Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3

Size: px
Start display at page:

Download "Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3"

Transcription

1 Mathematics 5 HWK 9b Solutions Section 6. p75 Problem, 6., p75. Evaluate (x y) dy dx. Solution. (x y) dy dx x ( ) y dy dx [ x x dx ] [ ] y x dx Problem 9, 6., p75. For the region as shown, write f da as an iterated integral. Solution. Note that the equation for the line that determines the bottom edge of is y (x ). It will be easier to integrate with respect to y first (and thus shoot vertical arrows to determine the inside limits of integration). Shooting a vertical arrow, as shown, through the region, we see that the arrow enters the region when y (x ) and leaves the region when y. So the inner integral will be over the vertical interval [ (x ),]. For these intervals to sweep out, we need to have x vary from x to x 4. Or, putting it differently, the leftmost arrow that actually hits the region would be the arrow for x. Similarly, the rightmost arrow that hits would be for x 4. Thus the interval of integration for the outer integral will be [, 4]. In summary, we have f da 4 f(x, y) dy dx. (x ) Note that, as always, the limits of integration only depend on the region that we are integrating over. They do not depend on the function f that is being integrated. Page of A. Sontag November 4,

2 Math 5 HWK 9b Solns continued 6. p75 Problem 7, 6., p75. Evaluate x + y, x, y. xy da, where is the triangular region for which Solution. Here is a sketch of the region. There s a lot of symmetry here, and it really won t matter which order we integrate in. Note that the equation for the top, slanted edge of the region is x + y. If we shoot vertical arrows (so first fix x and integrate with respect to y), a vertical arrow for fixed x will enter when y and leave when y x. Then x will have to vary over the interval from x to x. This gives us xy da ( x ) [ y x y dy dx x ] x dx x( x) dx. To complete the integration, one method is to expand the polynomial. Writing x( x) x x + x we have x( x) dx ( ) [ ] x x + x x dx 4 x + x Combining these results, we have xy da Alternatively, one can do the final integration using integration by parts. With u x and dv ( x), so that du dx and v ( x), we have ( x) x( x) dx x( x) + dx x( x) ( x)4. Page of A. Sontag November 4,

3 Math 5 HWK 9b Solns continued 6. p75 This gives us xy da [ x( x) dx x( x) ] ( x)4 4 4 the same result as obtained above. If you choose to shoot horizontal arrows, integrating first with respect to x and then with respect to y, the calculations turn out to be identically the same, but with x and y reversed. (This is because the integrand doesn t change when x and y are switched, and nor does the description of the region of integration.) To be specific, you ll have xy da ( y ) y x dx dy 4. Problem, 6., p75. Evaluate (x + y) da, where is the triangular region with vertices (,), (, ), and (,). Solution. Here s a sketch of the region showing the equations for the top two sides. As the sketch suggests, it will work best to shoot horizontal arrows, integrating first with respect to x. The alternative would require us to set up two separate double iterated integrals, compute them, and add to get the integral we want. Shooting a horizontal arrow for fixed y, the arrow will enter when x y (from the equation on the top left) and leave when x y (from the equation on the top right). Then we need to have y vary from to. This gives us (x + y) da y y (x + y) dx dy. Page of A. Sontag November 4,

4 Math 5 HWK 9b Solns continued 6. p75 Again, we have a couple of options for performing the remaining calculation. One is to expand the integrand and integrate term by term. Better yet, expand and notice that the integral of the middle term will vanish (i.e. will have the value ) because of the symmetry in the integrand and the region of integration). Using this method we have (x + y) da (4x + xy + 9y ) da 4x da + xy da + 4x da + + 9y da y y [ 4x (4x + 9y ) dx dy ] x y + 9xy ( 4( y) ( y)4 (y )4 [ xy dy 4(y ) 9y da ) + 8y 8y dy ] + 6y 9y [ + ] Another option would be to leave the integrand as is and use tiny substitutions to find the antiderivatives we need. In other words, we could compute as follows: as above. (x + y) da y y (x + y) dx dy [ ( + y) (5y ) ] dy 6 [ 6 4 ( + y)4 ] (5y )4 5 4 [ ] (8 6) 5 [ (x + y) ] x y xy Page 4 of A. Sontag November 4, dy

