Structural Deformation of a Circular Thin Plate with Combinations of Fixed and Free Edges

Size: px
Start display at page:

Download "Structural Deformation of a Circular Thin Plate with Combinations of Fixed and Free Edges"

Transcription

1 Structural Deformation of a Circular Thin Plate with Combinations of Fixed and Free Edges Mechanical Engineering Report 2015/05 Kan Qin, Ingo Jahn School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, Australia. June 2015 Abstract This report demonstrates a computational model for the structural deformation of a circular thin plate. The finite difference method is used to solve the governing equation of structural deformation. Detailed numerical procedures are described. A Python code is developed under this framework and compared with the result from the commercial software ANSYS. It is shown that the relative error is less than 3.5%. The developed Python code can be used to study the structural deformation of the circular thin plate in different applications. 1

2 Contents 1 Introduction 3 2 Computational Model Governing Equation Moments and Forces Boundary Conditions Numerical Method Discretization Numerical Treatment for Specific Points Point on Fixed Edge Point Adjacent to Fixed Edge Point Adjacent to Fixed-Free Corner Test Case 16 5 Conclusion 18 A Coefficients 20 B Discretization of Specific Points 23 B.1 Points on Fixed Edge B.2 Points Adjacent to Fixed Edge B.3 Points Adjacent to Fixed-Free Corner B.4 Points Adjacent to Fixed Corner on Free edge B.5 Points on Free Edge B.6 Points Adjacent to Free Edge B.7 Points on Free-Free Corner B.8 Points inside Free-Free Corner B.9 Points Adjacent to Free-Free Corner on Free Edge B.10 Points at Inner Domain C Source Code 43 2

3 1 Introduction The structural deformation of rectangular thin plates has been well studied [1, 2]. For the structural deformation of the circular thin plate, the governing equation in polar coordinates can be simply derived by coordinates transformation from the Cartesian system [3]. There are a few papers on introducing the numerical method for solving the governing equation for the circular plate [4, 5], but these treat cases with simplified boundary conditions (e.g. axisymmetric), and the governing equation for these specific cases can be further reduced and easily solved. In this report, the detailed numerical procedure to solve the structural deformation of the generic circular thin plate with any combination of fixed and free edges is provided. 3

4 2 Computational Model 2.1 Governing Equation The polar coordinates r and θ are used to solve the structural deformation of the circular thin plate. The governing equations for the circular thin plate is listed as [3]. ( 2 r r r + 1 w r 2 θ 2)( 2 r + 1 w 2 r r + 1 w r 2 θ 2) = p D (1) w is the local deflection, r is the local radius, θ is the local angle, p is the pressure acting on the thin plate, D is the stiffness of the thin plate, defined as: D = Eh 3 12(1 µ 3 ) (2) E is the modulus of elasticity, h is the plate thickness and µ is Poisson s ratio. The expanded form of Equation 1 can be written as. 4 w r w 4 r r 1 2 w 3 r 2 r + 1 w 2 r 3 r w r 2 r 2 θ 2 3 w 2 r 3 θ 2 r w r 4 θ w 2 r 4 θ = p 4 D (3) The above governing equation is the special case of the Kirchoff plate equation. It is simplified considerably for isotropic and homogeneous plates for which the in-plane deformations can be neglected. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form. The basic assumptions are [6]. straight lines normal to the mid-surface remain straight after deformation; straight lines normal to the mid-surface remain normal to the mid-surface after deformation; the thickness of the plate does not change during a deformation; this equation doesn t include the in-plane tension and is only applicable for plates that carry load in bending. This governing equation is only accurate for small deflections and for thin plates subjected to forces and moments. 2.2 Moments and Forces The moments and forces used for the structural deformation of circular thin plates are shown in Figure 1. The bending or twisting moments M r, M θ, M rθ and M θr in the polar system are defined as [3]. 4

5 y PrT (, ) M T r 'r V r V T M Tr 'T M r M T x Figure 1: Schematic diagram for forces and moments. M r = D[ 2 w r +µ(1 w 2 r r w )] r 2 θ2 (4) M θ = D[ 1 w r r w w r 2 θ 2 +µ 2 r ] 2 (5) M rθ = M θr = D(1 µ)( 1 2 w r r θ w r 2 θ ) (6) The edge forces V r and V θ in radial and tangential direction are defined as [3]. V r = D[ w r ( 2 r + 1 w 2 r r w 1 µ )+ r 2 θ2 r θ (1 2 w r r θ w )] r 2 θ (7) V θ = D[ 1 w r θ r + 1 w 2 r r w r 2 θ )+(1 µ) 2 r (1 2 w r r θ w )] r 2 θ (8) 2.3 Boundary Conditions The boundary conditions for circular thin plates can be classified as free and fixed edges at radial or tangential directions, this is shown in Figure 2. The corner is also regarded as one type of boundary conditions, for example, free-free corner, this is defined as the intersection point between two free edges. The boundary conditions for circular thin plate are summarized as. 1. Fixed tangential edge 2. Fixed radial edge Zero deflection w = 0 w Zero deflection slope θ = 0 Zero deflection w = 0 w Zero deflection slope r = 0 5

6 y Corner Tangential edge Radial edge x Figure 2: Schematic diagram for different boundaries. 3. Fixed tangential edge with fixed slope 4. Fixed radial edge with fixed slope 5. Free tangential edge Zero deflection w = 0 w Constant deflection slope θ = const Zero deflection w = 0 w Constant deflection slope r = const Zero bending moment M θ = 0 Tangential edge force V θ = F θ 6. Free radial edge Zero bending moment M r = 0 Radial edge force V r = F r 7. Free-Free corner Zero bending moment M θ = M r = 0 Zero twisting moment M rθ = M θr = 0 Tangential edge force V θ = F θ Radial edge force V r = F r 6

7 To simplify the computational solution of the free-free corner boundary condition, the M θ = M r = 0 requirement can be replaced by the following deformation condition: These are obtained by combining Equation 4 and Free-Fixed (Radial-Tangential) corner 2 w r = 0 2 (9) w r w r 2 θ = 0 2 (10) Zero deflection w = 0 w Zero deflection slope θ = 0 Zero bending moment M r = 0 Radial edge force V r = F r 9. Free-Fixed (Tangential-Radial) corner Zero deflection w = 0 w Zero deflection slope r = 0 Zero bending moment M θ = 0 Tangential edge force V θ = F θ 10. Fixed-Fixed corner Zero deflection w = 0 w Zero deflection slope θ = 0 Zero deflection slope w r = 0 Where F r and F θ the force per unit length acting on the radial and tangential free edges, respectively. 7

8 3 Numerical Method The finite difference method is used to discretized the governing equation as indicated in Section 2. This section provides the detailed numerical procedure on solving the governing equation. 3.1 Discretization To assist the discretization of the governing equations, the following scheme is used at point o. ( 4 w r 4 ) o = 1 r 4(w ee 4w e +6w o 4w w +w ww ) (11) ( 3 w r 3 ) o = 1 2 r 3(w ee 2w e +2w w w ww ) (12) ( 2 w r ) 2 o = 1 r 2(w e 2w o +w w ) (13) ( w r ) o = 1 2 r (w e w w ) (14) ( 4 w 1 r 2 θ 2) o = r 2 θ 2[(w nw 2w w +w sw ) 2(w n 2w o +w s )+(w ne 2w e +w se )] (15) ( 3 w r θ 2) o = ( 3 w 1 ) = θ 2 ro 2 r θ 2[(w ne 2w e +w se ) (w nw 2w w +w sw )] (16) ( 3 w r 2 θ ) o = ( 3 w 1 θ r 2) o = 2 r 2 θ [(w ne 2w n +w nw ) (w se 2w s +w sw )] (17) ( 2 w r θ ) o = 1 4 r θ [(w ne w se ) (w nw w sw )] (18) ( w θ ) o = 1 2 θ (w n w s ) (19) ( 2 w θ 2 ) o = 1 θ 2(w n 2w o +w s ) (20) ( 3 w θ 3 ) o = 1 2 θ 3(w nn 2w n +2w s w ss ) (21) ( 4 w θ 4 ) o = 1 θ 4(w nn 4w n +6w o 4w s +w ss ) (22) The subscripts in the above equation indicate the position in the stencil. The schematic diagram of stencil used to solve the governing equation is shown in Figure 3. The discretized form of Equation 1 can be written as. a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D (23) The coefficients for these discretized equations can be found in Appendix A. The dis- 8

9 w nn w nw w n w ne w ww w w w o w e w ee w sw w s w se N, circumferential w ss E, radial Figure 3: Stencil arrangement for discretization. cretization form of M r, M θ, M rθ, V r and V θ at point o is shown as (M r ) o = b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s (24) (M θ ) o = c 1 w e +c 2 w o +c 3 w w +c 4 w n +c 5 w s (25) (M rθ ) o = (M θr ) o = k 1 w ne +k 2 w se +k 3 w nw +k 4 w sw +k 5 w n +k 6 w s (26) (V r ) o = d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se + d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o (27) (V θ ) o = e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw (28) The discretized form of Equation 9 and 10 is written as. f 1 w e +f 2 w o +f 3 w w = 0 (29) g 1 w n +g 2 w o +g 3 w s +g 4 w e +g 5 w w = 0 (30) The boundary conditions introduced in section 2.3 can be discretized using the same finite difference relations. 1. Fixed tangential edge 2. Fixed radial edge w o w ghost θ w o w ghost r 9 w o = 0 = 0 w o = 0 = 0

10 3. Fixed tangential edge with fixed slope w o w ghost θ w o = 0 = const 4. Fixed radial edge with fixed slope w o w ghost r w o = 0 = const 5. Free tangential edge c 1 w e +c 2 w o +c 3 w w +c 4 w n +c 5 w s = 0 e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ 6. Free radial edge b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se + d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r 7. Free-Free corner f 1 w e +f 2 w o +f 3 w w = 0 = 0 g 1 w n +g 2 w o +g 3 w s +g 4 w e +g 5 w w = 0 k 1 w ne +k 2 w se +k 3 w nw +k 4 w sw +k 5 w n +k 6 w s = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se + d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ 8. Free-Fixed (Radial-Tangential) corner w o = 0 w o w ghost = 0 θ b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se + d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r 10

11 9. Free-Fixed (Tangential-Radial) corner w o = 0 w o w ghost = 0 r c 1 w e +c 2 w o +c 3 w w +c 4 w n +c 5 w s = 0 e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ 10. Fixed-Fixed corner w o = 0 w o w ghost = 0 θ w o w ghost = 0 r The subscript ghost indicates the point outside the simulation domain and is aligned with point o at the same circumferential or radial direction. This point is used for discretization of governing equations and can be eliminated by implementing boundary conditions. This process can be found in section Numerical Treatment for Specific Points This section explains how to solve the governing equation in the specific points. The boundary conditions at the edge of the circular thin plate to be considered here correspond to a fixed tangential edge and three free edges. Given that this is a fourth-order governing equation, different types of points must be treated specifically, as shown in Figure Points on fixed edge; 2. Points adjacent to fixed edge; 3. Points adjacent to fixed-free corner; 4. Points adjacent to fixed-free corner on free edge; 5. Points on free edge; 6. Points adjacent to free edge; 7. Points on free corner; 8. Points inside free-free corner; 9. Points adjacent to free-free corner on free edge; 10. Points on the inner domain. 11

