Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

Similar documents
Nanoscale III-V CMOS

III-V Channel Transistors

III-V CMOS: Quo Vadis?

InGaAs MOSFET Electronics

Towards Sub-10 nm Diameter InGaAs Vertical nanowire MOSFETs and TFETs

Vertical Nanowire InGaAs MOSFETs Fabricated by a Top-down Approach

III-V Vertical Nanowire FETs with Steep Subthreshold Towards Sub-10 nm Diameter Devices

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

InGaAs MOSFETs for CMOS:

III-V CMOS: the key to sub-10 nm electronics?

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

InGaAs Nanoelectronics: from THz to CMOS

InGaAs is a promising channel material candidate for

InAs Quantum-Well MOSFET for logic and microwave applications

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik

CMOS beyond Si: Nanometer-Scale III-V MOSFETs

Single suspended InGaAs nanowire MOSFETs

Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mv/decade and Ion = 10 A/m for Ioff = 1 na/m at VDS = 0.

FinFET Devices and Technologies

In principle, the high mobilities of InGaAs and

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

Device architectures for the 5nm technology node and beyond Nadine Collaert

EECS130 Integrated Circuit Devices

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

SUPPLEMENTARY INFORMATION

Enabling Breakthroughs In Technology

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Drain. Drain. [Intel: bulk-si MOSFETs]

EECS130 Integrated Circuit Devices

Electrical Characterization and Modeling of Gate-Last Vertical InAs Nanowire MOSFETs on Si

Ultra High-Speed InGaAs Nano-HEMTs

Self-aligned, gate-last process for vertical InAs nanowire MOSFETs on Si

Nanometer-Scale III-V MOSFETs

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program.

1020 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH 2016

General look back at MESFET processing. General principles of heterostructure use in FETs

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Fully Depleted Devices

32nm Technology and Beyond

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

SEVERAL III-V materials, due to their high electron

Alternatives to standard MOSFETs. What problems are we really trying to solve?

FinFET vs. FD-SOI Key Advantages & Disadvantages

Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies

CMOS Logic Technology IEEE EDS DL

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

Scaling and Beyond for Logic and Memories. Which perspectives?

Session 3: Solid State Devices. Silicon on Insulator

Transistors for VLSI, for Wireless: A View Forwards Through Fog

Session 10: Solid State Physics MOSFET

DUAL MATERIAL PILE GATE APPROACH FOR LOW LEAKAGE FINFET. Sanjay S. Chopade 1*, Dinesh V. Padole 1

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MOS Capacitance and Introduction to MOSFETs

Advanced PDK and Technologies accessible through ASCENT

A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors

CMOS Scaling Beyond FinFETs: Nanowires and TFETs

High-Performance Si Nanowire FET with a Semi Gate-Around Structure Suitable for Integration

Alternative Channel Materials for MOSFET Scaling Below 10nm

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors.

Challenges and Innovations in Nano CMOS Transistor Scaling

Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor

Performance Analysis of 20 nm Pentagonal and Trapezoidal NanoWire Transistor with Si and Ge Channel

InGaAs channel MOSFET with self-aligned source/drain MBE regrowth technology

Experimentally reported sub-60mv/dec

III-V on Si for VLSI. 200 mm III-V on Si. Accelerating the next technology revolution. III-V nfet on 200 mm Si

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Scaling of Vertical InAs GaSb Nanowire Tunneling Field-Effect Transistors on Si

Source/Drain Parasitic Resistance Role and Electric Coupling Effect in Sub 50 nm MOSFET Design

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

Power, speed and other highlights at IEDM

A BRIEF STUDY ON CHALLENGES OF MOSFET AND EVOLUTION OF FINFETS

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011

Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)

Power MOSFET Zheng Yang (ERF 3017,

Lecture Wrap up. December 13, 2005

Future MOSFET Devices using high-k (TiO 2 ) dielectric

GaN power electronics

Comparative Study of Silicon and Germanium Doping-less Tunnel Field Effect Transistors