5 Math 5 HWK 9b Solns continued 6. p75 Problem 5, 6., p75. Consider the integral 4 (y 4)/ g(x, y) dx dy. (a) Sketch the region over which the integration is being performed. (b) Write the integral with the order of the integration reversed. Solution. (a) The inner integral is with respect to x and x varies from to (y 4). This tells us that a horizontal arrow through the region hits the region at x and leaves at x (y 4). So the line x, i.e. the y-axis, will form the left edge of the region, while the line x (y 4), or x y + 4, will form the right edge of the region. Sketch this much, notice that the line x y + 4 hits the y-axis exactly at y 4. So the region will have a topmost point at y 4 on the y axis. Finally, the outer integral tells us that the bottom edge of the region is formed by the x-axis, where y. Putting the pieces together gives us the sketch (shown with a horizontal arrow): (b) To reverse the order of integration, we use the sketch of the region but begin by shooting a vertical arrow. We will also need to rewrite the equation of the top side in order to have y as a function of x. Solving x (y 4) for y in terms of x we find y 4 x. Use a new sketch: Page 5 of A. Sontag November 4,

6 Math 5 HWK 9b Solns continued 6. p75 With x fixed, a vertical arrow enters the region where y and leaves it where y 4 x. We need to use vertical arrows for x between and. Thus the reversed iterated integral is 4 x g(x, y) dy dx. Problem 9, 6., p75. Evaluate the integral of integration. y + x dx dy by reversing the order Solution. Begin by sketching the region of integration. For the iterated integral we are given, the inner integral tells us that for fixed y, a horizontal arrow (shot in the direction of increasing x) will enter the region when x y and leave the region when x. Thus the left side of the region has the equation x y as its boundary curve, and the right side is the line x. Sketch this much. Notice that x y meets x where (x, y) (,), and the top limit on the outer integral is given as y, so the intersection point of the parabola and the line x is the top point of the region. Since the outer integral has y as the lower limit of integration, the line y, i.e. the x-axis, forms the lower edge of the region. Thus the sketch (showing a typical horizontal arrow) for the iterated integral we are given would look like this. (Note: the region does extend to (,) on the left. The sketch doesn t quite show that, because the scale makes it hard to distinguish the parabola from the axis.) To reverse the order of integration, imagine shooting a vertical arrow. For fixed x, the corresponding vertical arrow enters the region when y and leaves it when it hits the parabola, so when y x. Thus the new sketch Page 6 of A. Sontag November 4,

7 Math 5 HWK 9b Solns continued 6. p75 gives us the reversed iterated integral x + x dy dx. Now evaluate: x + x dy dx x + x dx ( + x ) ( ). Problem 9, 6., p75. octant. Find the volume under the graph of x + y + z 4 in the first Solution. The graph of x + y + z 4 is a plane that intercepts the z-axis where z 4 and slants downward as it moves into the first octant, eventually intercepting the y-axis (and leaving the first octant) at y 4, similarly intercepting the x-axis (and leaving the first octant) where x. It meets the xy-plane (i.e. the plane z ) in the line x+y 4. Thus the volume we want can be viewed as the volume of the solid region that lies underneath the graph of z 4 x y, and above the first-quadrant portion of the xy-plane, having as its bottom face a triangle in the xy-plane, namely the triangle bounded by the lines x, y, and x + y 4. Here s a sketch of the slanted top, along with a sketch of the full tetrahedron. Page 7 of A. Sontag November 4,

8 Math 5 HWK 9b Solns continued 6. p75 And here s a sketch of the triangular base in the xy-plane, which I ll call T. The volume we want is given by the integral T (4 x y) da. We can use the sketch of T to rewrite this as an iterated integral. If you decide to integrate with respect to y first, shoot horizontal arrows and write the desired volume as 4 x (4 x y) dy dx. If you integrate with respect to x first, shoot vertical arrows and write the volume as 4 4 y (4 x y) dx dy. Page 8 of A. Sontag November 4,

