Sect 4.5 Inequalities Involving Quadratic Function

Size: px
Start display at page:

Download "Sect 4.5 Inequalities Involving Quadratic Function"

Transcription

1 71 Sect 4. Inequalities Involving Quadratic Function Objective #0: Solving Inequalities using a graph Use the graph to the right to find the following: Ex. 1 a) Find the intervals where f(x) > 0. b) Find the intervals where f(x) 0. c) Find the intervals where f(x) < 0. d) Find the intervals where f(x) 0. a) We are looking for the x-values where the graph is above the x- axis: (, 1) U (4, ) b) Now, we will include the x-ints.: [, 1] U [4, ) c) We are looking for the x-values where the graph is below the x- axis: (, ) U (1, 4) d) Now, we will include the x-ints.: (, ] U [1, 4] Use the graph to the right to find the following: Ex. a) Find the intervals where g(x) > 0. b) Find the intervals where g(x) 0. c) Find the intervals where g(x) < 0. d) Find the intervals where g(x) 0. a) We are looking for the x-values where the graph is above the x- axis: (, ) U (, 1) U (, ) b) Now, we will include the x-ints.: (, 1] U [, ) c) We are looking for the x-values where the graph is below the x- axis: ( 1, ) d) Now, we will include the x-ints.: { } U [ 1, ] f(x) g(x)

2 7 Objective #1: Solve Inequalities Involving a Quadratic Function. Much in the same way as when solving a quadratic equation, we will need to first get 0 on one side of the inequality so we get something in the form of ax + bx + c > 0 or ax + bx + c < 0. Our next step then will be to graph the quadratic equation y = ax + bx + c. If the inequality involves >, then the intervals where the graph of the function is above the x-axis will be the solution. If the inequality involves <, then the intervals where the graph of the function is below the x-axis will be the solution. If the inequality involves or, then we include the x-coordinates of the x-intercepts as part of our solution. Solve the following inequalities: Ex. x x > 0 Let f(x) = x x We will use the same steps for graphing that we used in section 4.: a) f(x) = x x, a =, b =, & c = (vertex formula) h = b a = ( ) () = 1. k = f(1.) = (1.) (1.) =.1 6. = 6.1 Thus, the vertex is (1., 6.1). The axis of symmetry is x = 1.. Since a > 0, f has a minimum value of 6.1 at x = 1.. b) x-intercepts. Let f(x) = 0: 0 = x x (factor) 0 = (x + 1)(x ) (solve) x + 1 = 0 or x = 0 x = 1 or x = y - intercepts. Let x = 0: f(0) = (0) (0) = So, the x-intercepts are ( 1, 0 ) and (, 0) and the y-intercept is (0, ). c) Since a =, h = 1., & k = 6.1, then the graphing form is f(x) = (x 1.) 6.1

3 7 d) Let's go through the steps of our general strategy: i) Since a =, the graph ii) iii) is stretched by a factor of. Since a is positive, the graph is not reflected across the x-axis. Since k is 6.1 and h is 1., the graph is shifted down by 6.1 units and to the right by 1. units. Since the inequality was x x > 0, we need the intervals where the graph is above the x-axis which are (, 0.) and (, ). Thus, the solution is (, 0.) U (, ). Ex. 4 x x 0 The graph of f(x) = x x is the same as the one in the previous example, but this time, we are looking at the intervals where the graph is below the x-axis which is ( 0., ). Since the inequality is < or =, we need to include the x-coordinates of the x-intercepts in the solution. Thus, our answer is [ 0., ]. Objective #: Solving Quadratic Inequalities Using a Sign Chart. At the x-intercepts, the graph of a quadratic function must either touch or cross the x-axis. Thus, between any two consecutive x-intercepts, the graph is either above the x-axis (f(x) is positive) or below the x-axis (f(x) is negative). We can then pick a value of x between two consecutive x- intercepts and use it to determine if the function is positive or negative in that interval. We can then select the interval(s) that satisfy the inequality. Procedure for Solving Quadratic Inequalities Using a Sign Chart. 1) Get zero on one side of the inequality and then find the x-intercepts of the quadratic function on the other side. ) Plot the x-values of the x-intercepts on a number line. This will split the number line into intervals. ) Select a test value from each interval and substitute it into the quadratic function to determine the sign (+ or ) of the function in that interval. 4) Examine the inequality found in the first step and determine which intervals from step # satisfy the inequality. If the inequality is or, be sure to include the x-values of the x-intercepts as part of the solution.