FinFETs have emerged as the solution to short channel

Sub-Threshold Region Behavior of Long Channel MOSFET

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

Design of Tunnel FET and its Performance characteristics with various materials

Acknowledgements. Curriculum Vitæ. List of Figures. List of Tables. 1 Introduction Si MOSFET Scaling... 2

420 Intro to VLSI Design

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

FinFET-based Design for Robust Nanoscale SRAM

Fundamentals of III-V Semiconductor MOSFETs

SoC Technology in the Era of 3-D Tri-Gate Transistors for Low Power, High Performance, and High Density Applications

Vertical Nanowire Gate-All-Around p-type Tunneling Field-Effect Transistor With Si 0.8 Ge 0.2 /Si Heterojunction

Performance Comparison of CMOS and Finfet Based Circuits At 45nm Technology Using SPICE

Transcription:

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs J. A. del Alamo Microsystems Technology Laboratories, MIT Purdue University, West Lafayette, IN; September 29, 2015 Acknowledgements: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao Sponsors: DTRA, Lam Research, Northrop Grumman, NSF, Samsung Labs at MIT: MTL, EBL

Contents 1. Motivation: Moore s Law and MOSFET scaling 2. Planar InGaAs MOSFETs 3. InGaAs FinFETs 4. Vertical nanowire InGaAs MOSFETs 5. Conclusions 2

1. Moore s Law at 50: the end in sight? 3

Moore s Law Moore s Law = exponential increase in transistor density Intel microprocessors 4

What if Moore s Law had stopped in 1990? GPS handheld device circa 1990 Cell phone circa 1990 5

What if Moore s Law had stopped in 1980? Laptop computer circa 1981 6

What if Moore s Law had stopped in 1970? TV set, circa 1970 7

What if Moore s Law had never happened? Insulin pump circa 1960 Personal calculator circa 1960 1960 8

Moore s Law How far can Si support Moore s Law?? 9

Transistor scaling Voltage scaling Performance suffers Transistor current density (planar MOSFETs): Transistor performance saturated in recent years 10

Moore s Law: it s all about MOSFET scaling 1. New device structures: Enhanced gate control improved scalability 11

Moore s Law: it s all about MOSFET scaling 2. New materials: Si Strained Si SiGe InGaAs Si Strained Si SiGe Ge InGaSb Future CMOS might involve two different channel materials with two different relaxed lattice constants! del Alamo, Nature 2011 (updated) 12

Electron velocity: InGaAs vs. Si Measurements of electron injection velocity in HEMTs: del Alamo, Nature 2011 v inj (InGaAs) increases with InAs fraction in channel v inj (InGaAs) > 2v inj (Si) at less than half V DD ~100% ballistic transport at L g ~30 nm 13

III-V electronics in your pocket! 14

del Alamo s group at MIT: Current and future activities N-type InGaAs MOSFETs: Jianqiang Lin Alon Vardi Xin Zhao New students: Xiaowei Cai Dongsung Choi P-type InGaSb MOSFETs: Wenjie Lu future 15

2. Self-aligned Planar InGaAs MOSFETs dry-etched recess selective MOCVD W Mo Lin, IEDM 2012, 2013, 2014 Lee, EDL 2014; Huang, IEDM 2014 implanted Si + selective epi reacted NiInAs Sun, IEDM 2013, 2014 Chang, IEDM 2013 16

Self-aligned Planar InGaAs MOSFETs @ MIT W Mo Jerome Lin Lin, IEDM 2012, 2013, 2014 Recess-gate process: CMOS-compatible Refractory ohmic contacts (W/Mo) Extensive use of RIE 17