9 Math 5 HWK 9b Solns continued 6. p75 Here s a calculation that evaluates, using the first of these two options. Volume 4 x [ (4 x y) dy dx [(4 x)y y (4 x) dx (4 x) ( ) ] ] y4 x y dx Problem 45, 6., p75. The function f(x, y) ax + by has an average value of on the rectangle x, y. (a) What can you say about the constants a and b? (b) Find two different choices for f that have average value on the rectangle, and give their contour diagrams on the rectangle Solution. (a) We know that the average value for f(x, y) over some region in the xy-plane is the ratio f(x, y) da. da The numerator represents the area of, which in this case is 6. Evaluate the numerator, with f(x, y) ax + by and the specified rectangle: f(x, y) da (ax + by) dx dy [ ax + bxy (a + by) dy [ ay + by ] y y 6a + 9b. Thus the average value in question is 6 (6a + 9b), which we are told must be. So we must have 6a + 9b or a + b 4. This is as much as we can say about a and b. ] x x dy Page 9 of A. Sontag November 4,

10 Math 5 HWK 9b Solns continued 6. p75 (b) All we have to do to find two different choices for f that will have the right average value is to pick two pairs of values for a and b that make a + b 4. For instance, we could use a 8 and b 8; or we could use a and b 8. There are lots of other possiblities. I ll leave it to you to do contour diagrams. The contours will be straight lines, of course, equally spaced for equal increments in the f-value. Page of A. Sontag November 4,

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

Double Integrals over More General Regions

Double Integrals over More General Regions Jim Lambers MAT 8 Spring Semester 9-1 Lecture 11 Notes These notes correspond to Section 1. in Stewart and Sections 5.3 and 5.4 in Marsden and Tromba. ouble Integrals over More General Regions We have

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Lesson 6.1 Linear Equation Review

Lesson 6.1 Linear Equation Review Name: Lesson 6.1 Linear Equation Review Vocabulary Equation: a math sentence that contains Linear: makes a straight line (no Variables: quantities represented by (often x and y) Function: equations can

More information

A General Procedure (Solids of Revolution) Some Useful Area Formulas

A General Procedure (Solids of Revolution) Some Useful Area Formulas Goal: Given a solid described by rotating an area, compute its volume. A General Procedure (Solids of Revolution) (i) Draw a graph of the relevant functions/regions in the plane. Draw a vertical line and

More information

Mathematics 205 HWK 2 Solutions Section 12.4 p588. x\y 0 1 2

Mathematics 205 HWK 2 Solutions Section 12.4 p588. x\y 0 1 2 Mathematics 205 HWK 2 Solutions Section 12.4 p588 Problem 3, 12.4, p588. Decide whether the table of values could represent values f a linear function. x\y 0 1 2 0 0 5 10 1 2 7 12 2 4 9 14 Solution. F

More information

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Multiple Integrals. Advanced Calculus. Lecture 1 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University. Lecture epartment of Mathematics and Statistics McGill University January 4, 27 ouble integrals Iteration of double integrals ouble integrals Consider a function f(x, y), defined over a rectangle = [a,

More information

Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems.

Calculus IV Math 2443 Review for Exam 2 on Mon Oct 24, 2016 Exam 2 will cover This is only a sample. Try all the homework problems. Calculus IV Math 443 eview for xam on Mon Oct 4, 6 xam will cover 5. 5.. This is only a sample. Try all the homework problems. () o not evaluated the integral. Write as iterated integrals: (x + y )dv,

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Use smooth curves to complete the graph between and beyond the vertical asymptotes.

Use smooth curves to complete the graph between and beyond the vertical asymptotes. 5.3 Graphs of Rational Functions Guidelines for Graphing Rational Functions 1. Find and plot the x-intercepts. (Set numerator = 0 and solve for x) 2. Find and plot the y-intercepts. (Let x = 0 and solve

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2. Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

More information

E. Slope-Intercept Form and Direct Variation (pp )

E. Slope-Intercept Form and Direct Variation (pp ) and Direct Variation (pp. 32 35) For any two points, there is one and only one line that contains both points. This fact can help you graph a linear equation. Many times, it will be convenient to use the

More information

CH 54 SPECIAL LINES. Ch 54 Special Lines. Introduction

CH 54 SPECIAL LINES. Ch 54 Special Lines. Introduction 479 CH 54 SPECIAL LINES Introduction Y ou may have noticed that all the lines we ve seen so far in this course have had slopes that were either positive or negative. You may also have observed that every

More information

Math 2321 Review for Test 2 Fall 11

Math 2321 Review for Test 2 Fall 11 Math 2321 Review for Test 2 Fall 11 The test will cover chapter 15 and sections 16.1-16.5 of chapter 16. These review sheets consist of problems similar to ones that could appear on the test. Some problems

More information

Math 122: Final Exam Review Sheet

Math 122: Final Exam Review Sheet Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 8-1 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,

