LECTURE THREE SIGNAL FLOW GRAPH

Size: px
Start display at page:

Download "LECTURE THREE SIGNAL FLOW GRAPH"

Transcription

1 3rd Yearomputer ommunication EngineeringU ontrol Theor LETUE THEE SIGNAL FLOW GAPH 3.1 Introduction The block diagram reduction technique is tedious and time consuming. Signal flow method gives an alternative approach for finding out transfer function of a control sstem. Signal flow graph is a network diagram consisting of nodes, branches and arrows. Nodes represent variables or signals in a sstem. The nodes are connected b branches and arrows marked on branches indicate direction of flow signal. t If =t, then the signal flow graph is; The following rules appl as well for the signal flow graph; t1 t2 t1 t2 t1 t1 t2 t2 t1 t3 t1 / (1t1 t2) t2 1 2 t1 t2 1 2 t1 t3 t2 t3 Dr. Mohammed Saheb Khesbak Page 19

2 3rd Yearomputer ommunication EngineeringU ontrol Theor 1 t1 2 t2 3 1 (t1 t2) / (1t2 t3) 3 t3 Eamples 3.1: Draw signal flow graph for the following equations: 1 d/dt a1 2 d1/dt d/dt d 2 /dt d 2 /d 2 1 d/d 2/3 1 11/2 Another solution ma be introduced b taking the Laplace transform of the equation as follows; ( ) ( ) ( ) ( ) Dr. Mohammed Saheb Khesbak Page 20

3 3rd Yearomputer ommunication EngineeringU ontrol Theor ( ) ( ) ( ) Therefore; the signal flow graph is shown; X(s) 1 1/S 1/S 1 2/3 11/2 Y(s) 3.2 Mason s Gain Formula Mason gave a formula relating the output and input. The formula is: Δ = 1 (sum of all individual loops)(gain product of all possible combinations of two nontouching loops). Δ K = same as for Δ but formed b loops not touching the k th forward path. P K = gain of k th forward paths. Dr. Mohammed Saheb Khesbak Page 21

4 3rd Yearomputer ommunication EngineeringU ontrol Theor Eample 3.2: For the sstem shown, obtain the closed loop transfer function. Solution: Forward paths: P1=G1 G2 G3 and P2= Loops: L1=G2, L2=G1G2, and L3= G2G3H2 Now; Δ=1(L1L2L3) = 1 G2 G1G2 G2G3H2 Δ1= 1 and Δ2= Δ therefore; ( ) Dr. Mohammed Saheb Khesbak Page 22

5 3rd Yearomputer ommunication EngineeringU ontrol Theor Eample 3.3: Find / for the sstem shown below using signal flow graph technique. G2 G1 G3 H2 The signal flow graph for the sstem block diagram above is shown as; G2 1 1 G1 1 G3 H2 Forward paths: P1=G1 G3, Δ1=1 P2=G1 G2, Δ2=1 P3=G1 G3 H2, Δ3=1 P4 =G1 G2 H2, Δ4=1 Dr. Mohammed Saheb Khesbak Page 23

6 3rd Yearomputer ommunication EngineeringU ontrol Theor Loops: L1= G1 G3 H2 and L2= G1 G2 H2 Now; Δ=1 (L1L2) = 1 G1 G3 H2 G1 G2 H2 Therefore; Dr. Mohammed Saheb Khesbak Page 24

7 3rd Yearomputer ommunication EngineeringU ontrol Theor Eample 3.4: Find / for the sstem shown: G2 G6 1 G1 G8 1 G3 G5 G7 H2 Solution: Forward paths: P1=G2 G6, P2=G3 G5 G7, P3= G2 G1 G7, P4=G3 G8 G6 P5=G2 G1 H2 G8 G6, P6=G3 G8 G1 G7 Loops: L1=, L2=G5 H2, and L3= G1 H2 G8 Nontouching Loops: There are one pair of nontouching loops = ( ) (G5 H2) Now; Δ = 1 ( G5 H2 G1 H2 G8 ) G5 H2 Dr. Mohammed Saheb Khesbak Page 25

8 3rd Yearomputer ommunication EngineeringU ontrol Theor Δ = 1 G5 H2 G1 H2 G8 G5 H2 Also; Δ1=1 (G5 H2)= 1 G5 H2, Δ2=1 ( )= 1 and Δ3= Δ4= Δ5= Δ6=1 Therefore; ( ) ( ) Eample 3.5: Using Mason s formula method find the transfer function / of the below block diagram sstem. G1 G2 G3 H2 Dr. Mohammed Saheb Khesbak Page 26

