Math Final Exam - 6/11/2015

Size: px
Start display at page:

Download "Math Final Exam - 6/11/2015"

Transcription

1 Math Final Exam - 6/11/2015 Name: Section: Section Class/Times Instructor Section Class/Times Instructor 1 9:00%AM ( 9:50%AM Papadopoulos,%Dimitrios 11 1:00%PM ( 1:50%PM Swartz,%Kenneth 2 11:00%AM ( 11:50%AM Papadopoulos,%Dimitrios 13 12:00%PM ( 12:50%PM Yang,%Dennis 3 11:00%AM ( 11:50%AM Lee,%Hwan%Yong 14 2:00%PM ( 2:50%PM Aran,%Jason 4 4:00%PM ( 4:50%PM Aran,%Jason 16 12:00%PM ( 12:50%PM Zhang,%Aijun 6 9:00%AM ( 9:50%AM Lee,%Hwan%Yong 17 4:00%PM ( 4:50%PM Yang,%Dennis 7 10:00%AM ( 10:50%AM Papadopoulos,%Dimitrios 18 1:00%PM ( 1:50%PM Yang,%Dennis 8 5:00%PM ( 5:50%PM Aran,%Jason 19 10:00%AM ( 10:50%AM Lee,%Hwan%Yong 10 2:00%PM ( 2:50%PM Swartz,%Kenneth 20 1:00%PM ( 1:50%PM Akin,%Myles The following rules apply: This is a closed-book exam. You may not use any books or notes on this exam. For free response questions, you must show all work. Answers without proper justification will not receive full credit. Partial credit will be awarded for significant progress towards the correct answer. Cross off any work that you do not want graded. For multiple choice questions, circle the letter of the best answer. Make sure your circles include just one letter. These problems will be marked as correct or incorrect; partial credit will not be awarded for problems in this section. You have 2 hours to complete this exam. When time is called, stop writing immediately and turn in your exam to the nearest proctor. You may not use any electronic devices including (but not limited to) calculators, cell phone, or ipods. Using such a device will be considered a violation of the university s academic integrity policy and, at the very least, will result in a grade of 0 for this exam. Page Points Score Total: 100

2 Math 200 Final Exam - Page 2 of 13 6/11/2015 Part I: Free Response 1. (10 points) Find an equation of the plane which contains the point P (2, 1, 2) and is perpendicular to the planes 3x + y z = 6 and 2x + 2y + z = 4

3 Math 200 Final Exam - Page 3 of 13 6/11/ (10 points) Let R be the closed region bounded by y = 9 x 2 and the x-axis, shown below. Calculate the absolute maximum and absolute minimum values of f(x, y) = xy + 3x on R and indicate where they occur.

4 Math 200 Final Exam - Page 4 of 13 6/11/2015 u = y + x 3. (15 points) Consider the transformation v = y x x = 1 (u v) 2 y = 1 (u + v) 2 (a) Suppose R is the region in the xy-plane enclosed by y = x, y = x + 2, y = 1 x and y = x, as shown below. Use the given transformation to find the corresponding region in the uv-plane. Sketch your results on the axes provided.

5 Math 200 Final Exam - Page 5 of 13 6/11/2015 (b) Find the absolute value of the determinant of the Jacobian (x, y) (u, v) (c) Use the transformation to evaluate R 2(y x)(y + x) da.