More information

Sect Linear Equations in Two Variables

Sect Linear Equations in Two Variables 99 Concept # Sect. - Linear Equations in Two Variables Solutions to Linear Equations in Two Variables In this chapter, we will examine linear equations involving two variables. Such equations have an infinite

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Chapter 9 Linear equations/graphing 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Rectangular Coordinate System Quadrant II (-,+) y-axis Quadrant

More information

Student Exploration: Quadratics in Factored Form

Student Exploration: Quadratics in Factored Form Name: Date: Student Exploration: Quadratics in Factored Form Vocabulary: factored form of a quadratic function, linear factor, parabola, polynomial, quadratic function, root of an equation, vertex of a

More information

7.1 Solving Quadratic Equations by Graphing

7.1 Solving Quadratic Equations by Graphing Math 2201 Date: 7.1 Solving Quadratic Equations by Graphing In Mathematics 1201, students factored difference of squares, perfect square trinomials and polynomials of the form x 2 + bx + c and ax 2 + bx

More information

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line.

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line. MATH 11009: Linear Functions Section 1.3 Linear Function: A linear function is a function that can be written in the form f(x) = ax + b or y = ax + b where a and b are constants. The graph of a linear

More information

Sect 4.5 Inequalities Involving Quadratic Function

Sect 4.5 Inequalities Involving Quadratic Function 71 Sect 4. Inequalities Involving Quadratic Function Objective #0: Solving Inequalities using a graph Use the graph to the right to find the following: Ex. 1 a) Find the intervals where f(x) > 0. b) Find

More information

This early Greek study was largely concerned with the geometric properties of conics.

This early Greek study was largely concerned with the geometric properties of conics. 4.3. Conics Objectives Recognize the four basic conics: circle, ellipse, parabola, and hyperbola. Recognize, graph, and write equations of parabolas (vertex at origin). Recognize, graph, and write equations

More information

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals

Estimating Areas. is reminiscent of a Riemann Sum and, amazingly enough, will be called a Riemann Sum. Double Integrals Estimating Areas Consider the challenge of estimating the volume of a solid {(x, y, z) 0 z f(x, y), (x, y) }, where is a region in the xy-plane. This may be thought of as the solid under the graph of z

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

WESI 205 Workbook. 1 Review. 2 Graphing in 3D 1 Review 1. (a) Use a right triangle to compute the distance between (x 1, y 1 ) and (x 2, y 2 ) in R 2. (b) Use this formula to compute the equation of a circle centered at (a, b) with radius r. (c) Extend

More information

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations

14.4. Tangent Planes. Tangent Planes. Tangent Planes. Tangent Planes. Partial Derivatives. Tangent Planes and Linear Approximations 14 Partial Derivatives 14.4 and Linear Approximations Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Suppose a surface S has equation z = f(x, y), where

More information

In this section, we find equations for straight lines lying in a coordinate plane.

In this section, we find equations for straight lines lying in a coordinate plane. 2.4 Lines Lines In this section, we find equations for straight lines lying in a coordinate plane. The equations will depend on how the line is inclined. So, we begin by discussing the concept of slope.

More information

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 2014, WEEK 5 JoungDong Kim Week 5: 3B, 3C Chapter 3B. Graphs of Equations Draw the graph x+y = 6. Then every point on the graph satisfies the equation x+y = 6. Note. The graph

More information

Chapter 2: Functions and Graphs Lesson Index & Summary

Chapter 2: Functions and Graphs Lesson Index & Summary Section 1: Relations and Graphs Cartesian coordinates Screen 2 Coordinate plane Screen 2 Domain of relation Screen 3 Graph of a relation Screen 3 Linear equation Screen 6 Ordered pairs Screen 1 Origin

More information

Year 11 Graphing Notes

Year 11 Graphing Notes Year 11 Graphing Notes Terminology It is very important that students understand, and always use, the correct terms. Indeed, not understanding or using the correct terms is one of the main reasons students

More information

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s)

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s) Topic 1 1 Intercepts and Lines Definition: An intercept is a point of a graph on an axis. For an equation Involving ordered pairs (x, y): x intercepts (a, 0) y intercepts (0, b) where a and b are real

More information

11.7 Maximum and Minimum Values

11.7 Maximum and Minimum Values Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 11.7 Maximum and Minimum Values Just like functions of a single variable, functions of several variables can have local and global extrema,