9 3rd Yearomputer ommunication EngineeringU ontrol Theor onverting the block diagram into signal flow graph as shown; 1 G1 G2 G3 H2 1 Forward paths: P1= G1 G2 G3 and P2= G1 G2 Loops: L1= G2 G3 H2, L2= G2 H2, L3= G1 G2, L4= G1 G2 G3 and L5= G1 G2 Now; Δ1= 1 and Δ2= 1 and Δ= 1 (L1L2L3L4L5) Δ=1 G2 G3 H2 G2 H2 G1 G2 G1 G2 G3G1 G2 Dr. Mohammed Saheb Khesbak Page 27

10 3rd Yearomputer ommunication EngineeringU ontrol Theor Eample 3.6: Using Mason s formula method find the transfer function / of the below block diagram sstem. G2 _ G1 H2 _ G5 G6 onverting the block diagram into signal flow graph as shown; G2 ` G1 H2 G5 G6 1 Forward paths: P1= G1 H2 G5 G6 with Δ1=1 Loops: Dr. Mohammed Saheb Khesbak Page 28

11 3rd Yearomputer ommunication EngineeringU ontrol Theor L1= G1 G2, L2=, and L3= G1 H2 G5 therefore; Δ=1G1 G2 G1 H2 G5 G1 G2 then; Eercises: Q1 Prove that the two shown control sstems have different transfer functions. 1 a 1 b 1 c 1 d e f 1 a b c 1 d e f Dr. Mohammed Saheb Khesbak Page 29

12 3rd Yearomputer ommunication EngineeringU ontrol Theor Q2 Find the transfer function for the sstem shown using Mason s formula. G1 G2 G3 H2 Q3 Find the transfer function for the sstem shown using Mason s formula. G1 G2 G3 G6 G7 G5 G8 Q4 Find the transfer function for the sstem shown using Mason s formula. G1 G2 G3 H3 H2 Dr. Mohammed Saheb Khesbak Page 30

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING IC 6501 CONTROL SYSTEMS UNIT I - SYSTEMS AND THEIR REPRESETNTATION` TWO MARKS QUESTIONS WITH

More information

Reduction of Multiple Subsystems

Reduction of Multiple Subsystems Reduction of Multiple Subsystems Ref: Control System Engineering Norman Nise : Chapter 5 Chapter objectives : How to reduce a block diagram of multiple subsystems to a single block representing the transfer

More information

Equations of Lines and Linear Models

Equations of Lines and Linear Models 8. Equations of Lines and Linear Models Equations of Lines If the slope of a line and a particular point on the line are known, it is possible to find an equation of the line. Suppose that the slope of

More information

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis

LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis LECTURE FOUR Time Domain Analysis Transient and Steady-State Response Analysis 4.1 Transient Response and Steady-State Response The time response of a control system consists of two parts: the transient

More information

Pre-Calc. Midpoint and Distance Formula. Slide 1 / 160 Slide 2 / 160. Slide 4 / 160. Slide 3 / 160. Slide 5 / 160. Slide 6 / 160.

Pre-Calc. Midpoint and Distance Formula. Slide 1 / 160 Slide 2 / 160. Slide 4 / 160. Slide 3 / 160. Slide 5 / 160. Slide 6 / 160. Slide 1 / 160 Slide 2 / 160 Pre-alc onics 2015-03-24 www.njctl.org Slide 3 / 160 Slide 4 / 160 Table of ontents click on the topic to go to that section Review of Midpoint and istance Formulas Intro to

More information

Solving Systems of Equations

Solving Systems of Equations Solving Sstems of Equations Eample 1: Emil just graduated from college with a degree in computer science. She has two job offers. Kraz Komputers will pa her a base salar of $0,000 with a $500 raise each

More information

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel

Electrical Circuits I (ENGR 2405) Chapter 2 Ohm s Law, KCL, KVL, Resistors in Series/Parallel Electrical Circuits I (ENG 2405) Chapter 2 Ohm s Law, KCL, KVL, esistors in Series/Parallel esistivity Materials tend to resist the flow of electricity through them. This property is called resistance

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

Algebra 2. Slope of waste pipes

Algebra 2. Slope of waste pipes Algebra 2 Slope of waste pipes Subject Area: Math Grade Levels: 9-12 Date: Aug 25 th -26 th Lesson Overview: Students will first complete a worksheet reviewing slope, rate of change,, and plotting points.

More information

Unit 8 Combination Circuits

Unit 8 Combination Circuits Unit 8 Combination Circuits Objectives: Define a combination circuit. List the rules for parallel circuits. List the rules for series circuits. Solve for combination circuit values. Characteristics There

More information

1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal.

