6: Joint Distributions Topic 6: Joint Distributions Course 003, 2017 Page 0 Joint distributions Social scientists are typically interested in the relationship between many random variables. They may be able to change some of

More information

Name Instructor: Uli Walther

Name Instructor: Uli Walther Name Instructor: Uli Walther Math 416 Fall 2016 Practice Exam Questions You are not allowed to use books or notes. Calculators are permitted. Full credit is given for complete correct solutions. Please

More information

Important Distributions 7/17/2006

Important Distributions 7/17/2006 Important Distributions 7/17/2006 Discrete Uniform Distribution All outcomes of an experiment are equally likely. If X is a random variable which represents the outcome of an experiment of this type, then

More information

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations 14 Partial Derivatives 14.4 and Linear Approximations Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Suppose a surface S has equation z = f(x, y), where

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

More information

3.5 Marginal Distributions

3.5 Marginal Distributions STAT 421 Lecture Notes 52 3.5 Marginal Distributions Definition 3.5.1 Suppose that X and Y have a joint distribution. The c.d.f. of X derived by integrating (or summing) over the support of Y is called

More information

Review #Final Exam MATH 142-Drost

Review #Final Exam MATH 142-Drost Fall 2007 1 Review #Final Exam MATH 142-Drost 1. Find the domain of the function f(x) = x 1 x 2 if x3 2. Suppose 450 items are sold per day at a price of $53 per item and that 650 items are

More information

CHAPTER 11 PARTIAL DERIVATIVES

CHAPTER 11 PARTIAL DERIVATIVES CHAPTER 11 PARTIAL DERIVATIVES 1. FUNCTIONS OF SEVERAL VARIABLES A) Definition: A function of two variables is a rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real number

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t) Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

More information

Calculus II Fall 2014

Calculus II Fall 2014 Calculus II Fall 2014 Lecture 3 Partial Derivatives Eitan Angel University of Colorado Monday, December 1, 2014 E. Angel (CU) Calculus II 1 Dec 1 / 13 Introduction Much of the calculus of several variables

More information

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena.

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena. DIFFERENTIAL EQUATIONS A principal model of physical phenomena. The equation: The initial value: y = f(x, y) y(x 0 ) = Y 0 Find solution Y (x) on some interval x 0 x b. Together these two conditions constitute

More information

Differentiable functions (Sec. 14.4)

Differentiable functions (Sec. 14.4) Math 20C Multivariable Calculus Lecture 3 Differentiable functions (Sec. 4.4) Review: Partial derivatives. Slide Partial derivatives and continuity. Equation of the tangent plane. Differentiable functions.

More information

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy Optimization Constrained optimization and Lagrange multipliers Constrained optimization is what it sounds like - the problem of finding a maximum or minimum value (optimization), subject to some other

More information

EE 126 Fall 2006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO

EE 126 Fall 2006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO EE 16 Fall 006 Midterm #1 Thursday October 6, 7 8:30pm DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO You have 90 minutes to complete the quiz. Write your solutions in the exam booklet. We will

More information

Section 15.3 Partial Derivatives

Section 15.3 Partial Derivatives Section 5.3 Partial Derivatives Differentiating Functions of more than one Variable. Basic Definitions In single variable calculus, the derivative is defined to be the instantaneous rate of change of a

More information

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM MATH 2C: FUNDAMENTALS OF CALCULUS II FINAL EXAM Name Please circle the answer to each of the following problems. You may use an approved calculator. Each multiple choice problem is worth 2 points.. Multiple

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

11.2 LIMITS AND CONTINUITY

11.2 LIMITS AND CONTINUITY 11. LIMITS AND CONTINUITY INTRODUCTION: Consider functions of one variable y = f(x). If you are told that f(x) is continuous at x = a, explain what the graph looks like near x = a. Formal definition of

More information

Math 118: Business Calculus Fall 2017 Final Exam 06 December 2017

Math 118: Business Calculus Fall 2017 Final Exam 06 December 2017 Math 118: Business Calculus Fall 2017 Final Exam 06 December 2017 First Name: (as in student record) Last Name: (as in student record) USC ID: Signature: Please circle your instructor and lecture time:

More information

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37 Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

More information

18 Logarithmic Functions

18 Logarithmic Functions 18 Logarithmic Functions Concepts: Logarithms (Section 3.3) Logarithms as Functions Logarithms as Exponent Pickers Inverse Relationship between Logarithmic and Exponential Functions. The Common Logarithm

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4 MATH 2 CLASS 9 NOTES, OCT 0 20 Contents. Tangent planes 2. Definition of differentiability 3 3. Differentials 4. Tangent planes Recall that the derivative of a single variable function can be interpreted

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them.