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 6 - Tues 17th Oct 2017 Functions of Several Variables and Partial Derivatives So far we have dealt with functions of the form y = f(x),

More information

Math 259 Winter Recitation Handout 6: Limits in Two Dimensions

Math 259 Winter Recitation Handout 6: Limits in Two Dimensions Math 259 Winter 2009 Recitation Handout 6: its in Two Dimensions As we have discussed in lecture, investigating the behavior of functions with two variables, f(x, y), can be more difficult than functions

More information

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2 University of California, Berkeley epartment of Mathematics 5 th November, 212, 12:1-12:55 pm MATH 53 - Test #2 Last Name: First Name: Student Number: iscussion Section: Name of GSI: Record your answers

More information

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14

Independent of path Green s Theorem Surface Integrals. MATH203 Calculus. Dr. Bandar Al-Mohsin. School of Mathematics, KSU 20/4/14 School of Mathematics, KSU 20/4/14 Independent of path Theorem 1 If F (x, y) = M(x, y)i + N(x, y)j is continuous on an open connected region D, then the line integral F dr is independent of path if and

More information

Unit 6 Task 2: The Focus is the Foci: ELLIPSES

Unit 6 Task 2: The Focus is the Foci: ELLIPSES Unit 6 Task 2: The Focus is the Foci: ELLIPSES Name: Date: Period: Ellipses and their Foci The first type of quadratic relation we want to discuss is an ellipse. In terms of its conic definition, you can

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

5.1N Key Features of Rational Functions

5.1N Key Features of Rational Functions 5.1N Key Features of Rational Functions A. Vocabulary Review Domain: Range: x-intercept: y-intercept: Increasing: Decreasing: Constant: Positive: Negative: Maximum: Minimum: Symmetry: End Behavior/Limits:

More information

PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to find key features. The table of values is shown below:

PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to find key features. The table of values is shown below: Math (L-3a) Learning Targets: I can find the vertex from intercept solutions calculated by quadratic formula. PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to

More information

F13 Study Guide/Practice Exam 3

F13 Study Guide/Practice Exam 3 F13 Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam 2. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material.

More information

4.4 Equations of Parallel and Perpendicular

4.4 Equations of Parallel and Perpendicular www.ck12.org Chapter 4. Determining Linear Equations 4.4 Equations of Parallel and Perpendicular Lines Learning Objectives Determine whether lines are parallel or perpendicular. Write equations of perpendicular

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions A Periodic Function and Its Period Section 5.2 Graphs of the Sine and Cosine Functions A nonconstant function f is said to be periodic if there is a number p > 0 such that f(x + p) = f(x) for all x in

More information

Economics 101 Spring 2017 Answers to Homework #1 Due Thursday, Feburary 9, 2017

Economics 101 Spring 2017 Answers to Homework #1 Due Thursday, Feburary 9, 2017 Economics 101 Spring 2017 Answers to Homework #1 Due Thursday, Feburary 9, 2017 Directions: The homework will be collected in a box before the large lecture. Please place your name, TA name and section

More information

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions:

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions: Page Name: ID: Section: This exam has 7 questions: 5 multiple choice questions worth 5 points each. 2 hand graded questions worth 25 points total. Important: No graphing calculators! Any non scientific

More information

4-4 Graphing Sine and Cosine Functions

4-4 Graphing Sine and Cosine Functions Describe how the graphs of f (x) and g(x) are related. Then find the amplitude of g(x), and sketch two periods of both functions on the same coordinate axes. 1. f (x) = sin x; g(x) = sin x The graph of

More information

Ch. 6 Linear Functions Notes

Ch. 6 Linear Functions Notes First Name: Last Name: Block: Ch. 6 Linear Functions Notes 6.1 SLOPE OF A LINE Ch. 6.1 HW: p. 9 #4 1, 17,,, 8 6. SLOPES OF PARALLEL AND PERPENDICULAR LINES 6 Ch. 6. HW: p. 49 # 6 odd letters, 7 0 8 6.