1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal. Control Systems (EC 334) 1.What is frequency response? A frequency responses the steady state response of a system when the input to the system is a sinusoidal signal. 2.List out the different frequency

More information

CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates

CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates CHAPTER Conics, Parametric Equations, and Polar Coordinates Section. Conics and Calculus.................... Section. Plane Curves and Parametric Equations.......... Section. Parametric Equations and Calculus............

More information

3. Voltage and Current laws

3. Voltage and Current laws 1 3. Voltage and Current laws 3.1 Node, Branches, and loops A branch represents a single element such as a voltage source or a resistor A node is the point of the connection between two or more elements

More information

Unit 2. Circuit Analysis Techniques. 2.1 The Node-Voltage Method

Unit 2. Circuit Analysis Techniques. 2.1 The Node-Voltage Method Unit 2 Circuit Analysis Techniques In this unit we apply our knowledge of KVL, KCL and Ohm s Law to develop further techniques for circuit analysis. The material is based on Chapter 4 of the text and that

More information

10.3 Polar Coordinates

10.3 Polar Coordinates .3 Polar Coordinates Plot the points whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r > and one with r

More information

Electric Circuits I. Simple Resistive Circuit. Dr. Firas Obeidat

Electric Circuits I. Simple Resistive Circuit. Dr. Firas Obeidat Electric Circuits I Simple Resistive Circuit Dr. Firas Obeidat 1 Resistors in Series The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances. It

More information

Elliptic Partial Differential Equations

Elliptic Partial Differential Equations Elliptic Partial Differential Equations http://numericalmethods.eng.usf.edu ransforming Numerical Methods Education for SEM Undergraduates 9/4/ http://numericalmethods.eng.usf.edu Defining Elliptic PDE

More information

In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law.

In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law. In this lecture, we will learn about some more basic laws governing the behaviour of electronic circuits beyond that of Ohm s law. 1 Consider this circuit here. There is a voltage source providing power

More information

3.2 Exercises. rise y (ft) run x (ft) Section 3.2 Slope Suppose you are riding a bicycle up a hill as shown below.

3.2 Exercises. rise y (ft) run x (ft) Section 3.2 Slope Suppose you are riding a bicycle up a hill as shown below. Section 3.2 Slope 261 3.2 Eercises 1. Suppose ou are riding a biccle up a hill as shown below. Figure 1. Riding a biccle up a hill. a) If the hill is straight as shown, consider the slant, or steepness,

More information

Ideas beyond Number. Activity worksheets

Ideas beyond Number. Activity worksheets Ideas beyond Number Activity sheet 1 Task 1 Some students started to solve this equation in different ways: For each statement tick True or False: = = = = Task 2: Counter-examples The exception disproves

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2 Date: November 18, 2010 Course: EE 313 Evans Name: Last, First The exam is scheduled to last 75 minutes. Open books

More information

MATHEMATICAL MODELING OF RING RESONATOR FILTERS FOR PHOTONIC APPLICATIONS

MATHEMATICAL MODELING OF RING RESONATOR FILTERS FOR PHOTONIC APPLICATIONS MATHEMATICAL MODELING OF RING RESONATOR FILTERS FOR PHOTONIC APPLICATIONS Jyoti Kedia 1 (Assistant professor), Dr. Neena Gupta 2 (Associate Professor, Member IEEE) 1,2 PEC University of Technology, Sector

More information

The Pythagorean Theorem

The Pythagorean Theorem 6 6 What You ll Learn You ll learn to use the and its converse. Wh It s Important Carpentr Carpenters use the to determine the length of roof rafters when the frame a house. See Eample 3. The The stamp

More information

Unit 4: Block Diagram Reduction. Block Diagram Reduction. Cascade Form Parallel Form Feedback Form Moving Blocks Example

Unit 4: Block Diagram Reduction. Block Diagram Reduction. Cascade Form Parallel Form Feedback Form Moving Blocks Example Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland February 15, 2010 1 1 Subsystems are represented in block diagrams as blocks, each representing

More information

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat

Electric Circuits II Three-Phase Circuits. Dr. Firas Obeidat Electric Circuits II Three-Phase Circuits Dr. Firas Obeidat 1 Table of Contents 1 Balanced Three-Phase Voltages 2 Balanced Wye-Wye Connection 3 Balanced Wye-Delta Connection 4 Balanced Delta-Delta Connection

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

1 Mathematical Methods Units 1 and 2

1 Mathematical Methods Units 1 and 2 Mathematical Methods Units and Further trigonometric graphs In this section, we will discuss graphs of the form = a sin ( + c) + d and = a cos ( + c) + d. Consider the graph of = sin ( ). The following