4 74 Solve the following inequalities: Ex. x + x 10 Step #1: Get zero on one side. x + x 10 (subtract 10 from both sides) x + x 10 0 Let f(x) = x + x 10 Find the x-intercepts of x + x 10: x + x 10 = 0 (factor) (x )(x + ) = 0 (solve) x = 0 or x + = 0 x = or x = Step #: Plot the x-values of the x-intercepts on a number line: Intervals: (, ) (, ) (, ) Step #: Pick a test value in each interval and substitute into the quadratic function f(x) = x + x 10. Intervals: (, ) (, ) (, ) f( ) f(0) f() = ( ) + ( ) 10 = (0) + (0) 10 = () + () 10 = 14 = 10 = 4 f is positive on f is negative on f is positive on (, ). (, ). (, ). Step #4: We are looking for when x + x 10 0 which is where f(x) is positive or zero. The intervals that satisfy this inequality are (, ) & (, ). Since the inequality is, we need to include the x-values of the x-intercepts so our solution is (, ] U [, ). Ex. 6 x + 10x < 0 Step #1: Let f(x) = x + 10x Find the x-intercepts of x + 10x : x + 10x = 0 (factor)

5 7 (x 10x + ) = 0 (x ) = 0 x = 0 or x = Step #: Plot the x-value of the x-intercept on a number line: Intervals: (, ) (, ) Step #: Pick a test value in each interval and substitute into the quadratic function f(x) = x + 10x. Intervals: (, ) (, ) f(0) f(6) = (0) + 10(0) = (6) + 10(6) = = 1 f is negative on f is negative on (, ). (, ). Step #4: We are looking for when x + 10x < 0 which is where f(x) is negative. The intervals that satisfy this inequality are (, ) & (, ). Since the inequality is <, we do not include the x-values of the x-intercepts so our solution is (, ) U (, ). Ex. 7a x + 10x 0 Ex. 7b x + 10x 0 Ex. 7c x + 10x > 0 a) We are looking for when x + 10x 0 which is where f(x) is negative or zero. The intervals that satisfy this inequality are (, ) & (, ). Since the inequality is, we do include the x-values of the x-intercepts which gives us all real numbers. Thus, our answer is (, ). b) We are looking for when x + 10x 0 which is where f(x) is positive or zero. There are no intervals that satisfy this inequality. Since the inequality is, we do include the x-values of the x-intercept which gives us just x =. Thus, our answer is {}. c) We are looking for when x + 10x > 0 which is where f(x) is positive. There are no intervals that satisfy this inequality. Since the inequality is >, we do not include the x-values of the x-intercept which means there is no solution. So, our answer is no solution or.

6 Ex. 8 x(x + ) + 8 < x Step #1: We need to simply and get 0 on one side of the inequality: x(x + ) + 8 < x (distribute) x + x + 8 < x (add x to both sides) x + 4x + 8 < 0 Let f(x) = x + 4x + 8 Find the x-intercepts of x + 4x = x + 4x + 8, a = 1, b = 4, & c = 8 (quadratic formula) x = (4) (4) 4(1)(8) (1) So, there are no x-intercept. = 4± 16 = 4± 16 is not real Step #: Since there are no x-values of the x-intercepts to plot, then we only have one interval, (, ). We can pick 0 as our test value. Step # 76 f(0) = (0) + 4(0) + 8 = 8 so f(x) is positive on (, ). Step #4: Since the inequality is x + 4x + 8 < 0, we are looking at the intervals where f(x) is negative which there are none. Thus, our answer is no solution or. Find the Domain of the following: Ex. 9 x + 4x+ 8 This function is defined when x + 4x + 8 0, so we are looking for the intervals where f(x) is positive or zero. From the previous example, we saw that f(x) was always positive so the domain is (, ). Ex x x This function is defined when x x > 0, so we are looking for the intervals where the graph is above the x-axis. From example #, we saw this was the intervals (, 0.) and (, ). Thus, the domain is (, 0.) U (, ).

PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to find key features. The table of values is shown below:

PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to find key features. The table of values is shown below: Math (L-3a) Learning Targets: I can find the vertex from intercept solutions calculated by quadratic formula. PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to

More information

5.1N Key Features of Rational Functions

5.1N Key Features of Rational Functions 5.1N Key Features of Rational Functions A. Vocabulary Review Domain: Range: x-intercept: y-intercept: Increasing: Decreasing: Constant: Positive: Negative: Maximum: Minimum: Symmetry: End Behavior/Limits:

More information

SM3 Lesson 2-3 (Intercept Form Quadratic Equation)

SM3 Lesson 2-3 (Intercept Form Quadratic Equation) SM3 Lesson 2-3 (Intercept Form Quadratic Equation) Factor the following quadratic expressions: x 2 + 11x + 30 x 2 10x 24 x 2 8x + 15 Standard Form Quadratic Equation (x + 5)(x + 6) (x 12)(x + 2) (x 5)(x

More information

UNIT 2: FACTOR QUADRATIC EXPRESSIONS. By the end of this unit, I will be able to:

UNIT 2: FACTOR QUADRATIC EXPRESSIONS. By the end of this unit, I will be able to: UNIT 2: FACTOR QUADRATIC EXPRESSIONS UNIT 2 By the end of this unit, I will be able to: o Represent situations using quadratic expressions in one variable o Expand and simplify quadratic expressions in

More information

Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 A) Even B) Odd C) Neither

Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 A) Even B) Odd C) Neither Assignment 6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 1) A)

More information

Roots of Quadratic Functions

Roots of Quadratic Functions LESSON 12 Roots of Quadratic Functions LEARNING OBJECTIVES Today I am: sketching parabolas with limited information. So that I can: identify the strengths of each form of a quadratic equation. I ll know

More information

Sect Linear Equations in Two Variables

Sect Linear Equations in Two Variables 99 Concept # Sect. - Linear Equations in Two Variables Solutions to Linear Equations in Two Variables In this chapter, we will examine linear equations involving two variables. Such equations have an infinite

More information

Factored Form When a = 1

Factored Form When a = 1 Lesson 4 Hart Interactive Algebra Lesson 4: Factored Form When a = Opening Activity Graph Exchange Your group will need: one quadratic graph. A. For your given graph, circle the graph number on the table

More information

ore C ommon Core Edition APlgebra Algebra 1 ESTS RACTICE PRACTICE TESTS Topical Review Book Company Topical Review Book Company

ore C ommon Core Edition APlgebra Algebra 1 ESTS RACTICE PRACTICE TESTS Topical Review Book Company Topical Review Book Company C ommon Core ommon Edition C ore Edition Algebra 1 APlgebra 1 T RACTICE ESTS Answer Keys PRACTICE TESTS Topical Review Book Company Topical Review Book Company TEST 1 Part I 1. 3 5. 2 9. 4 13. 1 17. 4

More information

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs Chapter 5: Trigonometric Functions and Graphs 1 Chapter 5 5.1 Graphing Sine and Cosine Functions Pages 222 237 Complete the following table using your calculator. Round answers to the nearest tenth. 2

More information

THE DOMAIN AND RANGE OF A FUNCTION Basically, all functions do is convert inputs into outputs.

THE DOMAIN AND RANGE OF A FUNCTION Basically, all functions do is convert inputs into outputs. THE DOMAIN AND RANGE OF A FUNCTION Basically, all functions do is convert inputs into outputs. Exercise #1: Consider the function y = f (x) shown on the graph below. (a) Evaluate each of the following:

More information

Honors Algebra 2 Assignment Sheet - Chapter 1

Honors Algebra 2 Assignment Sheet - Chapter 1 Assignment Sheet - Chapter 1 #01: Read the text and the examples in your book for the following sections: 1.1, 1., and 1.4. Be sure you read and understand the handshake problem. Also make sure you copy

More information

You analyzed graphs of functions. (Lesson 1-5)

You analyzed graphs of functions. (Lesson 1-5) You analyzed graphs of functions. (Lesson 1-5) LEQ: How do we graph transformations of the sine and cosine functions & use sinusoidal functions to solve problems? sinusoid amplitude frequency phase shift

More information

Student Exploration: Quadratics in Factored Form

Student Exploration: Quadratics in Factored Form Name: Date: Student Exploration: Quadratics in Factored Form Vocabulary: factored form of a quadratic function, linear factor, parabola, polynomial, quadratic function, root of an equation, vertex of a

More information

7.1 Solving Quadratic Equations by Graphing

7.1 Solving Quadratic Equations by Graphing Math 2201 Date: 7.1 Solving Quadratic Equations by Graphing In Mathematics 1201, students factored difference of squares, perfect square trinomials and polynomials of the form x 2 + bx + c and ax 2 + bx

More information

Review for Mastery. Identifying Linear Functions

Review for Mastery. Identifying Linear Functions Identifying Linear Functions You can determine if a function is linear by its graph, ordered pairs, or equation. Identify whether the graph represents a linear function. Step 1: Determine whether the graph

More information

E. Slope-Intercept Form and Direct Variation (pp )

E. Slope-Intercept Form and Direct Variation (pp ) and Direct Variation (pp. 32 35) For any two points, there is one and only one line that contains both points. This fact can help you graph a linear equation. Many times, it will be convenient to use the

More information

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2. MAT 115 Spring 2015 Practice Test 3 (longer than the actual test will be) Part I: No Calculators. Show work. 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.) a.

More information

Study Guide and Review - Chapter 3. Find the x-intercept and y-intercept of the graph of each linear function.