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. Final Exam Review Problems P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. 1 P 2. Find the volume of the solid bounded by the cylinder x 2 + y 2 = 9 and the planes z

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

Mock final exam Math fall 2007

Mock final exam Math fall 2007 Mock final exam Math - fall 7 Fernando Guevara Vasquez December 5 7. Consider the curve r(t) = ti + tj + 5 t t k, t. (a) Show that the curve lies on a sphere centered at the origin. (b) Where does the

More information

Partial Differentiation 1 Introduction

Partial Differentiation 1 Introduction Partial Differentiation 1 Introduction In the first part of this course you have met the idea of a derivative. To recap what this means, recall that if you have a function, z say, then the slope of the

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena.

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena. DIFFERENTIAL EQUATIONS A principal model of physical phenomena. The ordinary differential equation: The initial value: y = f(x, y) y(x 0 )=Y 0 Find a solution Y (x) onsomeintervalx 0 x b. Together these

More information

S56 (5.1) Logs and Exponentials.notebook October 14, 2016

S56 (5.1) Logs and Exponentials.notebook October 14, 2016 1. Daily Practice 21.9.2016 Exponential Functions Today we will be learning about exponential functions. A function of the form y = a x is called an exponential function with the base 'a' where a 0. y

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

Image Enhancement: Histogram Based Methods

Image Enhancement: Histogram Based Methods Image Enhancement: Histogram Based Methods 1 What is the histogram of a digital image? 0, r,, r L The histogram of a digital image with gray values 1 1 is the discrete function p( r n : Number of pixels

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

Logs and Exponentials Higher.notebook February 26, Daily Practice

Logs and Exponentials Higher.notebook February 26, Daily Practice Daily Practice 2.2.2015 Daily Practice 3.2.2015 Today we will be learning about exponential functions and logs. Homework due! Need to know for Unit Test 2: Expressions and Functions Adding and subtracng

More information

Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27

Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 Exercise Sheet 3 jacques@ucsd.edu Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 1. A six-sided die is tossed.

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM.

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. 6.04/6.43 Spring 09 Quiz Wednesday, March, 7:30-9:30 PM. Name: Recitation Instructor: TA: Question Part Score Out of 0 3 all 40 2 a 5 b 5 c 6 d 6 3 a 5 b 6 c 6 d 6 e 6 f 6 g 0 6.04 Total 00 6.43 Total

More information

Logarithmic Functions and Their Graphs

Logarithmic Functions and Their Graphs Logarithmic Functions and Their Graphs Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus Logarithmic Functions and Their Graphs Mr. Niedert 1 / 24 Logarithmic Functions and Their Graphs 1 Logarithmic

More information

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2 University of California, Berkeley epartment of Mathematics 5 th November, 212, 12:1-12:55 pm MATH 53 - Test #2 Last Name: First Name: Student Number: iscussion Section: Name of GSI: Record your answers

More information

Math 152: Applicable Mathematics and Computing

Math 152: Applicable Mathematics and Computing Math 152: Applicable Mathematics and Computing April 16, 2017 April 16, 2017 1 / 17 Announcements Please bring a blue book for the midterm on Friday. Some students will be taking the exam in Center 201,

More information

Review Sheet for Math 230, Midterm exam 2. Fall 2006

Review Sheet for Math 230, Midterm exam 2. Fall 2006 Review Sheet for Math 230, Midterm exam 2. Fall 2006 October 31, 2006 The second midterm exam will take place: Monday, November 13, from 8:15 to 9:30 pm. It will cover chapter 15 and sections 16.1 16.4,

More information

Exercise Problems: Information Theory and Coding

Exercise Problems: Information Theory and Coding Exercise Problems: Information Theory and Coding Exercise 9 1. An error-correcting Hamming code uses a 7 bit block size in order to guarantee the detection, and hence the correction, of any single bit