More information

Review guide for midterm 2 in Math 233 March 30, 2009

Review guide for midterm 2 in Math 233 March 30, 2009 Review guide for midterm 2 in Math 2 March, 29 Midterm 2 covers material that begins approximately with the definition of partial derivatives in Chapter 4. and ends approximately with methods for calculating

More information

Up and Down or Down and Up

Up and Down or Down and Up Lesson.1 Assignment Name Date Up and Down or Down and Up Exploring Quadratic Functions 1. The citizens of Herrington County are wild about their dogs. They have an existing dog park for dogs to play, but

More information

Algebra. Teacher s Guide

Algebra. Teacher s Guide Algebra Teacher s Guide WALCH PUBLISHING Table of Contents To the Teacher.......................................................... vi Classroom Management..................................................

More information

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy Optimization Constrained optimization and Lagrange multipliers Constrained optimization is what it sounds like - the problem of finding a maximum or minimum value (optimization), subject to some other

More information

10 GRAPHING LINEAR EQUATIONS

10 GRAPHING LINEAR EQUATIONS 0 GRAPHING LINEAR EQUATIONS We now expand our discussion of the single-variable equation to the linear equation in two variables, x and y. Some examples of linear equations are x+ y = 0, y = 3 x, x= 4,

More information

2. To receive credit on any problem, you must show work that explains how you obtained your answer or you must explain how you obtained your answer.

2. To receive credit on any problem, you must show work that explains how you obtained your answer or you must explain how you obtained your answer. Math 50, Spring 2006 Test 2 PRINT your name on the back of the test. Circle your class: MW @ 11 TTh @ 2:30 Directions 1. Time limit: 50 minutes. 2. To receive credit on any problem, you must show work

More information

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs Chapter 5: Trigonometric Functions and Graphs 1 Chapter 5 5.1 Graphing Sine and Cosine Functions Pages 222 237 Complete the following table using your calculator. Round answers to the nearest tenth. 2

More information

C.2 Equations and Graphs of Conic Sections

C.2 Equations and Graphs of Conic Sections 0 section C C. Equations and Graphs of Conic Sections In this section, we give an overview of the main properties of the curves called conic sections. Geometrically, these curves can be defined as intersections

More information

Mock final exam Math fall 2007

Mock final exam Math fall 2007 Mock final exam Math - fall 7 Fernando Guevara Vasquez December 5 7. Consider the curve r(t) = ti + tj + 5 t t k, t. (a) Show that the curve lies on a sphere centered at the origin. (b) Where does the

More information

Math 148 Exam III Practice Problems

Math 148 Exam III Practice Problems Math 48 Exam III Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Section 7.2 Logarithmic Functions

Section 7.2 Logarithmic Functions Math 150 c Lynch 1 of 6 Section 7.2 Logarithmic Functions Definition. Let a be any positive number not equal to 1. The logarithm of x to the base a is y if and only if a y = x. The number y is denoted

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

2.1 Partial Derivatives

2.1 Partial Derivatives .1 Partial Derivatives.1.1 Functions of several variables Up until now, we have only met functions of single variables. From now on we will meet functions such as z = f(x, y) and w = f(x, y, z), which

More information

Roots of Quadratic Functions

Roots of Quadratic Functions LESSON 12 Roots of Quadratic Functions LEARNING OBJECTIVES Today I am: sketching parabolas with limited information. So that I can: identify the strengths of each form of a quadratic equation. I ll know

More information

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4

MATH 12 CLASS 9 NOTES, OCT Contents 1. Tangent planes 1 2. Definition of differentiability 3 3. Differentials 4 MATH 2 CLASS 9 NOTES, OCT 0 20 Contents. Tangent planes 2. Definition of differentiability 3 3. Differentials 4. Tangent planes Recall that the derivative of a single variable function can be interpreted

More information

The Ellipse. PF 1 + PF 2 = constant. Minor Axis. Major Axis. Focus 1 Focus 2. Point 3.4.2

The Ellipse. PF 1 + PF 2 = constant. Minor Axis. Major Axis. Focus 1 Focus 2. Point 3.4.2 Minor Axis The Ellipse An ellipse is the locus of all points in a plane such that the sum of the distances from two given points in the plane, the foci, is constant. Focus 1 Focus 2 Major Axis Point PF

More information

You analyzed graphs of functions. (Lesson 1-5)

You analyzed graphs of functions. (Lesson 1-5) You analyzed graphs of functions. (Lesson 1-5) LEQ: How do we graph transformations of the sine and cosine functions & use sinusoidal functions to solve problems? sinusoid amplitude frequency phase shift

More information

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E MATH 259 FINAL EXAM 1 Friday, May 8, 2009. NAME: Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E Instructions: 1. Do not separate the pages of the exam.