More information

3.3 Properties of Logarithms

3.3 Properties of Logarithms Section 3.3 Properties of Logarithms 07 3.3 Properties of Logarithms Change of Base Most calculators have only two types of log keys, one for common logarithms (base 0) and one for natural logarithms (base

More information

Section 4.7 Fitting Exponential Models to Data

Section 4.7 Fitting Exponential Models to Data Section.7 Fitting Eponential Models to Data 289 Section.7 Fitting Eponential Models to Data In the previous section, we saw number lines using logarithmic scales. It is also common to see two dimensional

More information

Survival Skills for Circuit Analysis

Survival Skills for Circuit Analysis P. R. Nelson Fall 2010 WhatToKnow - p. 1/46 Survival Skills for Circuit Analysis What you need to know from ECE 109 Phyllis R. Nelson prnelson@csupomona.edu Professor, Department of Electrical and Computer

More information

PYKC 13 Feb 2017 EA2.3 Electronics 2 Lecture 8-1

PYKC 13 Feb 2017 EA2.3 Electronics 2 Lecture 8-1 In this lecture, I will cover amplitude and phase responses of a system in some details. What I will attempt to do is to explain how would one be able to obtain the frequency response from the transfer

More information

Pre-Calc. Slide 1 / 160. Slide 2 / 160. Slide 3 / 160. Conics Table of Contents. Review of Midpoint and Distance Formulas

Pre-Calc. Slide 1 / 160. Slide 2 / 160. Slide 3 / 160. Conics Table of Contents. Review of Midpoint and Distance Formulas Slide 1 / 160 Pre-Calc Slide 2 / 160 Conics 2015-03-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 160 Review of Midpoint and Distance Formulas Intro to Conic Sections

More information

Pre-Calc Conics

Pre-Calc Conics Slide 1 / 160 Slide 2 / 160 Pre-Calc Conics 2015-03-24 www.njctl.org Slide 3 / 160 Table of Contents click on the topic to go to that section Review of Midpoint and Distance Formulas Intro to Conic Sections

More information

JNTUWORLD. 6 The unity feedback system whose open loop transfer function is given by G(s)=K/s(s 2 +6s+10) Determine: (i) Angles of asymptotes *****

JNTUWORLD. 6 The unity feedback system whose open loop transfer function is given by G(s)=K/s(s 2 +6s+10) Determine: (i) Angles of asymptotes ***** Code: 9A050 III B. Tech I Semester (R09) Regular Eaminations, November 0 Time: hours Ma Marks: 70 (a) What is a mathematical model of a physical system? Eplain briefly. (b) Write the differential equations

More information

Equations of Parallel and Perpendicular Lines

Equations of Parallel and Perpendicular Lines COMMON CORE AB is rise - - 1 - - 0 - - 8 6 Locker LESSON. Equations of Parallel and Perpendicular Lines Name Class Date. Equations of Parallel and Perpendicular Lines Essential Question: How can ou find

More information

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Fundamentals of Electric Circuits Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Overview This chapter will introduce Ohm s law: a central concept

More information

Instructor Notes for Chapter 4

Instructor Notes for Chapter 4 Section 4.1 One to One Functions (Day 1) Instructor Notes for Chapter 4 Understand that an inverse relation undoes the original Understand why the line y = xis a line of symmetry for the graphs of relations

More information

5.4 Multiple-Angle Identities

5.4 Multiple-Angle Identities 4 CHAPTER 5 Analytic Trigonometry 5.4 Multiple-Angle Identities What you ll learn about Double-Angle Identities Power-Reducing Identities Half-Angle Identities Solving Trigonometric Equations... and why

More information

Pre Calc. Conics.

Pre Calc. Conics. 1 Pre Calc Conics 2015 03 24 www.njctl.org 2 Table of Contents click on the topic to go to that section Review of Midpoint and Distance Formulas Intro to Conic Sections Parabolas Circles Ellipses Hyperbolas

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Name Date Chapter 3 Eponential and Logarithmic Functions Section 3.1 Eponential Functions and Their Graphs Objective: In this lesson ou learned how to recognize, evaluate, and graph eponential functions.