Study Guide and Review - Chapter 3. Find the x-intercept and y-intercept of the graph of each linear function. Find the x-intercept and y-intercept of the graph of each linear function. 11. The x-intercept is the point at which the y-coordinate is 0, or the line crosses the x-axis. So, the x-intercept is 8. The

More information

VOCABULARY WORDS. quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant

VOCABULARY WORDS. quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant VOCABULARY WORDS quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant 1. Each water fountain jet creates a parabolic stream of water. You can represent

More information

Outcome 9 Review Foundations and Pre-Calculus 10

Outcome 9 Review Foundations and Pre-Calculus 10 Outcome 9 Review Foundations and Pre-Calculus 10 Level 2 Example: Writing an equation in slope intercept form Slope-Intercept Form: y = mx + b m = slope b = y-intercept Ex : Write the equation of a line

More information

Lesson 6.1 Linear Equation Review

Lesson 6.1 Linear Equation Review Name: Lesson 6.1 Linear Equation Review Vocabulary Equation: a math sentence that contains Linear: makes a straight line (no Variables: quantities represented by (often x and y) Function: equations can

More information

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Chapter 9 Linear equations/graphing 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Rectangular Coordinate System Quadrant II (-,+) y-axis Quadrant

More information

Chapter 2: Functions and Graphs Lesson Index & Summary

Chapter 2: Functions and Graphs Lesson Index & Summary Section 1: Relations and Graphs Cartesian coordinates Screen 2 Coordinate plane Screen 2 Domain of relation Screen 3 Graph of a relation Screen 3 Linear equation Screen 6 Ordered pairs Screen 1 Origin

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

ALGEBRA 2 HONORS QUADRATIC FUNCTIONS TOURNAMENT REVIEW

ALGEBRA 2 HONORS QUADRATIC FUNCTIONS TOURNAMENT REVIEW ALGEBRA 2 HONORS QUADRATIC FUNCTIONS TOURNAMENT REVIEW Thanks for downloading my product! Be sure to follow me for new products, free items and upcoming sales. www.teacherspayteachers.com/store/jean-adams

More information

Graphing Lines with a Table

Graphing Lines with a Table Graphing Lines with a Table Select (or use pre-selected) values for x Substitute those x values in the equation and solve for y Graph the x and y values as ordered pairs Connect points with a line Graph

More information

2.3 BUILDING THE PERFECT SQUARE

2.3 BUILDING THE PERFECT SQUARE 16 2.3 BUILDING THE PERFECT SQUARE A Develop Understanding Task Quadratic)Quilts Optimahasaquiltshopwhereshesellsmanycolorfulquiltblocksforpeoplewhowant tomaketheirownquilts.shehasquiltdesignsthataremadesothattheycanbesized

More information

Pre-AP Algebra 2 Unit 8 - Lesson 2 Graphing rational functions by plugging in numbers; feature analysis

Pre-AP Algebra 2 Unit 8 - Lesson 2 Graphing rational functions by plugging in numbers; feature analysis Pre-AP Algebra 2 Unit 8 - Lesson 2 Graphing rational functions by plugging in numbers; feature analysis Objectives: Students will be able to: Analyze the features of a rational function: determine domain,

More information

constant EXAMPLE #4:

constant EXAMPLE #4: Linear Equations in One Variable (1.1) Adding in an equation (Objective #1) An equation is a statement involving an equal sign or an expression that is equal to another expression. Add a constant value

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions A Periodic Function and Its Period Section 5.2 Graphs of the Sine and Cosine Functions A nonconstant function f is said to be periodic if there is a number p > 0 such that f(x + p) = f(x) for all x in

More information

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 2014, WEEK 5 JoungDong Kim Week 5: 3B, 3C Chapter 3B. Graphs of Equations Draw the graph x+y = 6. Then every point on the graph satisfies the equation x+y = 6. Note. The graph

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

Name: Date: Period: Activity 4.6.2: Point-Slope Form of an Equation. 0, 4 and moving to another point on the line using the slope.

Name: Date: Period: Activity 4.6.2: Point-Slope Form of an Equation. 0, 4 and moving to another point on the line using the slope. Name: Date: Period: Activity.6.2: Point-Slope Form of an Equation 1.) Graph the equation y x = + starting at ( ) 0, and moving to another point on the line using the slope. 2.) Now, draw another graph

More information

M.I. Transformations of Functions

M.I. Transformations of Functions M.I. Transformations of Functions Do Now: A parabola with equation y = (x 3) 2 + 8 is translated. The image of the parabola after the translation has an equation of y = (x + 5) 2 4. Describe the movement.

More information

Graphs of sin x and cos x

Graphs of sin x and cos x Graphs of sin x and cos x One cycle of the graph of sin x, for values of x between 0 and 60, is given below. 1 0 90 180 270 60 1 It is this same shape that one gets between 60 and below). 720 and between

More information

Use smooth curves to complete the graph between and beyond the vertical asymptotes.