6 Math 200 Final Exam - Page 6 of 13 6/11/ (10 points) Evaluate the following integral by converting to Polar Coordinates. For full credit, you must sketch the region over which your are integrating. 3 3 x y 2 dy dx Hint: cos 2 θ = 1 2 (1 + cos 2θ) and sin2 θ = 1 (1 cos 2θ) 2

7 Math 200 Final Exam - Page 7 of 13 6/11/2015 Part II: Multiple Choice 5. (5 points) What is the area of the parallelogram which has u = 2, 0, 1 and v = 4, 1, 2 as adjacent sides? (a) 2 3 (b) 2 5 (c) 3 2 (d) 4 2 (e) 5 6. (5 points) If b and v are both nonzero vectors, which of the following vectors is always orthogonal to v proj b v? (a) b (b) v (c) b v (d) b + v (e) proj v b

8 Math 200 Final Exam - Page 8 of 13 6/11/ (5 points) The position of a particle moving through space is given by r (t) = cos(2t), sin(2t), e t. Find the velocity of the particle at time t = 0. (a) 2, 0, 1 (b) 0, 2, 1 (c) 1, 2, 0 (d) 2, 2, 1 (e) 2, 2, 1 8. (5 points) Suppose f(x, y) is an integrable function. Which of the following integrals results from reversing the order of integration of x f(x, y) dy dx x f(x, y) dy dx (a) (b) (c) (d) (e) 3 y y 0 y 3 y 3 y 3 y x 3 f(x, y) dx dy f(x, y) dx dy f(x, y) dx dy f(x, y) dx dy f(x, y) dx dy x 0 f(x, y) dx dy

9 Math 200 Final Exam - Page 9 of 13 6/11/ (5 points) Consider the region in the first octant bounded by y = 1, x + z = 2, and the coordinate planes, shown below. Which of the following integrals represents the volume of this region? (a) (b) (c) (d) (e) x z 2 1 x z dzdydx dzdxdy dzdydx dxdydz dzdydx

10 Math 200 Final Exam - Page 10 of 13 6/11/ (5 points) A differentiable function f(x, y) has two critical points: (0, 2) and (0, 2). And, it satisfies the following: Which of the following is correct? f xx (x, y) = 2 f xy (x, y) = 0 f yx (x, y) = 0 f yy (x, y) = 6y (a) f has a local minimum at (0, 2). (b) f has a local maximum at (0, 2). (c) f has a local minimum at (0, 2). (d) f has a local maximum at (0, 2). (e) f has saddle points at (0, 2) and (0, 2). 11. (5 points) In which direction is f(x, y) = x 2 y x increasing most rapidly at P ( 2, 1)? y2 (a) 5, 0 (b) 0, 0 (c) 2, 2 (d) 3, 1 (e) 3, 2

11 Math 200 Final Exam - Page 11 of 13 6/11/ (5 points) What is the distance from the point P (1, 4, 4) to the plane x + 2y + z = 7? (a) 1 (b) 2 (c) 6 (d) 2 3 (e) (5 points) Consider the following definition. Definition: The average value of a function z = f(x, y) over a region R in the xy-plane is: f(x, y) da R f avg (x, y) = 1 da R Determine the average value of f(x, y) = 2xy on R = {(x, y) 0 x 3 and 0 y 2}. (a) 3 (b) 6 (c) 9 (d) 12 (e) 18

12 Math 200 Final Exam - Page 12 of 13 6/11/ (5 points) Consider the solid enclosed by z = 3x 2 + 3y 2 and z = 4 x 2 y 2, shown below. Which of the following represents the volume of this solid using cylindrical coordinates? (a) (b) (c) (d) (e) 2π 1 4 r r 2 2π π 4 r 2 2π 1 4 r r 2 2π 3 4 r r 2 2π 4 3 r dz dr dθ 3r 2 dz dr dθ r 2 sin θ dr dz dθ r dz dr dθ r sin θ dr dz dθ

13 Math 200 Final Exam - Page 13 of 13 6/11/ (5 points) Consider the solid which is bounded above by x 2 + y 2 + z 2 = 4 and below by z = 1, shown below. Which of the following represents the volume of this solid using spherical coordinates? (a) (b) (c) (d) (e) 2π π/ π π/ π π/ sec φ 2π π/ sec φ 2π π/ sec φ 1 dρ dφ dθ ρ 2 sin φ dρ dφ dθ 1 dρ dφ dθ ρ 2 sin φ dρ dφ dθ ρ 2 sin φ dρ dφ dθ