12 Free edge Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10 Free edge Free edge N, circumferential Fixed end E, radial Figure 4: Schematic diagram of different specific points Point on Fixed Edge For points on the fixed edge, the deflection is directly set as zero, the governing equation can be reduced to. w o = Point Adjacent to Fixed Edge For points adjacent to fixed edge, which are shown in Figure 5. The symbol shows this specific point, the symbol corresponds to surrounding cells used to solve the governing equation and the symbol are the ghost or zero deflection points which can be deleted by implementing boundary conditions. These definitions are also applied to the following analysis of the specific points. The governing equations and boundary conditions used to solve the points adjacent to fixed edge are. Governing equation a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D Fixed point at sw w sw = 0 12

13 N, circumferential Fixed end E, radial Figure 5: Stencil arrangement for points adjacent to fixed edge. Fixed point at se Fixed point at s w se = 0 Zero deflection slope at s w s = 0 w s w ss θ = 0 With these boundary conditions, the governing equation reduces to: a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 10 w nw +a 12 w ne = p D Point Adjacent to Fixed-Free Corner For points adjacent to fixed-free corner, these points can be clarified as west and east points, which is shown in Figure 6. The equations for points closed to the west boundary can be written as. Governing equation a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D (31) 13

14 Zero bending moment at w b 1 w o +b 2 w w +b 3 w ww +b 4 w nw +b 5 w sw = 0 (32) Fixed point at sw Fixed point at se Fixed point at s w sw = 0 (33) w se = 0 (34) w s = 0 (35) Zero deflection slope at s w s w ss θ = 0 (36) The point w sw in Equation 32 can be deleted by substituting Equation 33. b 1 w o +b 2 w w +b 3 w ww +b 4 w nw = 0 (37) The points w sw, w s, w se and w ss in Equation 31 are eliminated by substituting Equation 33, 34, 35 and 36. a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 10 w nw +a 12 w ne = p D (38) then the ghost point w ww is eliminated by combining Equation 37 and 38, which is shown as. a 1 w ee +a 2 w e +(a 3 a 5b 1 b 3 )w o +(a 4 a 5b 2 b 3 )w w +a 6 w nn +a 7 w n +(a 10 a 5b 4 b 3 )w nw +a 12 w ne = p D This is the governing equation for point adjacent to fixed-free corner. For the point at the east boundary, the governing equation and boundary condition is shown as Governing equation a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D Zero bending moment at e b 1 w ee +b 2 w e +b 3 w o +b 4 w ne +b 5 w se = 0 14

15 (a) (b) Free edge Free edge N, circumferential N, circumferential Fixed end Fixed end E, radial E, radial Figure 6: Stencil arrangement for points adjacent to fixed-free corner, (a) west point, (b) east point. Fixed point at sw Fixed point at se w sw = 0 Fixed point at s w se = 0 Zero deflection slope at s w s = 0 w s w ss θ = 0 Applying the above process to eliminate the ghost points, the governing equation becomes. a 2 w e +(a 3 a 1 b 3 b 1 )w o +(a 4 a 1 b 2 b 1 )w w +a 5 w ww +a 6 w nn +a 7 w n +a 10 w nw +(a 12 a 1b 4 b 1 )w ne = p D This section only provides the numerical treatment for the three different specific points, the numerical treatment for other points can be found in Appendix B. Please note that the treatment of points close to the edge needs to be adjusted to suit boundary conditions. The procedure follows the steps outlined above. 15

16 Free edge Free edge Free edge y x Fixed end 4 Test Case Figure 7: Schematic diagram of the circular thin plate. This finite difference method for the circular thin plate was implemented in the Python programming language. The source code is shown in Appendix C. In order to verify this developed Python code for the deformation of a circular thin plate, a test case of a 45 segment of a circular thin plate was selected. The thickness of this plate is chosen as 150 µm, the inner and outer radius is 25.4 mm and 50.8 mm, respectively. A uniform pressure of 70 Pa is prescribed on the top. The schematic diagram as well the boundary conditions are shown in Figure 7. The material selected is stainless steel with the elasticity module of 200 GPa and the Poisson s ration of 0.3. The commercial software ANSYS [7] was used to generate the verification case. The comparison of results of the structural deformation contour are shown in Figure 8. Note the legend in these two cases are not in the same scale, and the deformation result from ANSYS are negative. The comparison of the contour is reasonable. The deflection at the inner, middle and outer radii from these two cases are also extracted, and shown in Figure 9. The maximum relative error between the developed Python code and ANSYS is less than 3.5%. This proves that the developed Python code for the structural deformation is suitable for studying the structural deformation of circular thin plates. 16

17 (a) (b) Figure 8: Structural deformation contour (a): ANSYS, (b) the Developed Python code. 17

18 Defomration, m outer radii middle radii inner radii FDM-inner radii Ansys-inner radii FDM-middle radii Ansys-middle radii FDM-outer radii Ansys-outer radii 5e Angle, deg Figure 9: Deflection comparison between ANSYS and the developed Python code at different radii. 5 Conclusion This report provides the detailed numerical procedures to solve the structural deformation of the circular thin plate. Comparison of the finite difference code to ANSYS, shows that for the standard geometry (45, r inner =25.4 mm and r outer =50.8 mm), the difference is less than 3.5%. This demonstrates that the code is suitable for the analysis of small deflections of thin circular plates. 18

19 References [1] M.V. Barton. Finite difference equation for the analysis of thin rectangular plates with combinations of fixed and free edges. Technical report, The University of Texas, August [2] C.B. Dolicanin, V.B. Nikolic, and D.C. Dolicanin. Application of finite difference method to study of the phenonmenon in the theory of thin plate. Scientific Publications of the State University of Novi Pazar, 2(1):29 43, [3] S. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells. McGraw-Hill, New York, [4] H.G. Sabiniak. The method of finite differences in solutions concerning circular plate. Key Engineering Materials, 490: , [5] A.K. Chakravorty. Finite difference solution for circular plates on elastic foundations. International Journal For Numerical Methods in Engineering, 9:73 84, [6] J.N. Reddy. Theory and analysis of elastic plates and shells. Taylor and Francis, Philadelphia, PA, [7] ANSYS, Inc. ANSYS Mechanical User s Guide, 15.0 edition,

20 A Coefficients a 1 = 1 r r 3 r a 2 = 1 2 rr 4 3 r 1 4 r 2 r 2 2 r 3 r + 2 r θ 2 r 4 3 r 2 θ 2 r 2 a 3 = 6 r r 2 r 8 2 θ 2 r θ 4 r r 2 θ 2 r 2 a 4 = 2 r 3 r 1 2 rr 1 3 r 2 r 4 2 r 2 4 r θ 2 r 4 3 r 2 θ 2 r 2 a 5 = 1 r 1 4 r 3 r a 6 = 1 θ 4 r 4 a 7 = 4 θ 2 r 4 4 θ 4 r 4 4 r 2 θ 2 r 2 a 8 = 4 θ 2 r 4 4 θ 4 r 4 4 r 2 θ 2 r 2 a 9 = 1 θ 4 r 4 1 a 10 = r θ 2 r r 2 θ 2 r 2 1 a 11 = r θ 2 r r 2 θ 2 r 2 2 a 12 = r 2 θ 2 r 1 2 r θ 2 r 3 2 a 13 = r 2 θ 2 r 1 2 r θ 2 r 3 b 1 = 1 r + µ 2 2 rr b 2 = 2 r 2µ 2 θ 2 r 2 b 3 = 1 r µ 2 2 rr b 4 = µ θ 2 r 2 b 5 = µ θ 2 r 2 20

21 c 1 = µ r rr c 2 = 2µ r 2 2 θ 2 r 2 c 3 = µ r rr c 4 = 1 θ 2 r 2 c 5 = 1 θ 2 r 2 d 1 = 1 2 r 3 d 2 = 1 r 2 r 1 2 rr 1 2 r 1 3 r θ 2 r + µ 1 2 r θ 2 r 2 d 3 = 1 r rr r 2 r + 1 r θ 2 r µ 1 2 r θ 2 r 2 d 4 = 1 2 r 3 d 5 = 2 µ 2 r θ 2 r 2 d 6 = 2 µ 2 r θ 2 r 2 d 7 = µ 2 2 r θ 2 r 2 d 8 = µ 2 2 r θ 2 r 2 d 9 = µ 3 θ 2 r 3 d 10 = µ 3 θ 2 r 3 d 11 = 6 2µ θ 2 r 2 3 r 2 r 21

22 1 e 1 = 2 θ 3 r 3 e 2 = µ 1 r 2 θr 1 r 2 θr µ 1 θr 1 3 θ 3 r 3 1 e 3 = θ 3 r r 2 θr + µ 1 θr µ 1 3 r 2 θr e 4 = 1 2 θ 3 r 3 1 e 5 = 4 r θr r 2 θr + µ 1 2 r θr µ r 2 θr 1 e 6 = 2 r 2 θr 1 4 r θr µ r θr µ r 2 θr e 7 = µ 1 2 r 2 θr 1 2 r 2 θr µ 1 2 r θr r θr 2 1 e 8 = 4 r θr r 2 θr + µ 1 2 r θr + µ r 2 θr f 1 = 1 r 2 f 2 = 2 r 2 f 3 = 1 r 2 1 g 1 = θ 2 r 2 g 2 = 2 θ 2 r 2 1 g 3 = θ 2 r 2 g 4 = 1 2 rr g 5 = 1 2 rr 1 k 1 = 4 r θr 1 k 2 = 4 r θr 1 k 3 = 4 r θr 1 k 4 = 4 r θr k 5 = 1 2 θr 2 k 5 = 1 2 θr 2 22

23 N, circumferential Fixed end E, radial Figure 10: Stencil arrangement for points adjacent to fixed edge. B Discretization of Specific Points This appendix will address the governing equation for specific points and the MATLAB script for extracting the coefficients of the reduced governing equation at the specific point. B.1 Points on Fixed Edge w o = 0 B.2 Points Adjacent to Fixed Edge a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D w sw = 0 w s = 0 w se = 0 w s w ss = 0 θ 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 23

24 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 10syms k1 k2 k3 k4 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 12 13% points adjacent to fixed edge eq = a1 w ee + a2 w e + a3 w o + a4 w w + a5 w ww + a6 w nn + a7 w n + a10 w nw + a12 w ne; 16 simplify(eq) B.3 Points Adjacent to Fixed-Free Corner (a): west point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + (b): east point a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w o +b 2 w w +b 3 w ww +b 4 w nw +b 5 w sw = 0 w sw = 0 w s = 0 w se = 0 w s w ss = 0 θ a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w ee +b 2 w w +b 3 w o +b 4 w ne +b 5 w se = 0 w sw = 0 w s = 0 w se = 0 w s w ss = 0 θ 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 24

25 (a) (b) Free edge Free edge N, circumferential N, circumferential Fixed end Fixed end E, radial E, radial Figure 11: Stencil arrangement for points adjacent to fixed-free corner, (a) west point, (b) east point. 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 g4 g5 10syms k1 k2 k3 k4 k5 k6 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 12 13% points adjacent to fixed corner eq1 = b1 w o + b2 w w + b3 w ww + b4 w nw + b5 w sw; 16 sol ww = solve (eq1 == 0, w ww) ; 17 simplifyfraction (sol ww) clear all 20 21syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 22syms b1 b2 b3 b4 b5 23syms c1 c2 c3 c4 c5 24syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 25syms e1 e2 e3 e4 e5 e6 e7 e8 26syms f1 f2 f3 g1 g2 g3 g4 g5 27syms k1 k2 k3 k4 k5 k6 28syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se eq1 = b1 w ee + b2 w e + b3 w o + b4 w ne + b5 w se; 31 sol ee = solve (eq1 == 0, w ee) ; 32 simplifyfraction ( sol ee ) 25