More information

Lecture 15. Global extrema and Lagrange multipliers. Dan Nichols MATH 233, Spring 2018 University of Massachusetts

Lecture 15. Global extrema and Lagrange multipliers. Dan Nichols MATH 233, Spring 2018 University of Massachusetts Lecture 15 Global extrema and Lagrange multipliers Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts March 22, 2018 (2) Global extrema of a multivariable function Definition

More information

II. Random Processes Review

II. Random Processes Review II. Random Processes Review - [p. 2] RP Definition - [p. 3] RP stationarity characteristics - [p. 7] Correlation & cross-correlation - [p. 9] Covariance and cross-covariance - [p. 10] WSS property - [p.

More information

Independence of Path and Conservative Vector Fields

Independence of Path and Conservative Vector Fields Independence of Path and onservative Vector Fields MATH 311, alculus III J. Robert Buchanan Department of Mathematics Summer 2011 Goal We would like to know conditions on a vector field function F(x, y)

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

Unit 7 Partial Derivatives and Optimization

Unit 7 Partial Derivatives and Optimization Unit 7 Partial Derivatives and Optimization We have learned some important applications of the ordinary derivative in finding maxima and minima. We now move on to a topic called partial derivatives which

More information

CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam

CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam February 19, 2014. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more

More information

Probability I Sample spaces, outcomes, and events.

Probability I Sample spaces, outcomes, and events. Probability I Sample spaces, outcomes, and events. When we perform an experiment, the result is called the outcome. The set of possible outcomes is the sample space and any subset of the sample space is

More information

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and Midterm 2 review Math 265 Fall 2007 13.3. Arc Length and Curvature. Assume that the curve C is described by the vector-valued function r(r) = f(t), g(t), h(t), and that C is traversed exactly once as t

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 3.2 - Measures of Central Tendency

More information

Math Final Exam - 6/11/2015

Math Final Exam - 6/11/2015 Math 200 - Final Exam - 6/11/2015 Name: Section: Section Class/Times Instructor Section Class/Times Instructor 1 9:00%AM ( 9:50%AM Papadopoulos,%Dimitrios 11 1:00%PM ( 1:50%PM Swartz,%Kenneth 2 11:00%AM

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane:

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane: 1 Directional Derivatives and Gradients Suppose we need to compute the rate of change of f(x, y) with respect to the distance from a point (a, b) in some direction. Let u = u 1 i + u 2 j be the unit vector

More information

EE 451: Digital Signal Processing

EE 451: Digital Signal Processing EE 451: Digital Signal Processing Stochastic Processes and Spectral Estimation Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 29, 2011 Aly El-Osery (NMT)

More information

CSI 23 LECTURE NOTES (Ojakian) Topics 5 and 6: Probability Theory

CSI 23 LECTURE NOTES (Ojakian) Topics 5 and 6: Probability Theory CSI 23 LECTURE NOTES (Ojakian) Topics 5 and 6: Probability Theory 1. Probability Theory OUTLINE (References: 5.1, 5.2, 6.1, 6.2, 6.3) 2. Compound Events (using Complement, And, Or) 3. Conditional Probability

More information

S56 (5.3) Logs and Exponentials.notebook March 02, 2016

S56 (5.3) Logs and Exponentials.notebook March 02, 2016 Daily Practice 22.2.206 Today we will be learning about exponential and logarithmic functions. Homework due tomorrow. Need to know for Unit Test 2: Expressions and Functions Adding and subtracng logs,

More information

Properties of Logarithms

Properties of Logarithms Properties of Logarithms Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus Properties of Logarithms Mr. Niedert 1 / 14 Properties of Logarithms 1 Change-of-Base Formula Accelerated Pre-Calculus

More information

The Chain Rule, Higher Partial Derivatives & Opti- mization

The Chain Rule, Higher Partial Derivatives & Opti- mization The Chain Rule, Higher Partial Derivatives & Opti- Unit #21 : mization Goals: We will study the chain rule for functions of several variables. We will compute and study the meaning of higher partial derivatives.