Use smooth curves to complete the graph between and beyond the vertical asymptotes. 5.3 Graphs of Rational Functions Guidelines for Graphing Rational Functions 1. Find and plot the x-intercepts. (Set numerator = 0 and solve for x) 2. Find and plot the y-intercepts. (Let x = 0 and solve

More information

the input values of a function. These are the angle values for trig functions

the input values of a function. These are the angle values for trig functions SESSION 8: TRIGONOMETRIC FUNCTIONS KEY CONCEPTS: Graphs of Trigonometric Functions y = sin θ y = cos θ y = tan θ Properties of Graphs Shape Intercepts Domain and Range Minimum and maximum values Period

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

Section 3.5 Graphing Techniques: Transformations

Section 3.5 Graphing Techniques: Transformations Addition Shifts Subtraction Inside Horizontal Outside Vertical Left Right Up Down (Add inside) (Subtract inside) (Add Outside) (Subtract Outside) Transformation Multiplication Compressions Stretches Inside

More information

2. To receive credit on any problem, you must show work that explains how you obtained your answer or you must explain how you obtained your answer.

2. To receive credit on any problem, you must show work that explains how you obtained your answer or you must explain how you obtained your answer. Math 50, Spring 2006 Test 2 PRINT your name on the back of the test. Circle your class: MW @ 11 TTh @ 2:30 Directions 1. Time limit: 50 minutes. 2. To receive credit on any problem, you must show work

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions Section 5.2 Graphs of the Sine and Cosine Functions We know from previously studying the periodicity of the trigonometric functions that the sine and cosine functions repeat themselves after 2 radians.

More information

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line.

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line. MATH 11009: Linear Functions Section 1.3 Linear Function: A linear function is a function that can be written in the form f(x) = ax + b or y = ax + b where a and b are constants. The graph of a linear

More information

Solving Equations and Graphing

Solving Equations and Graphing Solving Equations and Graphing Question 1: How do you solve a linear equation? Answer 1: 1. Remove any parentheses or other grouping symbols (if necessary). 2. If the equation contains a fraction, multiply

More information

Section 6.3: Factored Form of a Quadratic Function

Section 6.3: Factored Form of a Quadratic Function Section 6.3: Factored Form of a Quadratic Function make the connection between the factored form of a quadratic and the x-intercepts of the graph Forms of a Quadratic Function (i) Standard Form (ii) Factored

More information

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s)

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s) Topic 1 1 Intercepts and Lines Definition: An intercept is a point of a graph on an axis. For an equation Involving ordered pairs (x, y): x intercepts (a, 0) y intercepts (0, b) where a and b are real

More information

PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

More information

The Sine Function. Precalculus: Graphs of Sine and Cosine

The Sine Function. Precalculus: Graphs of Sine and Cosine Concepts: Graphs of Sine, Cosine, Sinusoids, Terminology (amplitude, period, phase shift, frequency). The Sine Function Domain: x R Range: y [ 1, 1] Continuity: continuous for all x Increasing-decreasing

More information

Chapter 3 Graphing Linear Equations

Chapter 3 Graphing Linear Equations Chapter 3 Graphing Linear Equations Rectangular Coordinate System Cartesian Coordinate System Origin Quadrants y-axis x-axis Scale Coordinates Ex: Plot each point: (0,0), (-1, 3), (1, 3), (1, -3), (-1,

More information

Graphing Sine and Cosine

Graphing Sine and Cosine The problem with average monthly temperatures on the preview worksheet is an example of a periodic function. Periodic functions are defined on p.254 Periodic functions repeat themselves each period. The

More information

Up and Down or Down and Up

Up and Down or Down and Up Lesson.1 Assignment Name Date Up and Down or Down and Up Exploring Quadratic Functions 1. The citizens of Herrington County are wild about their dogs. They have an existing dog park for dogs to play, but

More information

Year 11 Graphing Notes

Year 11 Graphing Notes Year 11 Graphing Notes Terminology It is very important that students understand, and always use, the correct terms. Indeed, not understanding or using the correct terms is one of the main reasons students

More information

4-7 Point-Slope Form. Warm Up Lesson Presentation Lesson Quiz

4-7 Point-Slope Form. Warm Up Lesson Presentation Lesson Quiz Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up Find the slope of the line containing each pair of points. 1. (0, 2) and (3, 4) 2. ( 2, 8) and (4, 2) 1 3. (3, 3) and (12,

More information

Pre-Calc Conics

Pre-Calc Conics Slide 1 / 160 Slide 2 / 160 Pre-Calc Conics 2015-03-24 www.njctl.org Slide 3 / 160 Table of Contents click on the topic to go to that section Review of Midpoint and Distance Formulas Intro to Conic Sections

More information

Pre-Calc. Slide 1 / 160. Slide 2 / 160. Slide 3 / 160. Conics Table of Contents. Review of Midpoint and Distance Formulas

Pre-Calc. Slide 1 / 160. Slide 2 / 160. Slide 3 / 160. Conics Table of Contents. Review of Midpoint and Distance Formulas Slide 1 / 160 Pre-Calc Slide 2 / 160 Conics 2015-03-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 160 Review of Midpoint and Distance Formulas Intro to Conic Sections

More information

Lesson 24: Finding x-intercepts Again?