Math Final Exam - 6/13/2013

Math Final Exam - 6/13/2013 Math - Final Exam - 6/13/13 NAME: SECTION: Directions: For the free response section, you must show all work. Answers without proper justification will not receive full credit. Partial credit will be awarded

More information

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2 University of California, Berkeley epartment of Mathematics 5 th November, 212, 12:1-12:55 pm MATH 53 - Test #2 Last Name: First Name: Student Number: iscussion Section: Name of GSI: Record your answers

More information

Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems.

Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems. Calculus IV Math 443 eview for xam on Mon Oct 4, 6 xam will cover 5. 5.. This is only a sample. Try all the homework problems. () o not evaluated the integral. Write as iterated integrals: (x + y )dv,

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2. Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. Math 126 Final Examination Winter 2012 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. This exam is closed

More information

Math 148 Exam III Practice Problems

Math 148 Exam III Practice Problems Math 48 Exam III Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

Mock final exam Math fall 2007

Mock final exam Math fall 2007 Mock final exam Math - fall 7 Fernando Guevara Vasquez December 5 7. Consider the curve r(t) = ti + tj + 5 t t k, t. (a) Show that the curve lies on a sphere centered at the origin. (b) Where does the

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

Math 2411 Calc III Practice Exam 2

Math 2411 Calc III Practice Exam 2 Math 2411 Calc III Practice Exam 2 This is a practice exam. The actual exam consists of questions of the type found in this practice exam, but will be shorter. If you have questions do not hesitate to

More information

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E MATH 259 FINAL EXAM 1 Friday, May 8, 2009. NAME: Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E Instructions: 1. Do not separate the pages of the exam.

More information

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero. Math 2130-101 Test #2 for Section 101 October 14 th, 2009 ANSWE KEY 1. (10 points) Compute the curvature of r(t) = (t + 2, 3t + 4, 5t + 6). r (t) = (1, 3, 5) r (t) = 1 2 + 3 2 + 5 2 = 35 T(t) = 1 r (t)

More information

Definitions and claims functions of several variables

Definitions and claims functions of several variables Definitions and claims functions of several variables In the Euclidian space I n of all real n-dimensional vectors x = (x 1, x,..., x n ) the following are defined: x + y = (x 1 + y 1, x + y,..., x n +

More information

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009 Your Name Your Signature Instructions: Please begin by printing and signing your name in the boxes above and by checking your section in the box to the right You are allowed 2 hours (120 minutes) for this

More information

Math 5BI: Problem Set 1 Linearizing functions of several variables

Math 5BI: Problem Set 1 Linearizing functions of several variables Math 5BI: Problem Set Linearizing functions of several variables March 9, A. Dot and cross products There are two special operations for vectors in R that are extremely useful, the dot and cross products.

More information

Differentiable functions (Sec. 14.4)

Differentiable functions (Sec. 14.4) Math 20C Multivariable Calculus Lecture 3 Differentiable functions (Sec. 4.4) Review: Partial derivatives. Slide Partial derivatives and continuity. Equation of the tangent plane. Differentiable functions.

More information

Calculus II Final Exam Key

Calculus II Final Exam Key Calculus II Final Exam Key Instructions. Do NOT write your answers on these sheets. Nothing written on the test papers will be graded.. Please begin each section of questions on a new sheet of paper. 3.

More information

I II III IV V VI VII VIII IX X Total

I II III IV V VI VII VIII IX X Total 1 of 16 HAND IN Answers recorded on exam paper. DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN S UNIVERSITY AT KINGSTON MATH 121/124 - APR 2018 Section 700 - CDS Students ONLY Instructor: A. Ableson INSTRUCTIONS:

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed.