26 B.4 Points Adjacent to Fixed Corner on Free edge (a): west point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s = 0 b 1 w ne +b 2 w n +b 3 w nw +b 4 w nn +b 5 w o = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se +d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r (b): east point w sw = 0 w s = 0 w se = 0 w s w ss = 0 θ a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s = 0 b 1 w ne +b 2 w n +b 3 w nw +b 4 w nn +b 5 w o = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se +d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r w sw = 0 w s = 0 w se = 0 w s w ss = 0 θ 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 g4 g5 10syms k1 k2 k3 k4 k5 k6 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 12syms Vr Vt V 13 14% potins adjacent to fixed corner on free edge 15 26

27 (a) (b) Free edge Free edge N, circumferential N, circumferential Fixed end Fixed end E, radial E, radial Figure 12: Stencil arrangement for points adjacent to fixed corner on free edge, (a) west point, (b) east point. 16 eq1 = b1 w e + b2 w o + b3 w w + b4 w n; 17 sol w = solve(eq1 == 0, w w) ; 18 simplifyfraction (sol w) 19 eq2 = b1 w ne + b2 w n + b3 w nw + b4 w nn + b5 w o; 20 sol nw = solve (eq2 == 0, w nw) ; 21 simplifyfraction (sol nw) 22 eq3 = d1 w ee + d2 w e + d3 sol w + d4 w ww + d5 w ne + d7 sol nw + d9 w n + d11 w o; 23 sol ww = solve (eq3 == Vr, w ww) ; 24 simplifyfraction (sol ww) clear all 27 28syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 29syms b1 b2 b3 b4 b5 30syms c1 c2 c3 c4 c5 31syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 32syms e1 e2 e3 e4 e5 e6 e7 e8 33syms f1 f2 f3 g1 g2 g3 g4 g5 34syms k1 k2 k3 k4 k5 k6 35syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 36syms Vr Vt V eq1 = b1 w e + b2 w o + b3 w w + b4 w n; 40 sol e = solve(eq1 == 0, w e) ; 41 simplifyfraction ( sol e ) 42 eq2 = b1 w ne + b2 w n + b3 w nw + b4 w nn + b5 w o; 43 sol ne = solve (eq2 == 0, w ne) ; 44 simplifyfraction ( sol ne ) 45 eq3 = d1 w ee + d2 sol e + d3 w w + d4 w ww + d5 sol ne + d7 w nw + d9 w n + d11 w o; 46 sol ee = solve (eq3 == Vr, w ee) ; 47 simplifyfraction ( sol ee ) 27

28 B.5 Points on Free Edge (a): west and east points a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s = 0 b 1 w ne +b 2 w n +b 3 w nw +b 4 w nn +b 5 w o = 0 b 1 w se +b 2 w s +b 3 w sw +b 4 w o +b 5 w ss = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se +d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r (b): north point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D c 1 w e +c 2 w o +c 3 w w +c 4 w n +c 5 w s = 0 c 1 w ee +c 2 w e +c 3 w o +c 4 w ne +c 5 w se = 0 c 1 w o +c 2 w w +c 3 w ww +c 4 w nw +c 5 w sw = 0 e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 g4 g5 10syms k1 k2 k3 k4 k5 k6 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 12syms Vr Vt V eq1 = b1 w e + b2 w o + b3 w w + b4 w n + b5 w s; 15 sol w = solve(eq1 == 0, w w) ; 16 simplifyfraction (sol w) 17 eq2 = b1 w ne + b2 w n + b3 w nw + b4 w nn + b5 w o; 18 sol nw = solve (eq2 == 0, w nw) ; 19 simplifyfraction (sol nw) 20 eq3 = b1 w se + b2 w s + b3 w sw + b4 w o + b5 w ss ; 21 sol sw = solve (eq3 == 0, w sw) ; 28

29 (a) (b) Free edge Free edge N, circumferential N, circumferential E, radial E, radial (c) Free edge N, circumferential E, radial Figure 13: Stencil arrangement for points on free edge, (a) west point, (b) east point, (c) north point. 29

30 22 simplifyfraction (sol sw) 23 eq4 = d1 w ee + d2 w e + d3 sol w + d4 w ww + d5 w ne + d6 w se + d7 sol nw + d8 sol sw + d9 w n + d10 w s + d11 w o; 24 sol ww = solve (eq4 == Vr, w ww) ; 25 simplifyfraction (sol ww) clear all 28 29syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 30syms b1 b2 b3 b4 b5 31syms c1 c2 c3 c4 c5 32syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 33syms e1 e2 e3 e4 e5 e6 e7 e8 34syms f1 f2 f3 g1 g2 g3 g4 g5 35syms k1 k2 k3 k4 k5 k6 36syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 37syms Vr Vt V eq1 = b1 w e + b2 w o + b3 w w + b4 w n + b5 w s; 40 sol e = solve(eq1 == 0, w e) ; 41 simplifyfraction ( sol e ) 42 eq2 = b1 w ne + b2 w n + b3 w nw + b4 w nn + b5 w o; 43 sol ne = solve (eq2 == 0, w ne) ; 44 simplifyfraction ( sol ne ) 45 eq3 = b1 w se + b2 w s + b3 w sw + b4 w o + b5 w ss ; 46 sol se = solve (eq3 == 0, w se) ; 47 simplifyfraction ( sol se ) 48 eq4 = d1 w ee + d2 sol e + d3 w w + d4 w ww + d5 sol ne + d6 sol se + d7 w nw + d8 w sw + d9 w n + d10 w s + d11 w o; 49 sol ee = solve (eq4 == Vr, w ee) ; 50 simplifyfraction ( sol ee ) clear all 53 54syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 55syms b1 b2 b3 b4 b5 56syms c1 c2 c3 c4 c5 57syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 58syms e1 e2 e3 e4 e5 e6 e7 e8 59syms f1 f2 f3 g1 g2 g3 g4 g5 60syms k1 k2 k3 k4 k5 k6 61syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 62syms Vr Vt V eq1 = c1 w e + c2 w o + c3 w w + c4 w n + c5 w s; 65 sol n = solve(eq1 == 0, w n) ; 66 simplifyfraction ( sol n ) 67 eq2 = c1 w ee + c2 w e + c3 w o + c4 w ne + c5 w se; 68 sol ne = solve (eq2 == 0, w ne) ; 69 simplifyfraction ( sol ne ) 70 eq3 = c1 w o + c2 w w + c3 w ww + c4 w nw + c5 w sw; 30

31 71 sol nw = solve (eq3 == 0, w nw) ; 72 simplifyfraction (sol nw) 73 eq4 = e1 w nn + e2 sol n + e3 w s + e4 w ss + e5 sol ne + e6 sol nw + e7 w se + e8 w sw; 74 sol nn = solve (eq4 == Vt, w nn) ; 75 simplifyfraction (sol nn) B.6 Points Adjacent to Free Edge (a): west point (b): east point (c): north point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w o +b 2 w w +b 3 w ww +b 4 w nw +b 5 w sw = 0 a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w ee +b 2 w e +b 3 w o +b 4 w ne +b 5 w se = 0 a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D c 1 w ne +c 2 w n +c 3 w nw +c 4 w nn +c 5 w o = 0 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 g4 g5 10syms k1 k2 k3 k4 k5 k6 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se eq1 = b1 w o + b2 w w + b3 w ww + b4 w nw + b5 w sw; 14 sol ww = solve (eq1 == 0, w ww) ; 15 simplifyfraction (sol ww) 16 31

32 (a) (b) Free edge Free edge N, circumferential N, circumferential E, radial E, radial (c) Free edge N, circumferential E, radial Figure 14: Stencil arrangement for points adjacent to free edge, (a) west point, (b) east point, (c) north point. 32

33 17 clear all 18 19syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 20syms b1 b2 b3 b4 b5 21syms c1 c2 c3 c4 c5 22syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 23syms e1 e2 e3 e4 e5 e6 e7 e8 24syms f1 f2 f3 g1 g2 g3 g4 g5 25syms k1 k2 k3 k4 k5 k6 26syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se eq1 = b1 w ee + b2 w e + b3 w o + b4 w ne + b5 w se; 29 sol ee = solve (eq1 == 0, w ee) ; 30 simplifyfraction ( sol ee ) clear all 33 34syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 35syms b1 b2 b3 b4 b5 36syms c1 c2 c3 c4 c5 37syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 38syms e1 e2 e3 e4 e5 e6 e7 e8 39syms f1 f2 f3 g1 g2 g3 g4 g5 40syms k1 k2 k3 k4 k5 k6 41syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se eq1 = c1 w ne + c2 w n + c3 w nw + c4 w nn + c5 w o; 44 sol nn = solve (eq1 == 0, w nn) ; 45 simplifyfraction (sol nn) B.7 Points on Free-Free Corner (a): northwest point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w se +b 2 w s +b 3 w sw +b 4 w o +b 5 w ss = 0 c 1 w ee +c 2 w e +c 3 w o +c 4 w ne +c 5 w se = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se +d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ f 1 w e +f 2 w o +f 3 w w = 0 g 1 w n +g 2 w o +g 3 w s +g 4 w e +g 5 w w = 0 k 1 w ne +k 2 w se +k 3 w nw +k 4 w sw +k 5 w n +k 6 w s = 0 33

34 (a) (b) Free edge N, circumferential N, circumferential Free edge Free edge E, radial E, radial Figure 15: Stencil arrangement for points adjacent to free corner, (a) northwest point, (b) northeast point. (b): northeast point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w se +b 2 w s +b 3 w sw +b 4 w o +b 5 w ss = 0 c 1 w o +c 2 w w +c 3 w ww +c 4 w nw +c 5 w sw = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se +d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ f 1 w e +f 2 w o +f 3 w w = 0 g 1 w n +g 2 w o +g 3 w s +g 4 w e +g 5 w w = 0 k 1 w ne +k 2 w se +k 3 w nw +k 4 w sw +k 5 w n +k 6 w s = 0 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 g4 g5 10syms k1 k2 k3 k4 k5 k6 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 12syms Vr Vt V eq1 = f1 w e + f2 w o + f3 w w; 15 sol w = solve(eq1 == 0, w w) ; 16 simplifyfraction (sol w) 34