More information

REVIEW SHEET FOR MIDTERM 2: ADVANCED

REVIEW SHEET FOR MIDTERM 2: ADVANCED REVIEW SHEET FOR MIDTERM : ADVANCED MATH 195, SECTION 59 (VIPUL NAIK) To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet to the review session. The document

More information

Use the Point-Slope Form to Write the Equation of a Line

Use the Point-Slope Form to Write the Equation of a Line Math 90 8.3 "Writing Equations of Lines" Objectives: * Use the point-slope form to write the equation of a line. * Use the slope-intercept form to write the equation of a line. * Use slope as an aid when

More information

Math 233. Extrema of Functions of Two Variables Basics

Math 233. Extrema of Functions of Two Variables Basics Math 233. Extrema of Functions of Two Variables Basics Theorem (Extreme Value Theorem) Let f be a continuous function of two variables x and y defined on a closed bounded region R in the xy-plane. Then

More information

Class 9 Coordinate Geometry

Class 9 Coordinate Geometry ID : in-9-coordinate-geometry [1] Class 9 Coordinate Geometry For more such worksheets visit www.edugain.com Answer the questions (1) Find the coordinates of the point shown in the picture. (2) Find the

More information

Hyperbolas Graphs, Equations, and Key Characteristics of Hyperbolas Forms of Hyperbolas p. 583

Hyperbolas Graphs, Equations, and Key Characteristics of Hyperbolas Forms of Hyperbolas p. 583 C H A P T ER Hyperbolas Flashlights concentrate beams of light by bouncing the rays from a light source off a reflector. The cross-section of a reflector can be described as hyperbola with the light source

More information

VOCABULARY WORDS. quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant

VOCABULARY WORDS. quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant VOCABULARY WORDS quadratic equation root(s) of an equation zero(s) of a function extraneous root quadratic formula discriminant 1. Each water fountain jet creates a parabolic stream of water. You can represent

More information

SM3 Lesson 2-3 (Intercept Form Quadratic Equation)

SM3 Lesson 2-3 (Intercept Form Quadratic Equation) SM3 Lesson 2-3 (Intercept Form Quadratic Equation) Factor the following quadratic expressions: x 2 + 11x + 30 x 2 10x 24 x 2 8x + 15 Standard Form Quadratic Equation (x + 5)(x + 6) (x 12)(x + 2) (x 5)(x

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Section 1 Section 2 Section 3 Section 4 Section 5 Exponential Functions and Their Graphs Logarithmic Functions and Their Graphs Properties of Logarithms

More information

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. Math 126 Final Examination Winter 2012 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM. This exam is closed

More information

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009 Your Name Your Signature Instructions: Please begin by printing and signing your name in the boxes above and by checking your section in the box to the right You are allowed 2 hours (120 minutes) for this

More information

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure Math Labs Activity 1: Rectangles and Rectangular Prisms Using Coordinates Problem Statement Use the Cartesian coordinate system to draw rectangle ABCD. Use an x-y-z coordinate system to draw a rectangular

More information

Introduction to the Graphing Calculator for the TI-86

Introduction to the Graphing Calculator for the TI-86 Algebra 090 ~ Lecture Introduction to the Graphing Calculator for the TI-86 Copyright 1996 Sally J. Glover All Rights Reserved Grab your calculator and follow along. Note: BOLD FACE are used for calculator

More information

Functions of several variables

Functions of several variables Chapter 6 Functions of several variables 6.1 Limits and continuity Definition 6.1 (Euclidean distance). Given two points P (x 1, y 1 ) and Q(x, y ) on the plane, we define their distance by the formula

More information

Pre-AP Algebra 2 Unit 8 - Lesson 2 Graphing rational functions by plugging in numbers; feature analysis

Pre-AP Algebra 2 Unit 8 - Lesson 2 Graphing rational functions by plugging in numbers; feature analysis Pre-AP Algebra 2 Unit 8 - Lesson 2 Graphing rational functions by plugging in numbers; feature analysis Objectives: Students will be able to: Analyze the features of a rational function: determine domain,

More information

University of North Georgia Department of Mathematics

University of North Georgia Department of Mathematics University of North Georgia Department of Mathematics Instructor: Berhanu Kidane Course: College Algebra Math 1111 Text Book: For this course we use the free e book by Stitz and Zeager with link: http://www.stitz-zeager.com/szca07042013.pdf