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed. SOLUIONS 2. PRACICE EXAM 2. HOURLY Math 21a, S03 Problem 1) questions (20 points) Circle the correct letter. No justifications are needed. A function f(x, y) on the plane for which the absolute minimum

More information

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}]

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}] hapter 16 16.1. 6. Notice that F(x, y) has length 1 and that it is perpendicular to the position vector (x, y) for all x and y (except at the origin). Think about drawing the vectors based on concentric

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them.

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. Final Exam Review Problems P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them. 1 P 2. Find the volume of the solid bounded by the cylinder x 2 + y 2 = 9 and the planes z

More information

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t) Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

More information

MATH Review Exam II 03/06/11

MATH Review Exam II 03/06/11 MATH 21-259 Review Exam II 03/06/11 1. Find f(t) given that f (t) = sin t i + 3t 2 j and f(0) = i k. 2. Find lim t 0 3(t 2 1) i + cos t j + t t k. 3. Find the points on the curve r(t) at which r(t) and

More information

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION 1. Functions of Several Variables A function of two variables is a rule that assigns a real number f(x, y) to each ordered pair of real numbers

More information

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs. Exam 2 Summary Disclaimer: The exam 2 covers lectures 9-15, inclusive. This is mostly about limits, continuity and differentiation of functions of 2 and 3 variables, and some applications. The complete

More information

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and Midterm 2 review Math 265 Fall 2007 13.3. Arc Length and Curvature. Assume that the curve C is described by the vector-valued function r(r) = f(t), g(t), h(t), and that C is traversed exactly once as t

More information

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular.

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular. Math 142 -Review Problems II (Sec. 10.2-11.6) Work on concept check on pages 734 and 822. More review problems are on pages 734-735 and 823-825. 2nd In-Class Exam, Wednesday, April 20. 1. True - False

More information

MAT01B1: Calculus with Polar coordinates

MAT01B1: Calculus with Polar coordinates MAT01B1: Calculus with Polar coordinates Dr Craig 23 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h30 12h55 Friday (this week) 11h20 12h25 Office C-Ring 508

More information

MATH 253 Page 1 of 7 Student-No.: Midterm 2 November 16, 2016 Duration: 50 minutes This test has 4 questions on 7 pages, for a total of 40 points.

MATH 253 Page 1 of 7 Student-No.: Midterm 2 November 16, 2016 Duration: 50 minutes This test has 4 questions on 7 pages, for a total of 40 points. MATH 253 Page 1 of 7 Student-No.: Midterm 2 November 16, 2016 Duration: 50 minutes This test has 4 questions on 7 pages, for a total of 40 points. Read all the questions carefully before starting to work.

More information

Review Sheet for Math 230, Midterm exam 2. Fall 2006

Review Sheet for Math 230, Midterm exam 2. Fall 2006 Review Sheet for Math 230, Midterm exam 2. Fall 2006 October 31, 2006 The second midterm exam will take place: Monday, November 13, from 8:15 to 9:30 pm. It will cover chapter 15 and sections 16.1 16.4,

More information

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane:

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane: 1 Directional Derivatives and Gradients Suppose we need to compute the rate of change of f(x, y) with respect to the distance from a point (a, b) in some direction. Let u = u 1 i + u 2 j be the unit vector

More information

Double Integrals over More General Regions

Double Integrals over More General Regions Jim Lambers MAT 8 Spring Semester 9-1 Lecture 11 Notes These notes correspond to Section 1. in Stewart and Sections 5.3 and 5.4 in Marsden and Tromba. ouble Integrals over More General Regions We have

More information

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A Name: ID: Circle your instructor and lecture below: Jankowski-001 Jankowski-006 Ramakrishnan-013 Read all of the following information

More information

MATH 261 EXAM II PRACTICE PROBLEMS

MATH 261 EXAM II PRACTICE PROBLEMS MATH 61 EXAM II PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam typically has 6 problems on it, with no more than one problem of any given type (e.g.,