35 17 eq2 = g1 w n + g2 w o + g3 w s + g4 w e + g5 sol w ; 18 sol n = solve(eq2 == 0, w n) ; 19 simplifyfraction ( sol n ) 20 eq3 = b1 w se + b2 w s + b3 w sw + b4 w o + b5 w ss ; 21 sol sw = solve (eq3 == 0, w sw) ; 22 simplifyfraction (sol sw) 23 eq4 = c1 w ee + c2 w e + c3 w o + c4 w ne + c5 w se; 24 sol ne = solve (eq4 == 0, w ne) ; 25 simplifyfraction ( sol ne ) 26 eq5 = k1 sol ne + k2 w se + k3 w nw + k4 sol sw + k5 sol n + k6 w s; 27 sol nw = solve (eq5 == V, w nw) ; 28 simplifyfraction (sol nw) 29 eq6 = e1 w nn + e2 sol n + e3 w s + e4 w ss + e5 sol ne + e6 sol nw + e7 w se + e8 sol sw ; 30 sol nn = solve (eq6 == Vt, w nn) ; 31 simplifyfraction (sol nn) 32 eq7 = d1 w ee + d2 w e + d3 sol w + d4 w ww + d5 sol ne + d6 w se + d7 sol nw + d8 sol sw + d9 sol n + d10 w s + d11 w o; 33 sol ww = solve (eq7 == Vr, w ww) ; 34 simplifyfraction (sol ww) clear all 37 38syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 39syms b1 b2 b3 b4 b5 40syms c1 c2 c3 c4 c5 41syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 42syms e1 e2 e3 e4 e5 e6 e7 e8 43syms f1 f2 f3 g1 g2 g3 g4 g5 44syms k1 k2 k3 k4 k5 k6 45syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 46syms Vr Vt V eq1 = f1 w e + f2 w o + f3 w w; 49 sol e = solve(eq1 == 0, w e) ; 50 simplifyfraction ( sol e ) 51 eq2 = g1 w n + g2 w o + g3 w s + g4 sol e + g5 w w; 52 sol n = solve(eq2 == 0, w n) ; 53 simplifyfraction ( sol n ) 54 eq3 = b1 w se + b2 w s + b3 w sw + b4 w o + b5 w ss ; 55 sol se = solve (eq3 == 0, w se) ; 56 simplifyfraction ( sol se ) 57 eq4 = c1 w o + c2 w w + c3 w ww + c4 w nw + c5 w sw; 58 sol nw = solve (eq4 == 0, w nw) ; 59 simplifyfraction (sol nw) 60 eq5 = k1 w ne + k2 sol se + k3 sol nw + k4 w sw + k5 sol n + k6 w s; 61 sol ne = solve (eq5 == V, w ne) ; 62 simplifyfraction ( sol ne ) 63 eq6 = e1 w nn + e2 sol n + e3 w s + e4 w ss + e5 sol ne + e6 sol nw + e7 sol se + e8 w sw; 64 sol nn = solve (eq6 == Vt, w nn) ; 35

36 (a) (b) Free edge N, circumferential N, circumferential Free edge Free edge E, radial E, radial Figure 16: Stencil arrangement for points inside free-free corner, (a) northwest point, (b) northeast point. 65 simplifyfraction (sol nn) 66 eq7 = d1 w ee + d2 sol e + d3 w w + d4 w ww + d5 sol ne + d6 sol se + d7 sol nw + d8 w sw + d9 sol n + d10 w s + d11 w o; 67 sol ee = solve (eq7 == Vr, w ee) ; 68 simplifyfraction ( sol ee ) B.8 Points inside Free-Free Corner (a): northwest point (b): northeast point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w o +b 2 w w +b 3 w ww +b 4 w nw +b 5 w sw = 0 c 1 w ne +c 2 w n +c 3 w nw +c 4 w nn +c 5 w o = 0 a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w ee +b 2 w e +b 3 w o +b 4 w ne +b 5 w se = 0 c 1 w ne +c 2 w n +c 3 w nw +c 4 w nn +c 5 w o = 0 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 36

37 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 g4 g5 10syms k1 k2 k3 k4 k5 k6 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se eq1 = b1 w o + b2 w w + b3 w ww + b4 w nw + b5 w sw; 15 sol ww = solve (eq1 == 0, w ww) ; 16 simplifyfraction (sol ww) 17 eq2 = c1 w ne + c2 w n + c3 w nw + c4 w nn + c5 w o; 18 sol nn = solve (eq2 == 0, w nn) ; 19 simplifyfraction (sol nn) clear all 22 23syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 24syms b1 b2 b3 b4 b5 25syms c1 c2 c3 c4 c5 26syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 27syms e1 e2 e3 e4 e5 e6 e7 e8 28syms f1 f2 f3 g1 g2 g3 g4 g5 29syms k1 k2 k3 k4 k5 k6 30syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se eq1 = b1 w ee + b2 w e + b3 w o + b4 w ne + b5 w se; 34 sol ee = solve (eq1 == 0, w ee) ; 35 simplifyfraction ( sol ee ) 36 eq2 = c1 w ne + c2 w n + c3 w nw + c4 w nn + c5 w o; 37 sol nn = solve (eq2 == 0, w nn) ; 38 simplifyfraction (sol nn) B.9 Points Adjacent to Free-Free Corner on Free Edge (a): northwest point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D c 1 w e +c 2 w o +c 3 w w +c 4 w n +c 5 w s = 0 c 1 w ee +c 2 w e +c 3 w o +c 4 w ne +c 5 w se = 0 e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ f 1 w o +f 2 w w +f 3 w ww = 0 g 1 w nw +g 2 w w +g 3 w sw +g 4 w o +g 5 w ww = 0 37

38 (b): southwest point a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s = 0 b 1 w se +b 2 w s +b 3 w sw +b 4 w o +b 5 w ss = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se +d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r (c): southeast point f 1 w ne +f 2 w n +f 3 w nw = 0 g 1 w nn +g 2 w n +g 3 w o +g 4 w ne +g 5 w nw = 0 a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D b 1 w e +b 2 w o +b 3 w w +b 4 w n +b 5 w s = 0 b 1 w se +b 2 w s +b 3 w sw +b 4 w o +b 5 w ss = 0 d 1 w ee +d 2 w e +d 3 w w +d 4 w ww +d 5 w ne +d 6 w se +d 7 w nw +d 8 w sw +d 9 w n +d 10 w s +d 11 w o = F r (d): northeast point f 1 w ne +f 2 w n +f 3 w nw = 0 g 1 w nn +g 2 w n +g 3 w o +g 4 w ne +g 5 w nw = 0 a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D c 1 w e +c 2 w o +c 3 w w +c 4 w n +c 5 w s = 0 c 1 w o +c 2 w w +c 3 w ww +c 4 w nw +c 5 w sw = 0 e 1 w nn +e 2 w n +e 3 w s +e 4 w ss +e 5 w ne +e 6 w nw +e 7 w se +e 8 w sw = F θ f 1 w ee +f 2 w e +f 3 w o = 0 g 1 w ne +g 2 w e +g 3 w se +g 4 w ee +g 5 w o = 0 1 clear all 2 clc 3 4syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 5syms b1 b2 b3 b4 b5 6syms c1 c2 c3 c4 c5 7syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 8syms e1 e2 e3 e4 e5 e6 e7 e8 9syms f1 f2 f3 g1 g2 g3 g4 g5 38

39 (a) (b) N, circumferential N, circumferential Free edge Free edge E, radial E, radial (c) (d) Free edge Free edge Free edge Free edge N, circumferential N, circumferential E, radial E, radial Figure 17: Stencil arrangement for points adjacent to free-free corner on free edge, (a) northwest point, (b) southwest point, (c) southeast point, (d) northeast point. 39

40 10syms k1 k2 k3 k4 k5 k6 11syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 12syms Vr Vt V eq1 = f1 w o + f2 w w + f3 w ww; 15 sol ww = solve (eq1 == 0, w ww) ; 16 simplifyfraction (sol ww) 17 eq2 = g1 w nw + g2 w w + g3 w sw + g4 w o + g5 sol ww; 18 sol nw = solve (eq2 == 0, w nw) ; 19 simplifyfraction (sol nw) 20 eq3 = c1 w e + c2 w o + c3 w w + c4 w n + c5 w s; 21 sol n = solve(eq3 == 0, w n) ; 22 simplifyfraction ( sol n ) 23 eq4 = c1 w ee + c2 w e + c3 w o + c4 w ne + c5 w se; 24 sol ne = solve (eq4 == 0, w ne) ; 25 simplifyfraction ( sol ne ) 26 eq5 = e1 w nn + e2 sol n + e3 w s + e4 w ss + e5 sol ne + e6 sol nw + e7 w se + e8 w sw; 27 sol nn = solve (eq5 == Vt, w nn) ; 28 simplifyfraction (sol nn) clear all 31 32syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 33syms b1 b2 b3 b4 b5 34syms c1 c2 c3 c4 c5 35syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 36syms e1 e2 e3 e4 e5 e6 e7 e8 37syms f1 f2 f3 g1 g2 g3 g4 g5 38syms k1 k2 k3 k4 k5 k6 39syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 40syms Vr Vt V eq1 = f1 w ne + f2 w n + f3 w nw; 43 sol nw = solve (eq1 == 0, w nw) ; 44 simplifyfraction (sol nw) 45 eq2 = g1 w nn + g2 w n + g3 w o + g4 w ne + g5 sol nw ; 46 sol nn = solve (eq2 == 0, w nn) ; 47 simplifyfraction (sol nn) 48 eq3 = b1 w e + b2 w o + b3 w w + b4 w n + b5 w s; 49 sol w = solve(eq3 == 0, w w) ; 50 simplifyfraction (sol w) 51 eq4 = b1 w se + b2 w s + b3 w sw + b4 w o + b5 w ss ; 52 sol sw = solve (eq4 == 0, w sw) ; 53 simplifyfraction (sol sw) 54 eq5 = d1 w ee + d2 w e + d3 sol w + d4 w ww + d5 w ne + d6 w se + d7 sol nw + d8 sol sw + d9 w n + d10 w s + d11 w o; 55 sol ww = solve (eq5 == Vr, w ww) ; 56 simplifyfraction (sol ww) clear all 40

41 59 60syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 61syms b1 b2 b3 b4 b5 62syms c1 c2 c3 c4 c5 63syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 64syms e1 e2 e3 e4 e5 e6 e7 e8 65syms f1 f2 f3 g1 g2 g3 g4 g5 66syms k1 k2 k3 k4 k5 k6 67syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 68syms Vr Vt V eq1 = f1 w ne + f2 w n + f3 w nw; 71 sol ne = solve (eq1 == 0, w ne) ; 72 simplifyfraction ( sol ne ) 73 eq2 = g1 w nn + g2 w n + g3 w o + g4 sol ne + g5 w nw; 74 sol nn = solve (eq2 == 0, w nn) ; 75 simplifyfraction (sol nn) 76 eq3 = b1 w e + b2 w o + b3 w w + b4 w n + b5 w s; 77 sol e = solve(eq3 == 0, w e) ; 78 simplifyfraction ( sol e ) 79 eq4 = b1 w se + b2 w s + b3 w sw + b4 w o + b5 w ss ; 80 sol se = solve (eq4 == 0, w se) ; 81 simplifyfraction ( sol se ) 82 eq5 = d1 w ee + d2 sol e + d3 w w + d4 w ww + d5 sol ne + d6 sol se + d7 w nw + d8 w sw + d9 w n + d10 w s + d11 w o; 83 sol ee = solve (eq5 == Vr, w ee) ; 84 simplifyfraction ( sol ee ) clear all 87 88syms a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 89syms b1 b2 b3 b4 b5 90syms c1 c2 c3 c4 c5 91syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 92syms e1 e2 e3 e4 e5 e6 e7 e8 93syms f1 f2 f3 g1 g2 g3 g4 g5 94syms k1 k2 k3 k4 k5 k6 95syms w ee w e w o w w w ww w nn w n w s w ss w nw w sw w ne w se 96syms Vr Vt V eq1 = f1 w ee + f2 w e + f3 w o; 99 sol ee = solve (eq1 == 0, w ee) ; 100 simplifyfraction ( sol ee ) 101 eq2 = g1 w ne + g2 w e + g3 w se + g4 sol ee + g5 w o; 102 sol ne = solve (eq2 == 0, w ne) ; 103 simplifyfraction ( sol ne ) 104 eq3 = c1 w e + c2 w o + c3 w w + c4 w n + c5 w s; 105 sol n = solve(eq3 == 0, w n) ; 106 simplifyfraction ( sol n ) 107 eq4 = c1 w o + c2 w w + c3 w ww + c4 w nw + c5 w sw; 108 sol nw = solve (eq4 == 0, w nw) ; 41