More information

HW#02 (18 pts): All recommended exercises from JIT (1 pt/problem)

HW#02 (18 pts): All recommended exercises from JIT (1 pt/problem) Spring 2011 MthSc103 Course Calendar Page 1 of 7 January W 12 Syllabus/Course Policies BST Review Th 13 Basic Skills Test F 14 JIT 1.1 1.3: Numbers, Fractions, Parentheses JIT 1.1: 2, 6, 8, 9 JIT 1.2:

More information

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Name: ID: Circle your instructor and lecture below: Jankowski-001 Jankowski-006 Ramakrishnan-013 Read all of the following information

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

LECTURE 19 - LAGRANGE MULTIPLIERS

LECTURE 19 - LAGRANGE MULTIPLIERS LECTURE 9 - LAGRANGE MULTIPLIERS CHRIS JOHNSON Abstract. In this lecture we ll describe a way of solving certain optimization problems subject to constraints. This method, known as Lagrange multipliers,

More information

Week in Review #5 ( , 3.1)

Week in Review #5 ( , 3.1) Math 166 Week-in-Review - S. Nite 10/6/2012 Page 1 of 5 Week in Review #5 (2.3-2.4, 3.1) n( E) In general, the probability of an event is P ( E) =. n( S) Distinguishable Permutations Given a set of n objects

More information

CSE 312 Midterm Exam May 7, 2014

CSE 312 Midterm Exam May 7, 2014 Name: CSE 312 Midterm Exam May 7, 2014 Instructions: You have 50 minutes to complete the exam. Feel free to ask for clarification if something is unclear. Please do not turn the page until you are instructed

More information

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits MATH 8 FALL 2010 CLASS 27, 11/19/2010 1 Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits lim h 0 f(a + h, b) f(a, b), lim h f(a, b + h) f(a, b) In these

More information

EE 451: Digital Signal Processing

EE 451: Digital Signal Processing EE 451: Digital Signal Processing Power Spectral Density Estimation Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA December 4, 2017 Aly El-Osery (NMT) EE 451:

More information

PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #1 SOLUTIONS

PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #1 SOLUTIONS PHYSICS 40A : STATISTICAL PHYSICS HW ASSIGNMENT # SOLUTIONS () The information entropy of a distribution {p n } is defined as S n p n log 2 p n, where n ranges over all possible configurations of a given

More information

I II III IV V VI VII VIII IX X Total

I II III IV V VI VII VIII IX X Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2018 Section 700 - CDS Students ONLY Instructor: A. Ableson INSTRUCTIONS:

More information

MATH-1110 FINAL EXAM FALL 2010

MATH-1110 FINAL EXAM FALL 2010 MATH-1110 FINAL EXAM FALL 2010 FIRST: PRINT YOUR LAST NAME IN LARGE CAPITAL LETTERS ON THE UPPER RIGHT CORNER OF EACH SHEET. SECOND: PRINT YOUR FIRST NAME IN CAPITAL LETTERS DIRECTLY UNDERNEATH YOUR LAST

More information

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018.

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018. Lecture 19 Vector fields Dan Nichols nichols@math.umass.edu MATH 233, Spring 218 University of Massachusetts April 1, 218 (2) Chapter 16 Chapter 12: Vectors and 3D geometry Chapter 13: Curves and vector

More information

AP CALCULUS AB - CHAPTERS 1 & Worksheet: 1(a, c), 2(a, c), 3a, 4, 5, 10a, 11b, (Solving inequalities)

AP CALCULUS AB - CHAPTERS 1 & Worksheet: 1(a, c), 2(a, c), 3a, 4, 5, 10a, 11b, (Solving inequalities) AP CALCULUS AB - CHAPTERS 1 & 2 1. Worksheet: 1(a, c), 2(a, c), 3a, 4, 5, 10a, 11b, 12-15 (Solving inequalities) 2. Pg. 25-26: 1, 3, 7, 13, 14 (Functions. Abs. Val., Piece-wise) Pg. 59-62: 3, 7, 13, 19,

More information

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals Estimating Areas Consider the challenge of estimating the volume of a solid {(x, y, z) 0 z f(x, y), (x, y) }, where is a region in the xy-plane. This may be thought of as the solid under the graph of z