More information

Math 2321 Review for Test 2 Fall 11

Math 2321 Review for Test 2 Fall 11 Math 2321 Review for Test 2 Fall 11 The test will cover chapter 15 and sections 16.1-16.5 of chapter 16. These review sheets consist of problems similar to ones that could appear on the test. Some problems

More information

266&deployment= &UserPass=b3733cde68af274d036da170749a68f6

266&deployment= &UserPass=b3733cde68af274d036da170749a68f6 Sections 14.6 and 14.7 (1482266) Question 12345678910111213141516171819202122 Due: Thu Oct 21 2010 11:59 PM PDT 1. Question DetailsSCalcET6 14.6.012. [1289020] Find the directional derivative, D u f, of

More information

MA Calculus III Exam 3 : Part I 25 November 2013

MA Calculus III Exam 3 : Part I 25 November 2013 MA 225 - Calculus III Exam 3 : Part I 25 November 2013 Instructions: You have as long as you need to work on the first portion of this exam. When you finish, turn it in and only then you are allowed to

More information

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions:

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions: Page Name: ID: Section: This exam has 7 questions: 5 multiple choice questions worth 5 points each. 2 hand graded questions worth 25 points total. Important: No graphing calculators! Any non scientific

More information

Exam 1 Study Guide. Math 223 Section 12 Fall Student s Name

Exam 1 Study Guide. Math 223 Section 12 Fall Student s Name Exam 1 Study Guide Math 223 Section 12 Fall 2015 Dr. Gilbert Student s Name The following problems are designed to help you study for the first in-class exam. Problems may or may not be an accurate indicator

More information

Math 206 First Midterm February 1, 2012

Math 206 First Midterm February 1, 2012 Math 206 First Midterm February 1, 2012 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 7 pages including this cover AND IS DOUBLE SIDED. There are 8 problems.

More information

Math 116 First Midterm October 7, 2014

Math 116 First Midterm October 7, 2014 Math 116 First Midterm October 7, 2014 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 10 pages including this cover AND IS DOUBLE SIDED. There are 9 problems.

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

More information

Math 118: Business Calculus Fall 2017 Final Exam 06 December 2017

Math 118: Business Calculus Fall 2017 Final Exam 06 December 2017 Math 118: Business Calculus Fall 2017 Final Exam 06 December 2017 First Name: (as in student record) Last Name: (as in student record) USC ID: Signature: Please circle your instructor and lecture time:

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits MATH 8 FALL 2010 CLASS 27, 11/19/2010 1 Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits lim h 0 f(a + h, b) f(a, b), lim h f(a, b + h) f(a, b) In these

More information

CHAPTER 11 PARTIAL DERIVATIVES

CHAPTER 11 PARTIAL DERIVATIVES CHAPTER 11 PARTIAL DERIVATIVES 1. FUNCTIONS OF SEVERAL VARIABLES A) Definition: A function of two variables is a rule that assigns to each ordered pair of real numbers (x,y) in a set D a unique real number

More information

Review Problems. Calculus IIIA: page 1 of??

Review Problems. Calculus IIIA: page 1 of?? Review Problems The final is comprehensive exam (although the material from the last third of the course will be emphasized). You are encouraged to work carefully through this review package, and to revisit

More information

On Surfaces of Revolution whose Mean Curvature is Constant

On Surfaces of Revolution whose Mean Curvature is Constant On Surfaces of Revolution whose Mean Curvature is Constant Ch. Delaunay May 4, 2002 When one seeks a surface of given area enclosing a maximal volume, one finds that the equation this surface must satisfy

More information

Calculus II Fall 2014

Calculus II Fall 2014 Calculus II Fall 2014 Lecture 3 Partial Derivatives Eitan Angel University of Colorado Monday, December 1, 2014 E. Angel (CU) Calculus II 1 Dec 1 / 13 Introduction Much of the calculus of several variables