42 N, circumferential E, radail Figure 18: Stencil arrangement for points at the inner domain. 109 simplifyfraction (sol nw) 110 eq5 = e1 w nn + e2 sol n + e3 w s + e4 w ss + e5 sol ne + e6 sol nw + e7 w se + e8 w sw; 111 sol nn = solve (eq5 == Vt, w nn) ; 112 simplifyfraction (sol nn) B.10 Points at Inner Domain a 1 w ee +a 2 w e +a 3 w o +a 4 w w +a 5 w ww +a 6 w nn +a 7 w n +a 8 w s + a 9 w ss +a 10 w nw +a 11 w sw +a 12 w ne +a 13 w se = p D 42

43 C Source Code 1#!/usr/bin/env python 2# Validation case for developed 3# structural model for thin circular plate 4# Author: Jason Qin, Nov import sys, os, gzip 7 sys.path.append(os.path. expandvars( $HOME/e3bin )) 8 from math import 9 import numpy 10 import matplotlib. pyplot as plt 11 from scipy. sparse import 12 from scipy import 13 from scipy. sparse. linalg import spsolve 14 15# Geometry for top foil 16 inch = 25.4e 3 17 r0 = 1.0 inch 18 r1 = 2.0 inch 19 mean r = (r0+r1)/ theta0 = theta1 = 45.0 pi/ A sector = 45.0/360.0 pi (r1 2.0 r0 2.0) 23 24# Gird 25 ni = nj = grd posr = numpy. zeros ((ni, nj)) 28 grd post = numpy. zeros ((ni, nj)) 29 grd posx = numpy. zeros ((ni, nj)) 30 grd posy = numpy. zeros ((ni, nj)) 31 dr = (r1 r0)/(ni 1) 32 dt = (theta1 theta0)/(nj 1) 33 for j in range(nj) : 34 for i in range(ni) : 35 grd posr [ i, j ] = dr i + r0 36 grd post [ i, j ] = dt j + theta0 37 grd posx [ i, j ] = grd posr [ i, j ] cos(grd post [ i, j ]) 38 grd posy [ i, j ] = grd posr [ i, j ] sin (grd post [ i, j ]) 39 grd imin = 0; grd imax = ni 1; 40 grd jmin = 0; grd jmax = nj 1; 41 42# Properties for top foil 43E = 2.0e+11 44h = 150.0e 6 45mu = D = E h 3.0/(12.0 (1.0 mu 2.0) ) 47F N = 70.0 # Modulus of elasticity # The thickness of top foil # Poisson s ratio # plate stiffness # Forces acting on the node 43

44 48 p o = numpy. zeros ((ni, nj)) 49Vr = numpy. zeros ((ni, nj)) 50Vt = numpy. zeros ((ni, nj)) 51V = numpy. zeros ((ni, nj)) 52 for j in range(nj) : 53 for i in range(ni) : 54 if ( i > grd imin and i < grd imax ) and ( j > grd jmin and j < grd jmax ) : 55 p o[ i, j ] = F N 56 57# Coefficient functions 58 def get local a coefficient (ra) : calculate the load equation coefficient l a1 = 1.0/dr /(dr 3.0 ra) 65 l a2 = 1.0/(2.0 dr ra 3.0) 4.0/dr /(dr 2.0 ra 2.0) 2.0/(dr 3.0 ra) + 2.0/(dr dt 2.0 ra 3.0) 4.0/(dr 2.0 dt 2.0 ra 2.0) 66 l a3 = 6.0/dr /(dr 2.0 ra 2.0) 8.0/(dt 2.0 ra 4.0) + 6.0/(dt 4.0 ra 4.0) + 8.0/(dr 2.0 dt 2.0 ra 2.0) 67 l a4 = 2.0/(dr 3.0 ra) 1.0/(2.0 dr ra 3.0) 1.0/(dr 2.0 ra 2.0) 4.0/dr /(dr dt 2.0 ra 3.0) 4.0/(dr 2.0 dt 2.0 ra 2.0) 68 l a5 = 1.0/dr /(dr 3.0 ra) 69 l a6 = 1.0/(dt 4.0 ra 4.0) 70 l a7 = 4.0/(dt 2.0 ra 4.0) 4.0/(dt 4.0 ra 4.0) 4.0/(dr 2.0 dt 2.0 ra 2.0) 71 l a8 = 4.0/(dt 2.0 ra 4.0) 4.0/(dt 4.0 ra 4.0) 4.0/(dr 2.0 dt 2.0 ra 2.0) 72 l a9 = 1.0/(dt 4.0 ra 4.0) 73 l a10 = 1.0/(dr dt 2.0 ra 3.0) + 2.0/(dr 2.0 dt 2.0 ra 2.0) 74 l a11 = 1.0/(dr dt 2.0 ra 3.0) + 2.0/(dr 2.0 dt 2.0 ra 2.0) 75 l a12 = 2.0/(dr 2.0 dt 2.0 ra 2.0) 1.0/(dr dt 2.0 ra 3.0) 76 l a13 = 2.0/(dr 2.0 dt 2.0 ra 2.0) 1.0/(dr dt 2.0 ra 3.0) return l a1, l a2, l a3, l a4, l a5, l a6, l a7, \ 79 l a8, l a9, l a10, l a11, l a12, l a def get local b coefficient (rb) : calculate moment r coefficient l b1 = 1.0/dr mu/(2.0 dr rb) 88 l b2 = 2.0/dr 2.0 (2.0 mu)/(dt 2.0 rb 2.0) 89 l b3 = 1.0/dr 2.0 mu/(2.0 dr rb) 90 l b4 = mu/(dt 2.0 rb 2.0) 44

45 91 l b5 = mu/(dt 2.0 rb 2.0) return l b1, l b2, l b3, l b4, l b def get local c coefficient (rc) : calculate moment t coefficient l c1 = mu/dr /(2.0 dr rc) 102 l c2 = (2.0 mu)/dr /(dt 2.0 rc 2.0) 103 l c3 = mu/dr /(2.0 dr rc) 104 l c4 = 1.0/(dt 2.0 rc 2.0) 105 l c5 = 1.0/(dt 2 rc 2.0) return l c1, l c2, l c3, l c4, l c def get local d coefficient (rd) : calculate force x coefficient l d1 = 1.0/(2.0 dr 3.0) 116 l d2 = 1.0/(dr 2.0 rd) 1.0/(2.0 dr rd 2.0) 1.0/dr /(dr dt 2.0 rd 2.0) + (mu 1.0) /(dr dt 2.0 rd 2.0) 117 l d3 = 1.0/dr /(2.0 dr rd 2.0) + 1.0/(dr 2.0 rd) + 1.0/(dr dt 2.0 rd 2.0) (mu 1.0) /(dr dt 2.0 rd 2.0) 118 l d4 = 1.0/(2.0 dr 3.0) 119 l d5 = 1.0/(2.0 dr dt 2.0 rd 2.0) (mu 1.0) /(2.0 dr dt 2.0 rd 2.0) 120 l d6 = 1.0/(2.0 dr dt 2.0 rd 2.0) (mu 1.0) /(2.0 dr dt 2.0 rd 2.0) 121 l d7 = (mu 1.0) /(2.0 dr dt 2.0 rd 2.0) 1.0/(2.0 dr dt 2.0 rd 2.0) 122 l d8 = (mu 1.0) /(2.0 dr dt 2.0 rd 2.0) 1.0/(2.0 dr dt 2.0 rd 2.0) 123 l d9 = (mu 1.0) /(dt 2.0 rd 3.0) 2.0/(dt 2.0 rd 3.0) 124 l d10 = (mu 1.0) /(dt 2.0 rd 3.0) 2.0/(dt 2.0 rd 3.0) 125 l d11 = 4.0/(dt 2.0 rd 3.0) 2.0/(dr 2.0 rd) (2.0 (mu 1.0) )/(dt 2.0 rd 3.0) return l d1, l d2, l d3, l d4, l d5, l d6, l d7, l d8, l d9, l d10, l d def get local e coefficient (re) : calculate force y coefficient

46 l e1 = 1.0/(2.0 dt 3.0 re 3.0) 136 l e2 = (mu 1.0) /(dr 2.0 dt re) 1.0/(dr 2.0 dt re) (mu 1.0) /(dt re 3.0) 1.0/(dt 3.0 re 3.0) 137 l e3 = 1.0/(dt 3.0 re 3.0) + 1.0/(dr 2.0 dt re) + (mu 1.0) /( dt re 3.0) (mu 1.0) /(dr 2.0 dt re) 138 l e4 = 1.0/(2.0 dt 3.0 re 3.0) 139 l e5 = 1.0/(4.0 dr dt re 2.0) + 1.0/(2.0 dr 2.0 dt re) + (mu 1.0) /(2.0 dr dt re 2.0) (mu 1.0) /(2.0 dr 2.0 dt re) 140 l e6 = 1.0/(2.0 dr 2.0 dt re) 1.0/(4.0 dr dt re 2.0) (mu 1.0) /(2.0 dr dt re 2.0) (mu 1.0) /(2.0 dr 2.0 dt re) 141 l e7 = (mu 1.0) /(2.0 dr 2.0 dt re) 1.0/(2.0 dr 2.0 dt re) (mu 1.0) /(2.0 dr dt re 2.0) 1.0/(4.0 dr dt re 2.0) 142 l e8 = 1.0/(4.0 dr dt re 2.0) 1.0/(2.0 dr 2.0 dt re) + (mu 1.0) /(2.0 dr dt re 2.0) + (mu 1.0) /(2.0 dr 2.0 dt re) return l e1, l e2, l e3, l e4, l e5, l e6, l e7, l e def get local f coefficient ( rf ) : calculate moment x and y coefficient l f1 = 1.0/dr l f2 = 2.0/dr l f3 = 1.0/dr return l f1, l f2, l f def get local g coefficient (rg) : calculate moment x and y coefficient l g1 = 1.0/(dt 2.0 rg 2.0) 165 l g2 = 2.0/(dt 2.0 rg 2.0) 166 l g3 = 1.0/(dt 2.0 rg 2.0) 167 l g4 = 1.0/(2.0 dr rg) 168 l g5 = 1.0/(2.0 dr rg) return l g1, l g2, l g3, l g4, l g def get local k coefficient (rk) : calculate corner force coefficient l k1 = 1.0/(4.0 dr dt rk) 46

47 179 l k2 = 1.0/(4.0 dr dt rk) 180 l k3 = 1.0/(4.0 dr dt rk) 181 l k4 = 1.0/(4.0 dr dt rk) 182 l k5 = 1.0/(2.0 dt rk 2.0) 183 l k6 = 1.0/(2.0 dt rk 2.0) return l k1, l k2, l k3, l k4, l k5, l k # coefficient matrix for deformation 188row = [] 189 col = [] 190 data = [] 191 f matrix = numpy. zeros (( ni nj)) # calculate coefficient matrix now 194 mi indx = mj indx = for j in range(nj) : 197 for i in range(ni) : ################################################################ 200 # for points at fixed edge, y=0 201 if j == grd jmin : 202 # deflection zero : w=0 203 mj indx = i + j ni 204 row.append(mi indx) ; col.append(mj indx) ; data.append (1.0) 205 f matrix [ mi indx ] = p o [ i, j ]/D 206 mi indx = mi indx ################################################################ 209 # for points adjacent to fixed edge 210 elif j == (grd jmin+1) and ( i >= (grd imin+2) and i<= ( grd imax 2) ) : radius = grd posr [ i, j ] 213 a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13 = get local a coefficient (radius) mj indx = ( i+2) + j ni 216 row.append(mi indx) ; col.append(mj indx) ; data.append(a1) 217 mj indx = ( i+1) + j ni 218 row.append(mi indx) ; col.append(mj indx) ; data.append(a2) 219 mj indx = i + j ni 220 row.append(mi indx) ; col.append(mj indx) ; data.append(a3) 221 mj indx = (i 1) + j ni 222 row.append(mi indx) ; col.append(mj indx) ; data.append(a4) 223 mj indx = (i 2) + j ni 224 row.append(mi indx) ; col.append(mj indx) ; data.append(a5) 47