More information

LEIBNIZ INDIFFERENCE CURVES AND THE MARGINAL RATE OF SUBSTITUTION

LEIBNIZ INDIFFERENCE CURVES AND THE MARGINAL RATE OF SUBSTITUTION 3.2.1 INDIFFERENCE CURVES AND THE MARGINAL RATE OF SUBSTITUTION Alexei cares about his exam grade and his free time. We have seen that his preferences can be represented graphically using indifference

More information

14.7 Maximum and Minimum Values

14.7 Maximum and Minimum Values CHAPTER 14. PARTIAL DERIVATIVES 115 14.7 Maximum and Minimum Values Definition. Let f(x, y) be a function. f has a local max at (a, b) iff(a, b) (a, b). f(x, y) for all (x, y) near f has a local min at

More information

Discrete Random Variables Day 1

Discrete Random Variables Day 1 Discrete Random Variables Day 1 What is a Random Variable? Every probability problem is equivalent to drawing something from a bag (perhaps more than once) Like Flipping a coin 3 times is equivalent to

More information

Double Integrals over More General Regions

Double Integrals over More General Regions Jim Lambers MAT 8 Spring Semester 9-1 Lecture 11 Notes These notes correspond to Section 1. in Stewart and Sections 5.3 and 5.4 in Marsden and Tromba. ouble Integrals over More General Regions We have

More information

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1 MTH 22 Exam Two - Review Problem Set Name Sketch the surface z = f(x,y). ) f(x, y) = - x2 ) 2) f(x, y) = 2 -x2 - y2 2) Find the indicated limit or state that it does not exist. 4x2 + 8xy + 4y2 ) lim (x,

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

MA 524 Midterm Solutions October 16, 2018

MA 524 Midterm Solutions October 16, 2018 MA 524 Midterm Solutions October 16, 2018 1. (a) Let a n be the number of ordered tuples (a, b, c, d) of integers satisfying 0 a < b c < d n. Find a closed formula for a n, as well as its ordinary generating

More information

Level Curves, Partial Derivatives

Level Curves, Partial Derivatives Unit #18 : Level Curves, Partial Derivatives Goals: To learn how to use and interpret contour diagrams as a way of visualizing functions of two variables. To study linear functions of two variables. To

More information

Math Final Exam - 6/13/2013

Math Final Exam - 6/13/2013 Math - Final Exam - 6/13/13 NAME: SECTION: Directions: For the free response section, you must show all work. Answers without proper justification will not receive full credit. Partial credit will be awarded

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions PRINT Your Name: Oski Bear SIGN Your Name: OS K I PRINT Your Student ID: CIRCLE your exam room: Pimentel

More information

Limits and Continuity

Limits and Continuity Limits and Continuity February 26, 205 Previously, you learned about the concept of the it of a function, and an associated concept, continuity. These concepts can be generalised to functions of several

More information

Calculus II Final Exam Key

Calculus II Final Exam Key Calculus II Final Exam Key Instructions. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded.. Please begin each section of questions on a new sheet of paper. 3.

More information

Math 5BI: Problem Set 1 Linearizing functions of several variables

Math 5BI: Problem Set 1 Linearizing functions of several variables Math 5BI: Problem Set Linearizing functions of several variables March 9, A. Dot and cross products There are two special operations for vectors in R that are extremely useful, the dot and cross products.

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

Pre-Calculus. Riemann Sums. Slide 1 / 163 Slide 2 / 163. Slide 3 / 163. Slide 4 / 163. Slide 5 / 163. Slide 6 / 163. Intro to Integrals

Pre-Calculus. Riemann Sums. Slide 1 / 163 Slide 2 / 163. Slide 3 / 163. Slide 4 / 163. Slide 5 / 163. Slide 6 / 163. Intro to Integrals Slide 1 / 163 Slide 2 / 163 Pre-alculus Intro to Integrals 2015-03-24 www.njctl.org Slide 3 / 163 Table of ontents Riemann Sums Trapezoid Rule ccumulation Function & efinite Integrals Fundamental Theorem

More information

Section 3: Functions of several variables.

Section 3: Functions of several variables. Section 3: Functions of several variables. Compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising and sketching S4: Limits and continuity S5: Partial differentiation S6:

More information