More information

Math 122: Final Exam Review Sheet

Math 122: Final Exam Review Sheet Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 8-1 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,

More information

Section 15.3 Partial Derivatives

Section 15.3 Partial Derivatives Section 5.3 Partial Derivatives Differentiating Functions of more than one Variable. Basic Definitions In single variable calculus, the derivative is defined to be the instantaneous rate of change of a

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM

MATH 20C: FUNDAMENTALS OF CALCULUS II FINAL EXAM MATH 2C: FUNDAMENTALS OF CALCULUS II FINAL EXAM Name Please circle the answer to each of the following problems. You may use an approved calculator. Each multiple choice problem is worth 2 points.. Multiple

More information

3. (12 %) Find an equation of the tangent plane at the point (2,2,1) to the surface. u = t. Find z t. v = se t.

3. (12 %) Find an equation of the tangent plane at the point (2,2,1) to the surface. u = t. Find z t. v = se t. EXAM - Math 17 NAME: I.D.: Instrction: Circle yor answers and show all yor work clearly. Messing arond may reslt in losing credits, since the grader may be forced to pick the worst to grade. Soltions with

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

11/18/2008 SECOND HOURLY FIRST PRACTICE Math 21a, Fall Name:

11/18/2008 SECOND HOURLY FIRST PRACTICE Math 21a, Fall Name: 11/18/28 SECOND HOURLY FIRST PRACTICE Math 21a, Fall 28 Name: MWF 9 Chung-Jun John Tsai MWF 1 Ivana Bozic MWF 1 Peter Garfield MWF 1 Oliver Knill MWF 11 Peter Garfield MWF 11 Stefan Hornet MWF 12 Aleksander

More information

11/2/2016 Second Hourly Practice I Math 21a, Fall Name:

11/2/2016 Second Hourly Practice I Math 21a, Fall Name: 11/2/216 Second Hourly Practice I Math 21a, Fall 216 Name: MWF 9 Koji Shimizu MWF 1 Can Kozcaz MWF 1 Yifei Zhao MWF 11 Oliver Knill MWF 11 Bena Tshishiku MWF 12 Jun-Hou Fung MWF 12 Chenglong Yu TTH 1 Jameel

More information

Lecture 26: Conservative Vector Fields

Lecture 26: Conservative Vector Fields Lecture 26: onservative Vector Fields 26. The line integral of a conservative vector field Suppose f : R n R is differentiable the vector field f : R n R n is continuous. Let F (x) = f(x). Then F is a

More information

ECE 4370: Antenna Engineering TEST 1 (Fall 2017)

ECE 4370: Antenna Engineering TEST 1 (Fall 2017) Name: GTID: ECE 437: Antenna Engineering TEST 1 Fall 17) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend, open mind test. On your desk you

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4 MATH 2 CLASS 9 NOTES, OCT 0 20 Contents. Tangent planes 2. Definition of differentiability 3 3. Differentials 4. Tangent planes Recall that the derivative of a single variable function can be interpreted

More information

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals Estimating Areas Consider the challenge of estimating the volume of a solid {(x, y, z) 0 z f(x, y), (x, y) }, where is a region in the xy-plane. This may be thought of as the solid under the graph of z

More information

Calculus 3 Exam 2 31 October 2017

Calculus 3 Exam 2 31 October 2017 Calculus 3 Exam 2 31 October 2017 Name: Instructions: Be sure to read each problem s directions. Write clearly during the exam and fully erase or mark out anything you do not want graded. You may use your

More information

Directional Derivative, Gradient and Level Set

Directional Derivative, Gradient and Level Set Directional Derivative, Gradient and Level Set Liming Pang 1 Directional Derivative Te partial derivatives of a multi-variable function f(x, y), f f and, tell us te rate of cange of te function along te