Fabrication process Mo/W ohmic contact + SiO 2 hardmask SF 6, CF 4 anisotropic RIE Resist CF 4 :O 2 isotropic RIE SiO 2 W/Mo n + InGaAs/InP InGaAs/InAs InAlAs δ-si InP Waldron, IEDM 2007 Cl 2 :N 2 anisotropic RIE Digital etch Finished device O 2 plasma H 2 SO 4 Pad Mo HfO 2 Lin, EDL 2014 Ohmic contact first, gate last Precise control of vertical (~1 nm), lateral (~5 nm) dimensions MOS interface exposed late in process 18

L g =20 nm InGaAs MOSFET SiO 2 W Mo n + cap Channel Buffer 20 nm Ti/Au pad Gate: Mo Spacer: Oxide Contact: Mo Mo/HfO 2 20 nm 15 nm 1.0 L g =20 nm V gs -V t = 0.5 V 0.8 R on =224 Ω.µm 0.4 V 0.6 0.4 0.2 0.0 InAs 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) I d (ma/µm) L g = 20 nm, L access = 15 nm MOSFET most compact III-V MOSFET made at the time Lin, IEDM 2013 19

Highest performance InGaAs MOSFET Channel: In 0.7 Ga 0.3 As/InAs/In 0.7 Ga 0.3 As Gate oxide: HfO 2 (2.5 nm, EOT~ 0.5 nm) I d (ma/µm) 1.4 1.2 1.0 V gs = -0.3 to 0.4 V in 0.1 V step L g = 80 nm R on =190 Ω.µm 0.8 0.6 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) L g =80 nm, t c =9 nm g m (ms/µm) 3.5 3.0 gm,max = 3.1 ms/µm 2.5 2.0 1.5 1.0 0.5 L g = 80 nm V ds = 0.5 V 0.0-0.4-0.2 0.0 0.2 V gs (V) Record g m,max = 3.1 ms/µm at V ds = 0.5 V R on = 190 Ω.µm Lin, IEDM 2014 20

Excess OFF-state current Transistor fails to turn off: I d (A/µm) 10-5 L g =500 nm 10-7 10-9 10-11 V ds V ds =0.3~0.7 V step=50 mv -0.6-0.4-0.2 0.0 V gs (V) OFF-state current enhanced with V ds Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013 21

Excess OFF-state current I d (A/µm) 10-4 10-5 10-6 10-7 10-8 T=200 K V ds =0.7 V L g =80 nm 120 nm 280 nm 500 nm -0.6-0.4-0.2 0.0 V gs -V t (V) Lin, EDL 2014 Lin, TED 2015 L g OFF-state current additional bipolar gain effect due to floating body I d (A/µm) I d (A/µm) 10-5 L g =500 nm 10-7 10-9 10-11 10-5 w/ W/ BTBT+BJT w/o W/O BTBT+BJT L g =500 nm 10-7 10-9 10-11 V ds V ds =0.3~0.7 V step=50 mv -0.6-0.4-0.2 0.0 V gs (V) Simulations V ds =0.3~0.7 V step=50 mv -0.4-0.2 0.0 0.2 V gs (V) 22

Impact of channel thickness scaling S min (mv/dec) 400 300 200 100 t c =12 nm t c 3 nm V ds =0.5 V V ds =0.5 V 0 0.01 0.1 1 10 L g (µm) g m,max (ms/µm) 3 2 1 8 nm 11 nm 7 nm 12 nm 4 nm 3 nm Lin, IEDM 2014 Lin, TED 2015 t c =9 nm V ds =0.5 V 0 0.01 0.1 1 10 L g (µm) t c S but also g m,max Even at t c =3 nm, L g,min ~40 nm planar MOSFET at limit of scaling 23

Benchmarking: g m in MOSFETs vs. HEMTs g m of InGaAs MOSFETs vs. HEMTs (any V DD, any L g ): Latest: 3.7 ms/µm! MIT MOSFETs del Alamo, ESSDERC 2013 (updated) Very rapid recent progress in MOSFET g m Best MOSFETs now surpass best HEMTs No sign of stalling more progress ahead! 24