Lesson 24: Finding x-intercepts Again? Opening Discussion The quadratic function, y = x 2 6x + 8, can be written as y = (x 2)(x 4) and as y = (x 3) 2 1. Deshi and Ame wanted to find the x-intercepts of this function. Their work is shown below.

More information

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle

1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Pre- Calculus Mathematics 12 5.1 Trigonometric Functions Goal: 1. Measure angle in degrees and radians 2. Find coterminal angles 3. Determine the arc length of a circle Measuring Angles: Angles in Standard

More information

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3 Mathematics 5 HWK 9b Solutions Section 6. p75 Problem, 6., p75. Evaluate (x y) dy dx. Solution. (x y) dy dx x ( ) y dy dx [ x x dx ] [ ] y x dx Problem 9, 6., p75. For the region as shown, write f da as

More information

Actual testimonials from people that have used the survival guide:

Actual testimonials from people that have used the survival guide: Algebra 1A Unit: Coordinate Plane Assignment Sheet Name: Period: # 1.) Page 206 #1 6 2.) Page 206 #10 26 all 3.) Worksheet (SIF/Standard) 4.) Worksheet (SIF/Standard) 5.) Worksheet (SIF/Standard) 6.) Worksheet

More information

Student Exploration: Standard Form of a Line

Student Exploration: Standard Form of a Line Name: Date: Student Exploration: Standard Form of a Line Vocabulary: slope, slope-intercept form, standard form, x-intercept, y-intercept Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1.

More information

Math 259 Winter Recitation Handout 9: Lagrange Multipliers

Math 259 Winter Recitation Handout 9: Lagrange Multipliers Math 259 Winter 2009 Recitation Handout 9: Lagrange Multipliers The method of Lagrange Multipliers is an excellent technique for finding the global maximum and global minimum values of a function f(x,

More information

Math 165 Section 3.1 Linear Functions

Math 165 Section 3.1 Linear Functions Math 165 Section 3.1 Linear Functions - complete this page Read the book or the power point presentations for this section. Complete all questions on this page Also complete all questions on page 6 1)

More information

Math 138 Exam 1 Review Problems Fall 2008

Math 138 Exam 1 Review Problems Fall 2008 Chapter 1 NOTE: Be sure to review Activity Set 1.3 from the Activity Book, pp 15-17. 1. Sketch an algebra-piece model for the following problem. Then explain or show how you used it to arrive at your solution.

More information

5.3 Trigonometric Graphs. Copyright Cengage Learning. All rights reserved.

5.3 Trigonometric Graphs. Copyright Cengage Learning. All rights reserved. 5.3 Trigonometric Graphs Copyright Cengage Learning. All rights reserved. Objectives Graphs of Sine and Cosine Graphs of Transformations of Sine and Cosine Using Graphing Devices to Graph Trigonometric

More information

A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal

A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal The Slope of a Line (2.2) Find the slope of a line given two points on the line (Objective #1) A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal

More information

Section 3.5. Equations of Lines

Section 3.5. Equations of Lines Section 3.5 Equations of Lines Learning objectives Use slope-intercept form to write an equation of a line Use slope-intercept form to graph a linear equation Use the point-slope form to find an equation

More information

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1

Copyright 2009 Pearson Education, Inc. Slide Section 8.2 and 8.3-1 8.3-1 Transformation of sine and cosine functions Sections 8.2 and 8.3 Revisit: Page 142; chapter 4 Section 8.2 and 8.3 Graphs of Transformed Sine and Cosine Functions Graph transformations of y = sin

More information

Pre Calc. Conics.

Pre Calc. Conics. 1 Pre Calc Conics 2015 03 24 www.njctl.org 2 Table of Contents click on the topic to go to that section Review of Midpoint and Distance Formulas Intro to Conic Sections Parabolas Circles Ellipses Hyperbolas

More information

Functions: Transformations and Graphs

Functions: Transformations and Graphs Paper Reference(s) 6663/01 Edexcel GCE Core Mathematics C1 Advanced Subsidiary Functions: Transformations and Graphs Calculators may NOT be used for these questions. Information for Candidates A booklet

More information

Graphs of linear equations will be perfectly straight lines. Why would we say that A and B are not both zero?