VIBRATIONAL MODES OF THICK CYLINDERS OF FINITE LENGTH

VIBRATIONAL MODES OF THICK CYLINDERS OF FINITE LENGTH Journal of Sound and Vibration (1996) 191(5), 955 971 VIBRATIONAL MODES OF THICK CYLINDERS OF FINITE LENGTH Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

More information

Drawing of Hexagonal Shapes from Cylindrical Cups

Drawing of Hexagonal Shapes from Cylindrical Cups Dr. Waleed Khalid Jawed Metallurgy & Production Engineering Department, University of Technology /Baghdad Email: Drwaleed555@yahoo.com Sabih Salman Dawood Metallurgy & Production Engineering Department,

More information

Structural Strength of Lapped Cold-Formed Steel Z-Shaped Purlin Connections with Vertical Slotted Holes

Structural Strength of Lapped Cold-Formed Steel Z-Shaped Purlin Connections with Vertical Slotted Holes Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2014) - 22nd International Specialty Conference on Cold-Formed Steel Structures

More information

Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements

Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements 2007-08 Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements Aleander Rutman, Chris Boshers Spirit AeroSystems Larry Pearce, John Parady MSC.Software Corporation 2007 Americas Virtual

More information

3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model

3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model 3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model Shaik Gousia Yasmin 1, P. Punna Rao 2, Kondaiah Bommisetty 3 1 M.Tech(CAD/CAM), Nimra College of Engineering & Technology, Vijayawada,

More information

Inductance of Bitter Coil with Rectangular Cross-section

Inductance of Bitter Coil with Rectangular Cross-section DOI 1.17/s1948-1-1816-6 ORIGINAL PAPER Inductance of Bitter Coil with Rectangular Cross-section Yong Ren Guangli Kuang Wenge Chen Received: 1 October 1 / Accepted: 5 November 1 Springer Science+Business

More information

If a word starts with a vowel, add yay on to the end of the word, e.g. engineering becomes engineeringyay

If a word starts with a vowel, add yay on to the end of the word, e.g. engineering becomes engineeringyay ENGR 102-213 - Socolofsky Engineering Lab I - Computation Lab Assignment #07b Working with Array-Like Data Date : due 10/15/2018 at 12:40 p.m. Return your solution (one per group) as outlined in the activities

More information

Failure of Engineering Materials & Structures. Code 34. Bolted Joint s Relaxation Behavior: A FEA Study. Muhammad Abid and Saad Hussain

Failure of Engineering Materials & Structures. Code 34. Bolted Joint s Relaxation Behavior: A FEA Study. Muhammad Abid and Saad Hussain Failure of Engineering Materials & Structures Code 3 UET TAXILA MECHNICAL ENGINEERING DEPARTMENT Bolted Joint s Relaxation Behavior: A FEA Study Muhammad Abid and Saad Hussain Faculty of Mechanical Engineering,

More information

Monopile as Part of Aeroelastic Wind Turbine Simulation Code

Monopile as Part of Aeroelastic Wind Turbine Simulation Code Monopile as Part of Aeroelastic Wind Turbine Simulation Code Rune Rubak and Jørgen Thirstrup Petersen Siemens Wind Power A/S Borupvej 16 DK-7330 Brande Denmark Abstract The influence on wind turbine design

More information

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections An Alternative Formulation for Determining Stiffness of Members with Bolted Connections Mr. B. Routh Post Graduate Student Department of Civil Engineering National Institute of Technology Agartala Agartala,

More information

Finite Element Study of Using Concrete Tie Beams to Reduce Differential Settlement Between Footings

Finite Element Study of Using Concrete Tie Beams to Reduce Differential Settlement Between Footings Finite Element Study of Using Concrete Tie Beams to Reduce Differential Settlement Between Footings AMIN H. ALMASRI* AND ZIAD N. TAQIEDDIN** *Assistant Professor, Department of Civil Engineering, Jordan

More information

The Behaviour Of Round Timber Sections Notched Over The Support On The Tension Face. Justin Dewey

The Behaviour Of Round Timber Sections Notched Over The Support On The Tension Face. Justin Dewey The Behaviour Of Round Timber Sections Notched Over The Support On The Tension Face Justin Dewey Need for research In Queensland there are approximately 400 timber bridges still in use. Very little research

More information

Practice Problems: Calculus in Polar Coordinates

Practice Problems: Calculus in Polar Coordinates Practice Problems: Calculus in Polar Coordinates Answers. For these problems, I want to convert from polar form parametrized Cartesian form, then differentiate and take the ratio y over x to get the slope,

More information

Modified Approach for Optimum Position and Sizing of Piezoelectric Actuator for Steering of Parabolic Antenna

Modified Approach for Optimum Position and Sizing of Piezoelectric Actuator for Steering of Parabolic Antenna Copyright 2011 Tech Science Press SL, vol.6, no.2, pp.65-75, 2011 Modified Approach for Optimum Position and Sizing of Piezoelectric Actuator for Steering of Parabolic Antenna Vijay Kumar Gupta 1 Abstract:

More information

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION BALESHWAR SINGH Department of Civil Engineering Indian Institute of Technology Guwahati Guwahati 78139, India NINGOMBAM THOIBA SINGH

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/31/5771/4/dc1 Supporting Online Material for Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arras Zhong in Wang* and Jinhui Song *To whom correspondence should

More information

BE4E PLPAK Towards more realistic structural modeling

BE4E PLPAK Towards more realistic structural modeling BE4E PLPAK Towards more realistic structural modeling Eng: Mahmoud El Galad BE4E Lecture 05 EHSPAK www.be4e.com Page 01 Table of content for lecture 5 Elastic Half Space Package (EHSPAK) - Soil modeling

More information

Mode-based Frequency Response Function and Steady State Dynamics in LS-DYNA

Mode-based Frequency Response Function and Steady State Dynamics in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (3) Mode-based Frequency Response Function and Steady State Dynamics in LS-DYNA Yun Huang 1, Bor-Tsuen Wang 2 1 Livermore Software Technology Corporation

More information

ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE

ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE ULTRASONI GUIDED WAVE FOUSING BEYOND WELDS IN A PIPELINE Li Zhang, Wei Luo, Joseph L. Rose Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 1682 ABSTRAT.

More information

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique International Journal of Computational Engineering Research Vol, 04 Issue, 4 Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique 1, Akhilesh Kumar, & 2,

More information

0.20. Record Page 1 of 19

0.20. Record Page 1 of 19 Page 1 of 19 Page 2 of 19 Page 3 of 19 Page 4 of 19 Page 5 of 19 ASME BPVC.III.1.ND-2015 Page 6 of 19 ð15þ Figure ND-3325-1 Some Acceptable Types of Unstayed Flat Heads and Covers GENERAL NOTE: The illustrations

More information

A Numerical Analysis of Riveted Lap Joint Containing Multiple-site Damage

A Numerical Analysis of Riveted Lap Joint Containing Multiple-site Damage Appl. Math. Inf. Sci. 7, No. 2L, 699-704 (2013) 699 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/072l46 A Numerical Analysis of Riveted Lap Joint

More information

EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION

EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION Gi Young Jeong 1, Moon-Jae Park 2, KweonHwan Hwang 3, Joo-Saeng Park 2 ABSTRACT: The goal of this study is to analyze the effects of geometric

More information

Math 122: Final Exam Review Sheet

Math 122: Final Exam Review Sheet Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 8-1 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,

More information

Review of AISI Design Guide for Cold-formed Steel Purlin Roof Framing Systems-component Stiffness Method

Review of AISI Design Guide for Cold-formed Steel Purlin Roof Framing Systems-component Stiffness Method Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2010) - 20th International Specialty Conference on Cold-Formed Steel Structures

More information

Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes

Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes Enhancing the low frequency vibration reduction performance of plates with embedded Acoustic Black Holes Stephen C. CONLON 1 ; John B. FAHNLINE 1 ; Fabio SEMPERLOTTI ; Philip A. FEURTADO 1 1 Applied Research

More information

Abaqus/CAE (ver. 6.14*) Plate/Shell Tutorial

Abaqus/CAE (ver. 6.14*) Plate/Shell Tutorial Abaqus/CAE (ver. 6.14*) Plate/Shell Tutorial Problem Description The aluminum arch (E = 79 GPa, ν = 0.33) shown below is completely clamped along the flat faces. The arch supports a pressure of 100 MPa.

More information

Rolling contact stresses between two rigid, axial and flat cylinders

Rolling contact stresses between two rigid, axial and flat cylinders Rolling contact stresses between two rigid, axial and flat cylinders Subhankar Das Bakshi Department of Materials Science and Metallurgy, University of Cambridge, U.K. E-mail : sd444@cam.ac.uk/subhankar.dasbakshi@gmail.com

More information

Vibratory Feeder Bowl Analysis

Vibratory Feeder Bowl Analysis The Journal of Undergraduate Research Volume 7 Journal of Undergraduate Research, Volume 7: 2009 Article 7 2009 Vibratory Feeder Bowl Analysis Chris Green South Dakota State University Jeff Kreul South

More information

Projects in microwave theory 2017

Projects in microwave theory 2017 Electrical and information technology Projects in microwave theory 2017 Write a short report on the project that includes a short abstract, an introduction, a theory section, a section on the results and

More information

Settlement Analysis of Piled Raft System in Soft Stratified Soils

Settlement Analysis of Piled Raft System in Soft Stratified Soils Settlement Analysis of Piled Raft System in Soft Stratified Soils Srinivasa Reddy Ayuluri 1, Dr. M. Kameswara Rao 2 1 (PG Scholar, Civil Engineering Department, Malla Reddy Engineering College, Hyderabad,

More information

CCFSS Technical Bulletin

CCFSS Technical Bulletin CCFSS Technical Bulletin Vol. 12, No. 1 February 2003 FREQUENTLY ASKED QUESTIONS CONCERNING THE AISI BASE TEST METHOD AND THE USE OF THE AISI ANCHORAGE EQUATIONS Answers Provided by the AISI Task Committee

More information

Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures

Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures Dr. M Satyanarayana Gupta Professor & HoD, Dept. of Aeronautical Engineering MLRIT, Hyderabad.