3. InGaAs FinFETs and Trigate MOSFETs 60 nm dry-etched fins Kim, IEDM 2013 Epi-grown fin inside trench Si Waldron, VLSI Tech 2014 25

InGaAs FinFETs @ MIT Alon Vardi Key enabling technologies: BCl 3 /SiCl 4 /Ar RIE digital etch Zhao, EDL 2014; Vardi, DRC 2014 26

Interface-state study on sidewalls of InGaAs FinFET Long-channel MOSFET characteristics (W f =12~37 nm): I D [µa/µm] 20 Wf =12 nm L g =5 μm 15 10 5 V GS =0.5 V V GS =0 V 0 0.0 0.1 0.2 0.3 0.4 0.5 V DS [V] At sidewall: D it,min ~ 3x10 12 ev -1.cm -2 Vardi, DRC 2014 27

Sub-10 nm fin width InGaAs FinFETs InGaAs doped channel: 50 nm thick N D ~10 18 cm -3 Oxide: Al 2 O 3 /HfO 2 (EOT~3 nm) W f =7 nm, L g =3 µm MOSFET Fin width: 5 ~ 35 nm Fin height: 130 nm 100 fins Vardi, IEDM 2015 28

4. Lateral vs. Vertical Nanowire MOSFETs 5 nm node Yakimets, TED 2015 Bao, ESSDERC 2014 30% area reduction in 6T-SRAM 19% area reduction in 32 bit multiplier Nanowire MOSFET: ultimate scalable transistor Vertical NW: uncouples footprint scaling from L g and L c scaling power, performance and area gains wrt. Lateral NW 29

InGaAs Vertical Nanowires on Si by direct growth Au seed InAs NWs on Si by SAE Vapor-Solid-Liquid (VLS) Technique Selective-Area Epitaxy Riel, MRS Bull 2014 Björk, JCG 2012 30

InGaAs VNW-MOSFETs by bottom-up techniques Many device demonstrations: Tanaka, APEX 2010 Tomioka, Nature 2012 Persson, DRC 2012 31

InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT Xin Zhao Starting heterostructure: n + InGaAs, 70 nm i InGaAs, 80 nm n + InGaAs, 300 nm n + : 6 10 19 Si doping Top-down approach: flexible and manufacturable Zhao, IEDM 2013 32

Key enabling technology I: RIE by BCl 3 /SiCl 4 /Ar chemistry 28 nm 240 nm Sub-30 nm resolution Aspect ratio > 8 Smooth sidewall and surface Substrate temperature critical during RIE Zhao, EDL 2014 33

Key enabling technology II: digital etch Self-limiting O 2 plasma oxidation + H 2 SO 4 oxide removal Rate (nm/cycle) 2.0 1.5 1.0 0.5 Experiment Model 0.0 0 200 400 600 Oxidation time (s) before after 5 cycles Planar etching rate: ~1 nm/cycle Shrinks NW diameter by 2 nm per cycle Unchanged shape Reduced roughness Lin, EDL 2014 Zhao, EDL 2014 34

Optimized RIE + Digital Etch 15 nm 240 nm Zhao, EDL 2014 Sub-20 nm resolution Aspect ratio = 16, vertical sidewall Smooth sidewall and surface 35

Tomioka, Nature 2012 Persson, DRC 2012 Process flow 36

I d (µa/µm) 200 150 100 50 NW-MOSFET I-V characteristics D=30 nm V gs =-0.6 V to 0.8 V in 0.1 V step R on =759 Ω.µm (at V gs =1 V) 0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) I d (µa/µm) 200 150 100 50 g m, pk (V ds =0.5 V) =280 µs/µm V ds =0.5 V 0-0.6-0.4-0.2 0.0 0.2 0.4 0.6 V gs (V) 300 250 200 150 100 50 0 g m (µs/µm) Single nanowire MOSFET: L ch = 80 nm 4.5 nm Al 2 O 3 (EOT = 2.2 nm) At V DS =0.5 V: g m,pk =280 μs/μm R on =759 Ω.μm Zhao, IEDM 2013 37