More information

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3 Mathematics 5 HWK 9b Solutions Section 6. p75 Problem, 6., p75. Evaluate (x y) dy dx. Solution. (x y) dy dx x ( ) y dy dx [ x x dx ] [ ] y x dx Problem 9, 6., p75. For the region as shown, write f da as

More information

Practice Problems: Calculus in Polar Coordinates

Practice Problems: Calculus in Polar Coordinates Practice Problems: Calculus in Polar Coordinates Answers. For these problems, I want to convert from polar form parametrized Cartesian form, then differentiate and take the ratio y over x to get the slope,

More information

11/1/2017 Second Hourly Practice 2 Math 21a, Fall Name:

11/1/2017 Second Hourly Practice 2 Math 21a, Fall Name: 11/1/217 Second Hourly Practice 2 Math 21a, Fall 217 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 1 Yu-Wei Fan MWF 1 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables

Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables Lecture 19 - Partial Derivatives and Extrema of Functions of Two Variables 19.1 Partial Derivatives We wish to maximize functions of two variables. This will involve taking derivatives. Example: Consider

More information

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14 School of Mathematics, KSU 20/4/14 Independent of path Theorem 1 If F (x, y) = M(x, y)i + N(x, y)j is continuous on an open connected region D, then the line integral F dr is independent of path if and

More information

Radiation from Antennas

Radiation from Antennas Radiation from Antennas Ranga Rodrigo University of Moratuwa November 20, 2008 Ranga Rodrigo (University of Moratuwa) Radiation from Antennas November 20, 2008 1 / 32 Summary of Last Week s Lecture Radiation

More information

Math 233. Extrema of Functions of Two Variables Basics

Math 233. Extrema of Functions of Two Variables Basics Math 233. Extrema of Functions of Two Variables Basics Theorem (Extreme Value Theorem) Let f be a continuous function of two variables x and y defined on a closed bounded region R in the xy-plane. Then

More information

EGR/MA265, Math Tools for Engineering Problem Solving Final Exam, 2013

EGR/MA265, Math Tools for Engineering Problem Solving Final Exam, 2013 EGR/MA265, Math Tools for Engineering Problem Solving Final Exam, 2013 Name and section: Instructors name: 1. Do not open this exam until you are told to do so. 2. This exam has 14 pages including this

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

2. To receive credit on any problem, you must show work that explains how you obtained your answer or you must explain how you obtained your answer.

2. To receive credit on any problem, you must show work that explains how you obtained your answer or you must explain how you obtained your answer. Math 50, Spring 2006 Test 2 PRINT your name on the back of the test. Circle your class: MW @ 11 TTh @ 2:30 Directions 1. Time limit: 50 minutes. 2. To receive credit on any problem, you must show work

More information

47. Conservative Vector Fields

47. Conservative Vector Fields 47. onservative Vector Fields Given a function z = φ(x, y), its gradient is φ = φ x, φ y. Thus, φ is a gradient (or conservative) vector field, and the function φ is called a potential function. Suppose

More information

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena.

DIFFERENTIAL EQUATIONS. A principal model of physical phenomena. DIFFERENTIAL EQUATIONS A principal model of physical phenomena. The equation: The initial value: y = f(x, y) y(x 0 ) = Y 0 Find solution Y (x) on some interval x 0 x b. Together these two conditions constitute

More information

The Compensating Polar Planimeter

The Compensating Polar Planimeter The Compensating Polar Planimeter Description of a polar planimeter Standard operation The neutral circle How a compensating polar planimeter compensates Show and tell: actual planimeters References (Far

More information

For each question, X indicates a correct choice. ANSWER SHEET - BLUE. Question a b c d e Do not write in this column 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X

For each question, X indicates a correct choice. ANSWER SHEET - BLUE. Question a b c d e Do not write in this column 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X For each question, X indicates a correct choice. ANSWER SHEET - BLUE X ANSWER SHEET - GREEN X ANSWER SHEET - WHITE X ANSWER SHEET - YELLOW For each question, place an X in the box of your choice. X QUESTION