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam Date: December 18, 2017 Course: EE 313 Evans Name: Last, First The exam is scheduled to last three hours. Open

More information

You may recall from previous work with solving quadratic functions, the discriminant is the value

You may recall from previous work with solving quadratic functions, the discriminant is the value 8.0 Introduction to Conic Sections PreCalculus INTRODUCTION TO CONIC SECTIONS Lesson Targets for Intro: 1. Know and be able to eplain the definition of a conic section.. Identif the general form of a quadratic

More information

Chapter 8. Constant Current Sources

Chapter 8. Constant Current Sources Chapter 8 Methods of Analysis Constant Current Sources Maintains same current in branch of circuit Doesn t matter how components are connected external to the source Direction of current source indicates

More information

College Algebra. Lial Hornsby Schneider Daniels. Eleventh Edition

College Algebra. Lial Hornsby Schneider Daniels. Eleventh Edition College Algebra Lial et al. Eleventh Edition ISBN 978-1-2922-38-9 9 781292 2389 College Algebra Lial Hornsb Schneider Daniels Eleventh Edition Pearson Education Limited Edinburgh Gate Harlow Esse CM2 2JE

More information

Objective of the Lecture

Objective of the Lecture Objective of the Lecture Present Kirchhoff s Current and Voltage Laws. Chapter 5.6 and Chapter 6.3 Principles of Electric Circuits Chapter4.6 and Chapter 5.5 Electronics Fundamentals or Electric Circuit

More information

Chapter 2 Introduction to Logic Circuits

Chapter 2 Introduction to Logic Circuits Chapter 2 Introduction to Logic Circuits Logic unctions and circuits Boolean algebra Snthesis o digital circuits Introduction to CAD tools Introduction to VHDL Logic unctions and Circuits and 2 are binar

More information

1 (5) + b (x, y ) = (5, 0), m =

1 (5) + b (x, y ) = (5, 0), m = NAME DATE PERID - Stud Guide and Intervention Forms of Equations Slope-Intercept Form of a Linear Equation Point-Slope Form of a Linear Equation = m + b, where m is the slope and b is the -intercept -

More information

CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates

CHAPTER 10 Conics, Parametric Equations, and Polar Coordinates CHAPTER Conics, Parametric Equations, and Polar Coordinates Section. Conics and Calculus.................... Section. Plane Curves and Parametric Equations.......... 8 Section. Parametric Equations and

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Find and Use Slopes of Lines

Find and Use Slopes of Lines 3.4 Find and Use Slopes of Lines Before You used properties of parallel lines to find angle measures. Now You will find and compare slopes of lines. Wh So ou can compare rates of speed, as in Eample 4.

More information

2.8 Enrichment: more on logarithms EMCFR

2.8 Enrichment: more on logarithms EMCFR 2. Enrichment: more on logarithms EMCFR NOTE: THIS SECTION IS NOT PART OF THE CURRICULUM Laws of logarithms EMCFS Logarithmic law: log a y = log a + log a y ( > 0 and y > 0) Let log a () = m = = a m...

More information

Experiments #6. Convolution and Linear Time Invariant Systems

Experiments #6. Convolution and Linear Time Invariant Systems Experiments #6 Convolution and Linear Time Invariant Systems 1) Introduction: In this lab we will explain how to use computer programs to perform a convolution operation on continuous time systems and

More information

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function.

In Exercises 1-12, graph one cycle of the given function. State the period, amplitude, phase shift and vertical shift of the function. 0.5 Graphs of the Trigonometric Functions 809 0.5. Eercises In Eercises -, graph one ccle of the given function. State the period, amplitude, phase shift and vertical shift of the function.. = sin. = sin.

More information

Contents. Introduction to Keystone Algebra I...5. Module 1 Operations and Linear Equations & Inequalities...9

Contents. Introduction to Keystone Algebra I...5. Module 1 Operations and Linear Equations & Inequalities...9 Contents Introduction to Kestone Algebra I... Module Operations and Linear Equations & Inequalities...9 Unit : Operations with Real Numbers and Epressions, Part...9 Lesson Comparing Real Numbers A... Lesson

More information

Slopes of of Parallel and and Perpendicular Lines Lines Holt Algebra 1

Slopes of of Parallel and and Perpendicular Lines Lines Holt Algebra 1 5-8 Slopes of of Parallel and and Lines Warm Up Lesson Presentation Lesson Quiz Bell Quiz 5-8 Find the reciprocal. 1. 2 2. 1 pt 1 pt 1 pt 3. 2 pts 2 pts 2 pts Find the slope of the line that passes through

More information

EC CONTROL SYSTEMS ENGINEERING

EC CONTROL SYSTEMS ENGINEERING 1 YEAR / SEM: II / IV EC 1256. CONTROL SYSTEMS ENGINEERING UNIT I CONTROL SYSTEM MODELING PART-A 1. Define open loop and closed loop systems. 2. Define signal flow graph. 3. List the force-voltage analogous

More information

Answers Investigation 1

Answers Investigation 1 Applications. Students ma use various sketches. Here are some eamples including the rectangle with the maimum area. In general, squares will have the maimum area for a given perimeter. Long and thin rectangles

More information

Find the equation of a line given its slope and y-intercept. (Problem Set exercises 1 6 are similar.)