Graphs of linear equations will be perfectly straight lines. Why would we say that A and B are not both zero? College algebra Linear Functions : Definition, Horizontal and Vertical Lines, Slope, Rate of Change, Slopeintercept Form, Point-slope Form, Parallel and Perpendicular Lines, Linear Regression (sections.3

More information

Lesson 16. Opening Exploration A Special Case

Lesson 16. Opening Exploration A Special Case Opening Exploration A Special Case 1. Consuela ran across the quadratic equation y = 4x 2 16 and wondered how it could be factored. She rewrote it as y = 4x 2 + 0x 16. A. Use one of the methods you ve

More information

The Picture Tells the Linear Story

The Picture Tells the Linear Story The Picture Tells the Linear Story Students investigate the relationship between constants and coefficients in a linear equation and the resulting slopes and y-intercepts on the graphs. This activity also

More information

Section 2.3 Task List

Section 2.3 Task List Summer 2017 Math 108 Section 2.3 67 Section 2.3 Task List Work through each of the following tasks, carefully filling in the following pages in your notebook. Section 2.3 Function Notation and Applications

More information

Identify Non-linear Functions from Data

Identify Non-linear Functions from Data Identify Non-linear Functions from Data Student Probe Identify which data sets display linear, exponential, or quadratic behavior. x -1 0 1 2 3 y -3-4 -3 0 5 x -2 0 2 4 6 y 9 4-1 -6-11 x -1 0 1 2 3 y ¼

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

Since each element is paired with unique element in the range, it is a function.

Since each element is paired with unique element in the range, it is a function. 1. State the domain and range of the relation {( 3, 2), (4, 1), (0, 3), (5, 2), (2, 7)}. Then determine whether the relation is a function. The domain is the set of x-coordinates. The range is the set

More information

4.4 Slope and Graphs of Linear Equations. Copyright Cengage Learning. All rights reserved.

4.4 Slope and Graphs of Linear Equations. Copyright Cengage Learning. All rights reserved. 4.4 Slope and Graphs of Linear Equations Copyright Cengage Learning. All rights reserved. 1 What You Will Learn Determine the slope of a line through two points Write linear equations in slope-intercept

More information

MA 524 Midterm Solutions October 16, 2018

MA 524 Midterm Solutions October 16, 2018 MA 524 Midterm Solutions October 16, 2018 1. (a) Let a n be the number of ordered tuples (a, b, c, d) of integers satisfying 0 a < b c < d n. Find a closed formula for a n, as well as its ordinary generating

More information

Find the equation of a line given its slope and y-intercept. (Problem Set exercises 1 6 are similar.)

Find the equation of a line given its slope and y-intercept. (Problem Set exercises 1 6 are similar.) Directions Each problem below is similar to the example with the same number in your textbook. After reading through an example in your textbook, or watching one of the videos of that example on MathTV,

More information

6.1.2: Graphing Quadratic Equations

6.1.2: Graphing Quadratic Equations 6.1.: Graphing Quadratic Equations 1. Obtain a pair of equations from your teacher.. Press the Zoom button and press 6 (for ZStandard) to set the window to make the max and min on both axes go from 10

More information

This early Greek study was largely concerned with the geometric properties of conics.

This early Greek study was largely concerned with the geometric properties of conics. 4.3. Conics Objectives Recognize the four basic conics: circle, ellipse, parabola, and hyperbola. Recognize, graph, and write equations of parabolas (vertex at origin). Recognize, graph, and write equations

More information

ANNOUNCEMENTS. GOOD MORNING or GOOD AFTERNOON AGENDA FOR TODAY. Quickly Review Absolute Values Graphing Quadratics. Vertex Form Calculator Activity

ANNOUNCEMENTS. GOOD MORNING or GOOD AFTERNOON AGENDA FOR TODAY. Quickly Review Absolute Values Graphing Quadratics. Vertex Form Calculator Activity ANNOUNCEMENTS GOOD MORNING or GOOD AFTERNOON AGENDA FOR TODAY Quickly Review Absolute Values Graphing Quadratics Vertex Form Calculator Activity M314 Algebra II Section 9-4 and 9-5: Quadratics Presented

More information

Absolute Value of Linear Functions

Absolute Value of Linear Functions Lesson Plan Lecture Version Absolute Value of Linear Functions Objectives: Students will: Discover how absolute value affects linear functions. Prerequisite Knowledge Students are able to: Graph linear

More information

Developing Algebraic Thinking

Developing Algebraic Thinking Developing Algebraic Thinking DEVELOPING ALGEBRAIC THINKING Algebra is an important branch of mathematics, both historically and presently. algebra has been too often misunderstood and misrepresented as

More information

Math 232. Calculus III Limits and Continuity. Updated: January 13, 2016 Calculus III Section 14.2