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

UNIT Explain the radiation from two-wire. Ans: Radiation from Two wire

UNIT Explain the radiation from two-wire. Ans:   Radiation from Two wire UNIT 1 1. Explain the radiation from two-wire. Radiation from Two wire Figure1.1.1 shows a voltage source connected two-wire transmission line which is further connected to an antenna. An electric field

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

The Chain Rule, Higher Partial Derivatives & Opti- mization

The Chain Rule, Higher Partial Derivatives & Opti- mization The Chain Rule, Higher Partial Derivatives & Opti- Unit #21 : mization Goals: We will study the chain rule for functions of several variables. We will compute and study the meaning of higher partial derivatives.

More information

A General Procedure (Solids of Revolution) Some Useful Area Formulas

A General Procedure (Solids of Revolution) Some Useful Area Formulas Goal: Given a solid described by rotating an area, compute its volume. A General Procedure (Solids of Revolution) (i) Draw a graph of the relevant functions/regions in the plane. Draw a vertical line and

More information

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ.

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1 Radian Measures Exercise 1 Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ. 1. Suppose I know the radian measure of the

More information

Independence of Path and Conservative Vector Fields

Independence of Path and Conservative Vector Fields Independence of Path and onservative Vector Fields MATH 311, alculus III J. Robert Buchanan Department of Mathematics Summer 2011 Goal We would like to know conditions on a vector field function F(x, y)

More information

Review #Final Exam MATH 142-Drost

Review #Final Exam MATH 142-Drost Fall 2007 1 Review #Final Exam MATH 142-Drost 1. Find the domain of the function f(x) = x 1 x 2 if x3 2. Suppose 450 items are sold per day at a price of $53 per item and that 650 items are

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

VECTOR CALCULUS Julian.O 2016

VECTOR CALCULUS Julian.O 2016 VETO ALULUS Julian.O 2016 Vector alculus Lecture 3: Double Integrals Green s Theorem Divergence of a Vector Field Double Integrals: Double integrals are used to integrate two-variable functions f(x, y)

More information

10.1 Curves defined by parametric equations

10.1 Curves defined by parametric equations Outline Section 1: Parametric Equations and Polar Coordinates 1.1 Curves defined by parametric equations 1.2 Calculus with Parametric Curves 1.3 Polar Coordinates 1.4 Areas and Lengths in Polar Coordinates

More information

Section 14.3 Partial Derivatives

Section 14.3 Partial Derivatives Section 14.3 Partial Derivatives Ruipeng Shen March 20 1 Basic Conceptions If f(x, y) is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant.

More information

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018.

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018. Lecture 19 Vector fields Dan Nichols nichols@math.umass.edu MATH 233, Spring 218 University of Massachusetts April 1, 218 (2) Chapter 16 Chapter 12: Vectors and 3D geometry Chapter 13: Curves and vector

More information

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1

B) 0 C) 1 D) No limit. x2 + y2 4) A) 2 B) 0 C) 1 D) No limit. A) 1 B) 2 C) 0 D) No limit. 8xy 6) A) 1 B) 0 C) π D) -1 MTH 22 Exam Two - Review Problem Set Name Sketch the surface z = f(x,y). ) f(x, y) = - x2 ) 2) f(x, y) = 2 -x2 - y2 2) Find the indicated limit or state that it does not exist. 4x2 + 8xy + 4y2 ) lim (x,

More information

F13 Study Guide/Practice Exam 3

F13 Study Guide/Practice Exam 3 F13 Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam 2. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material.

More information

ECE 4370: Antenna Engineering TEST 1 (Fall 2011)

ECE 4370: Antenna Engineering TEST 1 (Fall 2011) Name: GTID: ECE 4370: Antenna Engineering TEST 1 (Fall 2011) Please read all instructions before continuing with the test. This is a closed notes, closed book, closed friend, open mind test. On your desk

More information