Find the equation of a line given its slope and y-intercept. (Problem Set exercises 1 6 are similar.) Directions Each problem below is similar to the example with the same number in your textbook. After reading through an example in your textbook, or watching one of the videos of that example on MathTV,

More information

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. By substituting the definition for resistance into the formula for conductance, the reciprocal formula for resistance in parallel circuits is obtained: In parallel circuits, there are junctions where two

More information

3.4 The Slope of a Line

3.4 The Slope of a Line CHAPTER Graphs and Functions. The Slope of a Line S Find the Slope of a Line Given Two Points on the Line. Find the Slope of a Line Given the Equation of a Line. Interpret the Slope Intercept Form in an

More information

2. Polar coordinates:

2. Polar coordinates: Section 9. Polar Coordinates Section 9. Polar Coordinates In polar coordinates ou do not have unique representation of points. The point r, can be represented b r, ± n or b r, ± n where n is an integer.

More information

ANNA UNIVERSITY :: CHENNAI MODEL QUESTION PAPER(V-SEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334 - CONTROL SYSTEMS

ANNA UNIVERSITY :: CHENNAI MODEL QUESTION PAPER(V-SEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334 - CONTROL SYSTEMS ANNA UNIVERSITY :: CHENNAI - 600 025 MODEL QUESTION PAPER(V-SEMESTER) B.E. ELECTRONICS AND COMMUNICATION ENGINEERING EC334 - CONTROL SYSTEMS Time: 3hrs Max Marks: 100 Answer all Questions PART - A (10

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Exploring Periodic Data. Objectives To identify cycles and periods of periodic functions To find the amplitude of periodic functions

Exploring Periodic Data. Objectives To identify cycles and periods of periodic functions To find the amplitude of periodic functions CC-3 Eploring Periodic Data Common Core State Standards MACC.9.F-IF.. For a function that models a relationship between two quantities, interpret ke features of graphs... and sketch graphs... Also Prepares

More information

Chapter Summary. What did you learn? 270 Chapter 3 Exponential and Logarithmic Functions

Chapter Summary. What did you learn? 270 Chapter 3 Exponential and Logarithmic Functions 0_00R.qd /7/05 0: AM Page 70 70 Chapter Eponential and Logarithmic Functions Chapter Summar What did ou learn? Section. Review Eercises Recognize and evaluate eponential functions with base a (p. ). Graph

More information

Micro-grid Stability Analysis under the Grid Fault Condition

Micro-grid Stability Analysis under the Grid Fault Condition 3rd Annual 017 International onference on Sustainable Development (ISD017) Micro-grid Stability Analysis under the Grid Fault ondition Tian-Yi MAa,*, Ming-Ming ZHANG and Jin-Yao LI Beijing Institute of

More information

b. How would you model your equation on a number line to show your answer?

b. How would you model your equation on a number line to show your answer? Exercise 1: Real-World Introduction to Integer Addition Answer the questions below. a. Suppose you received $10 from your grandmother for your birthday. You spent $4 on snacks. Using addition, how would

More information

Introduction to System Block Algebra

Introduction to System Block Algebra Introduction to System lock lgebra Course No: E0203 Credit: 2 PDH Jeffrey Cwalinski, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, N 0980 P: (877) 3225800 F: (877)

More information

Drawing Graphs using TikZ in L A TEX

Drawing Graphs using TikZ in L A TEX Drawing Graphs using TikZ in L A TEX Ma Hailperin, Gustaus Adolphus College MCS-236, Fall 2011 This document illustrates some particular techniques I e found conenient for drawing graphs. The aren t b

More information

Lesson 1 6. Algebra: Variables and Expression. Students will be able to evaluate algebraic expressions.

Lesson 1 6. Algebra: Variables and Expression. Students will be able to evaluate algebraic expressions. Lesson 1 6 Algebra: Variables and Expression Students will be able to evaluate algebraic expressions. P1 Represent and analyze patterns, rules and functions with words, tables, graphs and simple variable

More information

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws.