More information

Conic and Quadric Surface Lab page 4. NORTHEASTERN UNIVERSITY Department of Mathematics Fall 03 Conic Sections and Quadratic Surface Lab

Conic and Quadric Surface Lab page 4. NORTHEASTERN UNIVERSITY Department of Mathematics Fall 03 Conic Sections and Quadratic Surface Lab Conic and Quadric Surface Lab page 4 NORTHEASTERN UNIVERSITY Department of Mathematics Fall 03 Conic Sections and Quadratic Surface Lab Goals By the end of this lab you should: 1.) Be familar with the

More information

Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition). Unit #23 : Lagrange Multipliers Goals: To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition). Constrained Optimization - Examples

More information

Patterns and Graphing Year 10

Patterns and Graphing Year 10 Patterns and Graphing Year 10 While students may be shown various different types of patterns in the classroom, they will be tested on simple ones, with each term of the pattern an equal difference from

More information

10.1 Curves defined by parametric equations

10.1 Curves defined by parametric equations Outline Section 1: Parametric Equations and Polar Coordinates 1.1 Curves defined by parametric equations 1.2 Calculus with Parametric Curves 1.3 Polar Coordinates 1.4 Areas and Lengths in Polar Coordinates

More information

Section 5.2 Graphs of the Sine and Cosine Functions

Section 5.2 Graphs of the Sine and Cosine Functions Section 5.2 Graphs of the Sine and Cosine Functions We know from previously studying the periodicity of the trigonometric functions that the sine and cosine functions repeat themselves after 2 radians.

More information

Absolute Value of Linear Functions

Absolute Value of Linear Functions Lesson Plan Lecture Version Absolute Value of Linear Functions Objectives: Students will: Discover how absolute value affects linear functions. Prerequisite Knowledge Students are able to: Graph linear

More information

Actual testimonials from people that have used the survival guide:

Actual testimonials from people that have used the survival guide: Algebra 1A Unit: Coordinate Plane Assignment Sheet Name: Period: # 1.) Page 206 #1 6 2.) Page 206 #10 26 all 3.) Worksheet (SIF/Standard) 4.) Worksheet (SIF/Standard) 5.) Worksheet (SIF/Standard) 6.) Worksheet

More information

Level Curves, Partial Derivatives

Level Curves, Partial Derivatives Unit #18 : Level Curves, Partial Derivatives Goals: To learn how to use and interpret contour diagrams as a way of visualizing functions of two variables. To study linear functions of two variables. To

More information

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points

MULTI-VARIABLE OPTIMIZATION NOTES. 1. Identifying Critical Points MULTI-VARIABLE OPTIMIZATION NOTES HARRIS MATH CAMP 2018 1. Identifying Critical Points Definition. Let f : R 2! R. Then f has a local maximum at (x 0,y 0 ) if there exists some disc D around (x 0,y 0 )

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it: Extreme Values of Multivariate Functions Our next task is to develop a method for determining local extremes of multivariate functions, as well as absolute extremes of multivariate functions on closed

More information

Amplitude, Reflection, and Period

Amplitude, Reflection, and Period SECTION 4.2 Amplitude, Reflection, and Period Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the amplitude of a sine or cosine function. Find the period of a sine or

More information

Solids Washers /G. TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Solids Washers /G. TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will be able to visualize the solid generated by revolving the region bounded between two function graphs and the vertical lines x = a and x = b about the x-axis. Students will

More information

We are going to begin a study of beadwork. You will be able to create beadwork on the computer using the culturally situated design tools.

We are going to begin a study of beadwork. You will be able to create beadwork on the computer using the culturally situated design tools. Bead Loom Questions We are going to begin a study of beadwork. You will be able to create beadwork on the computer using the culturally situated design tools. Read the first page and then click on continue

More information

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}]

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}] hapter 16 16.1. 6. Notice that F(x, y) has length 1 and that it is perpendicular to the position vector (x, y) for all x and y (except at the origin). Think about drawing the vectors based on concentric

More information

M.I. Transformations of Functions

M.I. Transformations of Functions M.I. Transformations of Functions Do Now: A parabola with equation y = (x 3) 2 + 8 is translated. The image of the parabola after the translation has an equation of y = (x + 5) 2 4. Describe the movement.

More information