More information

AutoCAD Inventor - Solid Modeling, Stress and Dynamic Analysis

AutoCAD Inventor - Solid Modeling, Stress and Dynamic Analysis PDHonline Course G280 (15 PDH) AutoCAD Inventor - Solid Modeling, Stress and Dynamic Analysis Instructor: John R. Andrew, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II SHEET METAL FORMING PROCESSES Sheet Metal Introduction Sheet metal is a metal formed into thin and flat pieces. It is one of the fundamental forms used in metalworking,

More information

Module 3 Selection of Manufacturing Processes

Module 3 Selection of Manufacturing Processes Module 3 Selection of Manufacturing Processes Lecture 4 Design for Sheet Metal Forming Processes Instructional objectives By the end of this lecture, the student will learn the principles of several sheet

More information

Preliminary Design of the n2edm Coil System

Preliminary Design of the n2edm Coil System Preliminary Design of the n2edm Coil System Christopher Crawford, Philipp Schmidt-Wellenburg 2013-07-03 1 Introduction This report details progress towards the design of an electromagnetic coil package

More information

TUTORIAL 4: Combined Axial and Bending Problem Sketch Path Sweep Initial Project Space Setup Static Structural ANSYS

TUTORIAL 4: Combined Axial and Bending Problem Sketch Path Sweep Initial Project Space Setup Static Structural ANSYS TUTORIAL 4: Combined Axial and Bending Problem In this tutorial you will learn how to draw a bar that has bends along its length and therefore will have both axial and bending stresses acting on cross-sections

More information

IDEA Connection 8. User guide. IDEA Connection user guide

IDEA Connection 8. User guide. IDEA Connection user guide IDEA Connection user guide IDEA Connection 8 User guide IDEA Connection user guide Content 1.1 Program requirements... 5 1.2 Installation guidelines... 5 2 User interface... 6 2.1 3D view in the main window...

More information

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors Using COMSOL

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors Using COMSOL VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors Using COMSOL N Kattabooman 1,, Sarath S 1, Rama Komaragiri *1, Department of ECE, NIT Calicut, Calicut, Kerala, India 1 Indian

More information

Abaqus Beam Tutorial (ver. 6.12)

Abaqus Beam Tutorial (ver. 6.12) Abaqus Beam Tutorial (ver. 6.12) Problem Description The two-dimensional bridge structure is simply supported at its lower corners. The structure is composed of steel T-sections (E = 210 GPa, ν = 0.25)

More information

Optimizing the Natural Frequencies of Beams via Notch Stamping

Optimizing the Natural Frequencies of Beams via Notch Stamping Research Journal of Applied Sciences, Engineering and Technology 4(14): 2030-2035, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 02, 2011 Accepted: December 26, 2011 Published:

More information

An Efficient Method for Geometric Modeling of 3D Braided Composites

An Efficient Method for Geometric Modeling of 3D Braided Composites An Efficient Method for Geometric Modeling of 3D Braided Composites Qi Wang 1, Ronghua Zhang, Jianming Wang 1, Yanan Jiao 3, Xiaohui Yang 1, Ming Ma 3 1 School of Electronics and Information Engineering,

More information

Critical Study of Open-ended Coaxial Sensor by Finite Element Method (FEM)

Critical Study of Open-ended Coaxial Sensor by Finite Element Method (FEM) International Journal of Applied Science and Engineering 3., 4: 343-36 Critical Study of Open-ended Coaxial Sensor by Finite Element Method (FEM) M. A. Jusoha*, Z. Abbasb, M. A. A. Rahmanb, C. E. Mengc,

More information

Modelling III ABSTRACT

Modelling III ABSTRACT Modelling III Hybrid FE-VIM Model of Eddy Current Inspection of Steam Generator Tubes in the Vicinity of Tube Support Plates S. Paillard, A. Skarlatos, G. Pichenot, CEA LIST, France G. Cattiaux, T. Sollier,

More information

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Dean Ford, Greg Holbrook, Steve Shields and Kevin Whitacre Delphi Automotive Systems, Energy & Chassis Systems Abstract Efforts to

More information

AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS

AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS MacArthur L. Stewart 1 1 Assistant Professor, Mechanical Engineering Technology Department, Eastern Michigan University, MI, USA Abstract Abstract Researchers

More information

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering

Travelling Wave, Broadband, and Frequency Independent Antennas. EE-4382/ Antenna Engineering Travelling Wave, Broadband, and Frequency Independent Antennas EE-4382/5306 - Antenna Engineering Outline Traveling Wave Antennas Introduction Traveling Wave Antennas: Long Wire, V Antenna, Rhombic Antenna

More information

Chapter 2. Inductor Design for RFIC Applications

Chapter 2. Inductor Design for RFIC Applications Chapter 2 Inductor Design for RFIC Applications 2.1 Introduction A current carrying conductor generates magnetic field and a changing current generates changing magnetic field. According to Faraday s laws

More information

DEVELOPMENT OF A NOVEL TOOL FOR SHEET METAL SPINNING OPERATION

DEVELOPMENT OF A NOVEL TOOL FOR SHEET METAL SPINNING OPERATION DEVELOPMENT OF A NOVEL TOOL FOR SHEET METAL SPINNING OPERATION Amit Patidar 1, B.A. Modi 2 Mechanical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, India Abstract-- The

More information

EVALUATING ROLLING SHEAR STRENGTH PROPERTIES OF CROSS LAMINATED TIMBER BY TORSIONAL SHEAR TESTS AND BENDING TESTS

EVALUATING ROLLING SHEAR STRENGTH PROPERTIES OF CROSS LAMINATED TIMBER BY TORSIONAL SHEAR TESTS AND BENDING TESTS EVALUATING ROLLING SHEAR STRENGTH PROPERTIES OF CROSS LAMINATED TIMBER BY TORSIONAL SHEAR TESTS AND BENDING TESTS Minghao Li 1, Frank Lam 2, and Yuan Li 3 ABSTRACT: This paper presents a study on evaluating

More information

IDEA Connection 8. User guide. IDEA Connection user guide

IDEA Connection 8. User guide. IDEA Connection user guide IDEA Connection user guide IDEA Connection 8 User guide IDEA Connection user guide Content 1.1 Program requirements... 5 1.2 Installation guidelines... 5 2 User interface... 6 2.1 3D view in the main window...

More information

FORM ERROR AND HARDNESS PERFORMANCE OF ROCKWELL DIAMOND INDENTERS

FORM ERROR AND HARDNESS PERFORMANCE OF ROCKWELL DIAMOND INDENTERS FORM ERROR AND HARDNESS PERFORMANCE OF ROCKWELL DIAMOND INDENTERS J. Song 1, S. Low 1 and L. Ma 2 1 National Institute of Standards and Technology Gaithersburg, MD 20899, USA 2 Department of Mechanical

More information

Modal vibration control of submarine hulls

Modal vibration control of submarine hulls Modal vibration control of submarine hulls B. Alzahabi Department of Mechanical Engineering, Kettering University, USA Abstract Cylindrical shells are widely used in many structural designs, such as offshore

More information

Nonlinear behavior of Reinforced Concrete Infilled Frames using ATENA 2D

Nonlinear behavior of Reinforced Concrete Infilled Frames using ATENA 2D Available online at www.ijacskros.com Indian Journal of Advances in Chemical Science S1 (2016) 173-178 Nonlinear behavior of Reinforced Concrete Infilled Frames using ATENA 2D M. D. Raghavendra Prasad,

More information

Design, Fabrication, and Validation of an Ultra-Lightweight Membrane Mirror

Design, Fabrication, and Validation of an Ultra-Lightweight Membrane Mirror Design, Fabrication, and Validation of an Ultra-Lightweight Membrane Mirror Surya Chodimella, James D. Moore, Brian G. Patrick SRS Technologies, Huntsville AL, USA 35806 Brett deblonk, Dan K. Marker Air

More information

Bending. the bend radius is measured to the inner surface of the bent part

Bending. the bend radius is measured to the inner surface of the bent part Bending the bend radius is measured to the inner surface of the bent part there is a plane which separates the tension and compression zones. This plane is called neutral axis. The position of neutral

More information

Tyre Cavity Coupling Resonance and Countermeasures Zamri Mohamed 1,a, Laith Egab 2,b and Xu Wang 2,c

Tyre Cavity Coupling Resonance and Countermeasures Zamri Mohamed 1,a, Laith Egab 2,b and Xu Wang 2,c Tyre Cavity Coupling Resonance and Countermeasures Zamri Mohamed 1,a, Laith Egab,b and Xu Wang,c 1 Fakulti Kej. Mekanikal, Univ. Malaysia Pahang, Malaysia 1, School of Aerospace, Mechanical and Manufacturing

More information

Stress Analysis of Flanged Joint Using Finite Element Method

Stress Analysis of Flanged Joint Using Finite Element Method Stress Analysis of Flanged Joint Using Finite Element Method Shivaji G. Chavan Assistant Professor, Mechanical Engineering Department, Finolex Academy of Management and Technology, Ratnagiri, Maharashtra,

More information

FINITE ELEMENT ANALYSIS OF ACTIVE VIBRATION ISOLATION

FINITE ELEMENT ANALYSIS OF ACTIVE VIBRATION ISOLATION FIFTH INTERNATIONAL w CONGRESS ON SOUND AND VIBRATION DECEMBER 15-18, 1997 ADELAIDE, SOUTH AUSTRALIA Invited Paper FINITE ELEMENT ANALYSIS OF ACTIVE VIBRATION ISOLATION Carl Q. Howard and Colin H. Hansen

More information

A detailed experimental modal analysis of a clamped circular plate

A detailed experimental modal analysis of a clamped circular plate A detailed experimental modal analysis of a clamped circular plate David MATTHEWS 1 ; Hongmei SUN 2 ; Kyle SALTMARSH 2 ; Dan WILKES 3 ; Andrew MUNYARD 1 and Jie PAN 2 1 Defence Science and Technology Organisation,

More information

Compression vs. Fusion: The Source of Strength in Fused Sight Glasses for Chemical and Pharmaceutical Processes

Compression vs. Fusion: The Source of Strength in Fused Sight Glasses for Chemical and Pharmaceutical Processes Compression vs. Fusion: The Source of Strength in Fused Sight lasses for Chemical and Pharmaceutical Processes Manufacturers of sight glasses use different combinations of metal and glass to achieve a

More information

A Study of Fixture Layout and Clamping force for a Ti-6Al-4V Disk in a Vertical Turning Lathe Numerically Controlled Machine

A Study of Fixture Layout and Clamping force for a Ti-6Al-4V Disk in a Vertical Turning Lathe Numerically Controlled Machine A Study of Fixture Layout and Clamping force for a Ti-6Al-4V Disk in a Vertical Turning Lathe Numerically Controlled Machine by Maureen Fang A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic

More information

Finite element analysis of circular cross sections subjected to combined loading

Finite element analysis of circular cross sections subjected to combined loading ISSN 2395-1621 Finite element analysis of circular cross sections subjected to combined loading #1 Ajinkya Patil *, #2 DevrajSonavane *, #3 Suhasini Desai * 1 ajinkyar15@gmail.com 2 Devraj.Sonavane@akersolutions.com

More information

PRO LIGNO Vol. 11 N pp

PRO LIGNO Vol. 11 N pp FINITE ELEMENT SIMULATION OF NAILED GLULAM TIMBER JOINTS Mats EKEVAD Luleå University of Technology Division of Wood Science and Engineering SE-931 87 Skellefteå, Sweden Tel: +46 910 585377; E-mail: mats.ekevad@ltu.se

More information

Multiple crack detection of pipes using PZT-based guided waves

Multiple crack detection of pipes using PZT-based guided waves Multiple crack detection of pipes using PZT-based guided waves *Shi Yan 1), Ji Qi 2), Nai-Zhi Zhao 3), Yang Cheng 4) and Sheng-Wenjun Qi 5) 1), 2), 3), 4) School of Civil Engineering, Shenyang Jianzhu

More information

Project Name Structural Calculation for Coping

Project Name Structural Calculation for Coping Project Name Structural Calculation for Coping Presented to: Client Logo Revision Generated by Date Reviewed by Date Comment 0 PN 05.01.2017 JP 05.01.2017 1 2 3 Incorporated in England No. 10926287 INDEX:

More information

Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB

Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB Optimizing Inductor Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB H. Schneider *, T. Andersen, J. D. Mønster, M. P. Madsen, A. Knott and M. A. E. Andersen Department of Electrical

More information

Glulam Curved Members. Glulam Design. General Glulam Design. General Glulam Beams are Designed in the SAME Manner as Solid Sawn Beams

Glulam Curved Members. Glulam Design. General Glulam Design. General Glulam Beams are Designed in the SAME Manner as Solid Sawn Beams Glulam Curved Members Glulam Design General Glulam Beams are Designed in the SAME Manner as Solid Sawn Beams There is an Additional Adjustment Factor, C v, the Volume Factor C v and C L (Lateral Stability

More information

Studies on free vibration of FRP aircraft Instruments panel boards

Studies on free vibration of FRP aircraft Instruments panel boards 89 Studies on free vibration of FRP aircraft Instruments panel boards E. Chandrasekaran Professor in Dept. of Civil Engineering, Crescent Engineering College 648 India. e-mail: sekharan@vsnl.net and K.