Kirchhoff s laws. Objectives. Assessment. Assessment. Assessment. Assessment 5/27/14. Apply Kirchhoff s first and second laws. Kirchhoff s laws Objectives Apply Kirchhoff s first and second laws. Calculate the current and voltage for resistor circuits connected in parallel. Calculate the current and voltage for resistor circuits

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

EXPERIMENT 5 Basic Digital Logic Circuits

EXPERIMENT 5 Basic Digital Logic Circuits ELEC 2010 Laborator Manual Eperiment 5 PRELAB Page 1 of 8 EXPERIMENT 5 Basic Digital Logic Circuits Introduction The eperiments in this laborator eercise will provide an introduction to digital electronic

More information

Investigating Intercepts

Investigating Intercepts Unit: 0 Lesson: 01 1. Can more than one line have the same slope? If more than one line has the same slope, what makes the lines different? a. Graph the following set of equations on the same set of aes.

More information

UNIT 2 LINEAR AND EXPONENTIAL RELATIONSHIPS Station Activities Set 2: Relations Versus Functions/Domain and Range

UNIT 2 LINEAR AND EXPONENTIAL RELATIONSHIPS Station Activities Set 2: Relations Versus Functions/Domain and Range UNIT LINEAR AND EXPONENTIAL RELATIONSHIPS Station Activities Set : Relations Versus Functions/Domain and Range Station You will be given a ruler and graph paper. As a group, use our ruler to determine

More information

Predicting the Ones Digit

Predicting the Ones Digit . Predicting the Ones Digit Goals Eamine patterns in the eponential and standard forms of powers of whole numbers Use patterns in powers to estimate the ones digits for unknown powers In this problem,

More information

EE 105 Discussion #1: Fundamentals of Circuit Analysis

EE 105 Discussion #1: Fundamentals of Circuit Analysis EE 105 Discussion #1: Fundamentals of Circuit Analysis 1.1 Ohm s Law V = ir i = V/R 1.2 KCL & KVL Kirchoff s Current Law (KCL) Kirchoff s Voltage Law (KVL) The algebraic sum of all currents entering a

More information

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following:

Figure 1: Unity Feedback System. The transfer function of the PID controller looks like the following: Islamic University of Gaza Faculty of Engineering Electrical Engineering department Control Systems Design Lab Eng. Mohammed S. Jouda Eng. Ola M. Skeik Experiment 3 PID Controller Overview This experiment

More information

G.2 Slope of a Line and Its Interpretation

G.2 Slope of a Line and Its Interpretation G.2 Slope of a Line and Its Interpretation Slope Slope (steepness) is a very important concept that appears in many branches of mathematics as well as statistics, physics, business, and other areas. In

More information

1 Graphs of Sine and Cosine

1 Graphs of Sine and Cosine 1 Graphs of Sine and Cosine Exercise 1 Sketch a graph of y = cos(t). Label the multiples of π 2 and π 4 on your plot, as well as the amplitude and the period of the function. (Feel free to sketch the unit

More information

Electrical Engineering. Control Systems. Comprehensive Theory with Solved Examples and Practice Questions. Publications

Electrical Engineering. Control Systems. Comprehensive Theory with Solved Examples and Practice Questions. Publications Electrical Engineering Control Systems Comprehensive Theory with Solved Examples and Practice Questions Publications Publications MADE EASY Publications Corporate Office: 44-A/4, Kalu Sarai (Near Hauz

More information

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits

EEE 2101 Circuit Theory I - Laboratory 1 Kirchoff s Laws, Series-Parallel Circuits ame & Surname: D: Date: EEE 20 Circuit Theory - Laboratory Kirchoff s Laws, Series-Parallel Circuits List of topics for this laboratory: Ohm s Law Kirchoff s Current Law(KCL) Kirchoff s Voltage Law(KVL)

More information

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities Chapter 8. Analytic Trigonometry 8.1 Trigonometric Identities Fundamental Identities Reciprocal Identities: 1 csc = sin sec = 1 cos cot = 1 tan tan = 1 cot tan = sin cos cot = cos sin Pythagorean Identities:

More information

Additional Practice. Name Date Class

Additional Practice. Name Date Class Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. Name Date Class Additional Practice Investigation For Eercises 1 4, write an equation and sketch a graph for the line

More information

Sect 4.5 Inequalities Involving Quadratic Function

Sect 4.5 Inequalities Involving Quadratic Function 71 Sect 4. Inequalities Involving Quadratic Function Objective #0: Solving Inequalities using a graph Use the graph to the right to find the following: Ex. 1 a) Find the intervals where f(x) > 0. b) Find

More information

Essential Question How can you describe the graph of the equation y = mx + b?

Essential Question How can you describe the graph of the equation y = mx + b? .5 Graphing Linear Equations in Slope-Intercept Form COMMON CORE Learning Standards HSA-CED.A. HSF-IF.B. HSF-IF.C.7a HSF-LE.B.5 Essential Question How can ou describe the graph of the equation = m + b?