Math 232. Calculus III Limits and Continuity. Updated: January 13, 2016 Calculus III Section 14.2 Math 232 Calculus III Brian Veitch Fall 2015 Northern Illinois University 14.2 Limits and Continuity In this section our goal is to evaluate its of the form f(x, y) = L Let s take a look back at its in

More information

MA Lesson 16 Sections 2.3 and 2.4

MA Lesson 16 Sections 2.3 and 2.4 MA 1500 Lesson 16 Sections.3 and.4 I Piecewise Functions & Evaluating such Functions A cab driver charges $4 a ride for a ride less than 5 miles. He charges $4 plus $0.50 a mile for a ride greater than

More information

Mathematics Success Grade 8

Mathematics Success Grade 8 T936 Mathematics Success Grade 8 [OBJECTIVE] The student will find the line of best fit for a scatter plot, interpret the equation and y-intercept of the linear representation, and make predictions based

More information

Perry High School. Algebra 2: Week 9. Note: Don t forget to read the sections before or after we cover them. Also, don t forget the website.

Perry High School. Algebra 2: Week 9. Note: Don t forget to read the sections before or after we cover them. Also, don t forget the website. Algebra 2: Week 9 Monday: 2.8 Absolute Value Functions Tuesday: 2.8 Work Day Wednesday: Review Exam 2, Day 1 Thursday: Professional Day, NO SCHOOL Friday: Fall Break? NO SCHOOL Note: Don t forget to read

More information

Data Analysis Part 1: Excel, Log-log, & Semi-log plots

Data Analysis Part 1: Excel, Log-log, & Semi-log plots Data Analysis Part 1: Excel, Log-log, & Semi-log plots Why Excel is useful Excel is a powerful tool used across engineering fields. Organizing data Multiple types: date, text, numbers, currency, etc Sorting

More information

6.1 Slope of a Line Name: Date: Goal: Determine the slope of a line segment and a line.

6.1 Slope of a Line Name: Date: Goal: Determine the slope of a line segment and a line. 6.1 Slope of a Line Name: Date: Goal: Determine the slope of a line segment and a line. Toolkit: - Rate of change - Simplifying fractions Main Ideas: Definitions Rise: the vertical distance between two

More information

Aim #35.1: How do we graph using a table?

Aim #35.1: How do we graph using a table? A) Take out last night's homework Worksheet - Aim 34.2 B) Copy down tonight's homework Finish aim 35.1 Aim #35.1: How do we graph using a table? C) Plot the following points... a) (-3, 5) b) (4, -2) c)

More information

4-2 Using Intercepts. Warm Up Lesson Presentation Lesson Quiz

4-2 Using Intercepts. Warm Up Lesson Presentation Lesson Quiz 4-2 Using Intercepts Warm Up Lesson Presentation Lesson Quiz Holt Algebra McDougal 1 Algebra 1 Warm Up Solve each equation. 1. 5x + 0 = 10 2 2. 33 = 0 + 3y 11 3. 1 4. 2x + 14 = 3x + 4 2 5. 5y 1 = 7y +

More information

Ch. 6 Linear Functions Notes

Ch. 6 Linear Functions Notes First Name: Last Name: Block: Ch. 6 Linear Functions Notes 6.1 SLOPE OF A LINE Ch. 6.1 HW: p. 9 #4 1, 17,,, 8 6. SLOPES OF PARALLEL AND PERPENDICULAR LINES 6 Ch. 6. HW: p. 49 # 6 odd letters, 7 0 8 6.

More information

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t) Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

More information

C.2 Equations and Graphs of Conic Sections

C.2 Equations and Graphs of Conic Sections 0 section C C. Equations and Graphs of Conic Sections In this section, we give an overview of the main properties of the curves called conic sections. Geometrically, these curves can be defined as intersections

More information

Name: Which equation is represented in the graph? Which equation is represented by the graph? 1. y = 2 sin 2x 2. y = sin x. 1.

Name: Which equation is represented in the graph? Which equation is represented by the graph? 1. y = 2 sin 2x 2. y = sin x. 1. Name: Print Close Which equation is represented in the graph? Which equation is represented by the graph? y = 2 sin 2x y = sin x y = 2 sin x 4. y = sin 2x Which equation is represented in the graph? 4.

More information

Skills Practice Skills Practice for Lesson 4.1

Skills Practice Skills Practice for Lesson 4.1 Skills Practice Skills Practice for Lesson.1 Name Date Squares and More Using Patterns to Generate Algebraic Functions Vocabulary Match each word with its corresponding definition. 1. linear function a.

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

Math 259 Winter Recitation Handout 6: Limits in Two Dimensions

Math 259 Winter Recitation Handout 6: Limits in Two Dimensions Math 259 Winter 2009 Recitation Handout 6: its in Two Dimensions As we have discussed in lecture, investigating the behavior of functions with two variables, f(x, y), can be more difficult than functions

More information