More information

Revised zone method R-value calculation for precast concrete. sandwich panels containing metal wythe connectors. Byoung-Jun Lee and Stephen Pessiki

Revised zone method R-value calculation for precast concrete. sandwich panels containing metal wythe connectors. Byoung-Jun Lee and Stephen Pessiki Revised zone method R calculation for precast concrete sandwich panels containing metal wythe connectors Byoung-Jun Lee and Stephen Pessiki Editor s quick points n Metal wythe connectors are used in a

More information

DESIGN AND ANALYSIS OF FORM TOOL

DESIGN AND ANALYSIS OF FORM TOOL DESIGN AND ANALYSIS OF FORM TOOL Volume 5, Issue 1 NOV 2015 1 BIKUMALLA SRUTHI, 2 M ANIL KUMAR 1 Pg Scholar, Department of MECH, MLR INSTITUTE OF TECHNOLOGY, Ranga Reddy, Telangana, India. 2 Assistant

More information

Design and Simulation of Spirally-Wound, Lithium-Ion Cells

Design and Simulation of Spirally-Wound, Lithium-Ion Cells Design and Simulation of Spirally-Wound, Lithium-Ion Cells R. Spotnitz a, S. Hartridge b, G. Damblanc b, G. Yeduvaka b, D. Schad b, V. Gudimetla b, J. Votteler b, G. Poole b, C. Lueth b, C. Walchshofer

More information

1/2/2016. Lecture Slides. Screws, Fasteners, and the Design of Nonpermanent Joints. Reasons for Non-permanent Fasteners

1/2/2016. Lecture Slides. Screws, Fasteners, and the Design of Nonpermanent Joints. Reasons for Non-permanent Fasteners Lecture Slides Screws, Fasteners, and the Design of Nonpermanent Joints Reasons for Non-permanent Fasteners Field assembly Disassembly Maintenance Adjustment 1 Introduction There are two distinct uses

More information

Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate

Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate Quasi-Rayleigh Waves in Butt-Welded Thick Steel Plate Tuncay Kamas a) Victor Giurgiutiu b), Bin Lin c) a) Mechanical Engineering University of South Carolina 3 Main Str. 2928 Columbia SC b) Mechanical

More information

Acoustic Emission Signals versus Propagation Direction for Hybrid Composite Layup with Large Stiffness Differences versus Direction

Acoustic Emission Signals versus Propagation Direction for Hybrid Composite Layup with Large Stiffness Differences versus Direction 31 st Conference of the European Working Group on Acoustic Emission (EWGAE) We.1.A.1 More Info at Open Access Database www.ndt.net/?id=17568 Acoustic Emission Signals versus Propagation Direction for Hybrid

More information

A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal

A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal The Slope of a Line (2.2) Find the slope of a line given two points on the line (Objective #1) A slope of a line is the ratio between the change in a vertical distance (rise) to the change in a horizontal

More information

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 43 CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION 2.1 INTRODUCTION This work begins with design of reflectarrays with conventional patches as unit cells for operation at Ku Band in

More information

DESIGN EQUATION FOR MULTIPLE- FASTENER WOOD CONNECTIONS

DESIGN EQUATION FOR MULTIPLE- FASTENER WOOD CONNECTIONS DESIGN EQUATION FOR MULTIPLE- FASTENER WOOD CONNECTIONS By John J. Zahn, 1 Member, ASCE ABSTRACT: A compared design equation is presented for the design of multiple fastener connections of wood members.

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING Tai-Chang Chen University of Washington, Bothell Spring 2010 EE215 1 1 WEEK 2 SIMPLE RESISTIVE CIRCUITS April 9 th, 2010 TC Chen UWB 2010 EE215 2 2 QUESTIONS

More information

Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry.

Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry. INDUCTANCE Units. In the following formulae all lengths are expressed in centimeters. The inductance calculated will be in micro-henries = 10-6 henry. Long straight round wire. If l is the length; d, the

More information

ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT

ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT Robert F. Anastasi 1 and Eric I. Madaras 2 1 U.S. Army Research Laboratory, Vehicle Technology Directorate, AMSRL-VT-S, Nondestructive Evaluation

More information

Geometric Dimensioning and Tolerancing

Geometric Dimensioning and Tolerancing Geometric Dimensioning and Tolerancing (Known as GDT) What is GDT Helps ensure interchangeability of parts. Use is dictated by function and relationship of the part feature. It does not take the place

More information

(b) ( 1, s3 ) and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.

(b) ( 1, s3 ) and Figure 18 shows the resulting curve. Notice that this rose has 16 loops. SECTIN. PLAR CRDINATES 67 _ and so we require that 6n5 be an even multiple of. This will first occur when n 5. Therefore we will graph the entire curve if we specify that. Switching from to t, we have

More information

MATH 255 Applied Honors Calculus III Winter Homework 1. Table 1: 11.1:8 t x y

MATH 255 Applied Honors Calculus III Winter Homework 1. Table 1: 11.1:8 t x y MATH 255 Applied Honors Calculus III Winter 2 Homework Section., pg. 692: 8, 24, 43. Section.2, pg. 72:, 2 (no graph required), 32, 4. Section.3, pg. 73: 4, 2, 54, 8. Section.4, pg. 79: 6, 35, 46. Solutions.:

More information

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}]

VectorPlot[{y^2-2x*y,3x*y-6*x^2},{x,-5,5},{y,-5,5}] hapter 16 16.1. 6. Notice that F(x, y) has length 1 and that it is perpendicular to the position vector (x, y) for all x and y (except at the origin). Think about drawing the vectors based on concentric

More information

ROBUST PARAMETER DESIGN AND FINITE ELEMENT ANALYSIS FOR A NON- PNEUMATIC TIRE WITH LOW VIBRATION

ROBUST PARAMETER DESIGN AND FINITE ELEMENT ANALYSIS FOR A NON- PNEUMATIC TIRE WITH LOW VIBRATION Clemson University TigerPrints All Theses Theses 12-2009 ROBUST PARAMETER DESIGN AND FINITE ELEMENT ANALYSIS FOR A NON- PNEUMATIC TIRE WITH LOW VIBRATION Amarnath Proddaturi Clemson University, aprodda@clemson.edu

More information

Experimental and numerical investigation of tube sinking of rectangular tubes from round section

Experimental and numerical investigation of tube sinking of rectangular tubes from round section International Journal of Engineering and Technology sciences (IJETS) ISSN 2289-4152 Academic Research Online Publisher Research Article Experimental and numerical investigation of tube sinking of rectangular

More information

THE INFLUENCE OF GOUGE DEFECTS ON FAILURE PRESSURE OF STEEL PIPES

THE INFLUENCE OF GOUGE DEFECTS ON FAILURE PRESSURE OF STEEL PIPES International Conference on Mechanical Engineering Research (ICMER2013), 1-3 July 2013 Bukit Gambang Resort City, Kuantan, Pahang, Malaysia Organized by Faculty of Mechanical Engineering, Universiti Malaysia

More information

FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires

FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires ACES JOURNAL, VOL. 26, NO. 3, MARCH 2011 217 FEKO-Based Method for Electromagnetic Simulation of Carcass Wires Embedded in Vehicle Tires Nguyen Quoc Dinh 1, Takashi Teranishi 1, Naobumi Michishita 1, Yoshihide

More information

Bearing Capacity of Strip Footings on Two-layer Clay Soil by Finite Element Method

Bearing Capacity of Strip Footings on Two-layer Clay Soil by Finite Element Method Bearing Capacity of Strip Footings on Two-layer Clay Soil by Finite Element Method Ming Zhu Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor Abstract: Parametric study

More information

Glass Box Projection. Gives you 6 sides to view of an object. 10/2/14 2

Glass Box Projection. Gives you 6 sides to view of an object. 10/2/14 2 2D Drawings Glass Box Projection Gives you 6 sides to view of an object. 10/2/14 2 We can simplify this for some objects to 3 views Glass Box Approach Glass Box Approach Glass Box Approach Glass Box Approach

More information

Technical Report Synopsis: Chapter 4: Mounting Individual Lenses Opto-Mechanical System Design Paul R. Yoder, Jr.

Technical Report Synopsis: Chapter 4: Mounting Individual Lenses Opto-Mechanical System Design Paul R. Yoder, Jr. Technical Report Synopsis: Chapter 4: Mounting Individual Lenses Opto-Mechanical System Design Paul R. Yoder, Jr. Introduction Chapter 4 of Opto-Mechanical Systems Design by Paul R. Yoder, Jr. is an introduction

More information

The Surge Voltage Test in High Power Transformers by the Finite Element Method

The Surge Voltage Test in High Power Transformers by the Finite Element Method The Surge Voltage Test in High Power Transformers by the Finite Element Method Aránzazu Fernández Andrés, Luis Fontán Agorreta Centre of Studies and Technical Investigations of Guipuzcoa (CEIT) Technological

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

A Hybrid Trailing Edge Control Surface Concept

A Hybrid Trailing Edge Control Surface Concept Pınar ARSLAN, Uğur KALKAN, Harun TIRAŞ, İlhan Ozan TUNÇÖZ, Yosheph YANG, Ercan GÜRSES, Melin ŞAHİN, Serkan ÖZGEN, Yavuz YAMAN Department of Aerospace Enginnering, Middle East Technical University Ankara,

More information

A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation

A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation Progress In Electromagnetics Research C, Vol. 62, 131 137, 2016 A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation Ayed R. AlAjmi and Mohammad A. Saed * Abstract

More information

Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB

Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB Downloaded from orbit.dtu.dk on: Nov 14, 2018 Optimizing Inductor Winding Geometry for Lowest DC-Resistance using LiveLink between COMSOL and MATLAB Schneider, Henrik; Andersen, Thomas; Mønster, Jakob

More information

Experiment 3 - IC Resistors

Experiment 3 - IC Resistors Experiment 3 - IC Resistors.T. Yeung, Y. Shin,.Y. Leung and R.T. Howe UC Berkeley EE 105 1.0 Objective This lab introduces the Micro Linear Lab Chips, with measurements of IC resistors and a distributed

More information

D DAVID PUBLISHING. Analysis of Leakage in Bolted-Flanged Joints Using Contact Finite Element Analysis. 1. Introduction.

D DAVID PUBLISHING. Analysis of Leakage in Bolted-Flanged Joints Using Contact Finite Element Analysis. 1. Introduction. Journal of Mechanics Engineering and Automation 5 (2015) 135-142 doi: 10.17265/2159-5275/2015.03.001 D DAVID PUBLISHING Analysis of Leakage in Bolted-Flanged Joints Using Contact Finite Element Analysis

More information