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING Tai-Chang Chen University of Washington, Bothell Spring 2010 EE215 1 1 WEEK 2 SIMPLE RESISTIVE CIRCUITS April 9 th, 2010 TC Chen UWB 2010 EE215 2 2 QUESTIONS

More information

5-5 Solving Multi-Step Equations and Inequalities

5-5 Solving Multi-Step Equations and Inequalities Solve. Graph the solution on a number line. 2(k 20 The solution is k (3r 34 The solution is r8. 2(g 1) > g 4 The solution is g < 2. esolutions Manual - Powered by Cognero Page 1 5p p + 6) The solution

More information

Chapter 28 - Direct Current Circuits

Chapter 28 - Direct Current Circuits Chapter 8 - Direct Current Circuits 8. (a = becomes Δ V = 0.0 W = so = 6.7 Ω (.6 V so.6 V = ( 6.7 Ω FG. 8. and =.7 A = + r so 5.0 V =.6 V + (.7 A r r =.97 Ω.00 V 8. The total resistance is = = 5.00 Ω.

More information

LESSON 3.1. Use Doubles Facts. Kinesthetic / Visual Whole Class / Small Group

LESSON 3.1. Use Doubles Facts. Kinesthetic / Visual Whole Class / Small Group LESSON 3. Use Doubles Facts Materials red and blue connecting cubes Write 6 + 7 = on the board. Say: You can use 6 6 to help find the sum of 6 7. Have children put cubes together to make two 6-cube trains

More information

Chapter 2: Functions and Graphs Lesson Index & Summary

Chapter 2: Functions and Graphs Lesson Index & Summary Section 1: Relations and Graphs Cartesian coordinates Screen 2 Coordinate plane Screen 2 Domain of relation Screen 3 Graph of a relation Screen 3 Linear equation Screen 6 Ordered pairs Screen 1 Origin

More information

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t)

G(f ) = g(t) dt. e i2πft. = cos(2πf t) + i sin(2πf t) Fourier Transforms Fourier s idea that periodic functions can be represented by an infinite series of sines and cosines with discrete frequencies which are integer multiples of a fundamental frequency

More information

Commentary on candidate evidence

Commentary on candidate evidence Commentary on candidate evidence Candidate 1 The evidence for this candidate has achieved the following marks for each question of this course assessment component. Question Mark Given mark 1a 1 1 Correct

More information

Math 10/11 Honors Section 3.6 Basic Trigonometric Identities

Math 10/11 Honors Section 3.6 Basic Trigonometric Identities Math 0/ Honors Section 3.6 Basic Trigonometric Identities 0-0 - SECTION 3.6 BASIC TRIGONOMETRIC IDENTITIES Copright all rights reserved to Homework Depot: www.bcmath.ca I) WHAT IS A TRIGONOMETRIC IDENTITY?

More information

Algebra I Individual Test December 18, 2008

Algebra I Individual Test December 18, 2008 Algebra I Individual Test December 18, 2008 Directions: No calculators. Answer the questions b bubbling in the best choice on our answer sheet. If no correct answer is given then bubble e) NOTA for "None

More information

4.5 Equations of Parallel and Perpendicular Lines

4.5 Equations of Parallel and Perpendicular Lines Name Class Date.5 Equations of Parallel and Perpendicular Lines Essential Question: How can ou find the equation of a line that is parallel or perpendicular to a given line? Resource Locker Eplore Eploring

More information

Algebraic Expressions and Equations: Applications I: Translating Words to Mathematical Symbols *

Algebraic Expressions and Equations: Applications I: Translating Words to Mathematical Symbols * OpenSta-CNX module: m35046 1 Algebraic Epressions and Equations: Applications I: Translating Words to Mathematical Symbols * Wade Ellis Denny Burzynski This work is produced by OpenSta-CNX and licensed

More information

EE 233 Circuit Theory Lab 4: Second-Order Filters

EE 233 Circuit Theory Lab 4: Second-Order Filters EE 233 Circuit Theory Lab 4: Second-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Generic Equalizer Filter... 2 3.2 Equalizer Filter for Audio Mixer...

More information

Fundamental of Electrical Engineering Lab Manual

Fundamental of Electrical Engineering Lab Manual Fundamental of Electrical Engineering Lab Manual EngE-111/318 Dr.Hidayath Mirza & Dr.Rais Ahmad Sheikh 1/9/19 EngE111 Testing Battery (DC) Testing AC Testing Wire 1 P a g e Resistor measurement Testing

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #22: Generalized Permutations and Combinations Based on materials developed by Dr. Adam Lee Counting

More information