S (mv/dec) g m (µs/µm) 350 300 250 200 150 800 600 400 200 Impact of nanowire diameter V ds =0.5 V V ds =0.05 V 30 35 40 45 50 Diameter (nm) V ds =0.5 V 30 35 40 45 50 Diameter (nm) DIBL (mv/v) R on (Ω.µm) 450 400 350 300 250 200 150 1200 1000 800 600 400 200 30 35 40 45 50 V gs =1 V Diameter (nm) 30 35 40 45 50 Diameter (nm) D S, DIBL, g m, R on Error bars indicate distribution of ~10 devices 38

Impact of digital etch Single nanowire MOSFET: D= 30 nm (final diameter) Zhao, EDL 2014 Digital etch S, g m Better sidewall interface 39

Persson, EDL 2012 g m,pk (µs/µm) 1200 1000 800 600 400 200 0 Benchmarking Tanaka, APEX 10 Tomioka, IEDM 11 Tomioka, Nature 12 Persson, DRC 12 Persson, EDL 10 This work (Top down) This work V ds =0.5 V 200 400 600 S(mV/dec) Bottom up Persson, DRC 2012 Tomioka, Nature 2012 Tanaka, APEX 2010 Trade-off: D S but also g m Top-down approach as good as bottom-up approach 40

InGaAs VNW MOSFET Concerns (a short list ) Relatively poor subthreshold behavior S [mv/dec] 600 500 400 300 200 100 small V DS DIBL [mv/v] 400 300 200 100 0 0 5 10 15 20 25 30 Auth, EDL 1997 L g /λ eff 0 0 5 10 15 20 25 30 L g /λ eff Electrostatic characteristic length for GAA NW 41

InGaAs VNW MOSFET Concerns (a short list ) Excess I off due to BTBT + Floating BJT Quantization enhances bandgap Vertical bandgap engineering InAs NWs Wang, ACSNano 2008 42

InGaAs VNW MOSFET Concerns (a short list ) InGaAs low DOS limits current Increase in injection velocity with carrier density more than compensates for this D=5 nm (?) NW MOSFET Yu, TED 2008 43

InGaAs VNW MOSFET Concerns (a short list ) V T sensitivity to nanowire diameter very tight manufacturing tolerance W f =8 nm Trigate MOSFETs Gray: nanowire array Individual nanowires Agrawal, TED 2013 Teherani, PhD MIT, 2015 44

InGaAs VNW MOSFET Concerns (a short list ) Asymmetric device behavior: D down D up more restrictive circuit wiring I d (µa/µm) 500 400 300 200 100 V gs = -0.6 to 0.6 V in 0.2 V step D = 40 nm, L g = 80 nm Drain at bottom Drain on top 0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) 45

InGaAs VNW MOSFET Concerns (a short list ) Sensitivity to few defects 200 V gs =-0.6 V to 0.8 V in 0.1 V step R on =759 Ω.µm (at V gs =1 V) I d (µa/µm) 150 100 50 0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) D=7 nm, L g =14 nm (5 nm design rules) S g =540 nm 2 D it =2x10 11 cm -2.eV -1 N it ~1 ev -1 46

InGaAs VNW MOSFET Concerns (a short list ) Top contact resistance Difficult to introduce mechanical stress Self-heating 47

Conclusions 1. Great recent progress on planar, fin and nanowire III-V MOSFETs 2. Vertical Nanowire III-V MOSFET: superior scalability and power/performance characteristics 3. Vertical Nanowire n- and p-type III-V MOSFET: plausible path for co-integration on Si 4. Many demonstrations of InGaAs VNW MOSFETs by bottom-up and top-down approaches 5. Many issues to work out: sub-10 nm diameter nanowire fabrication, self-aligned contacts, device asymmetry, Introduction of mechanical stress, V T control, device variability, BTBT and parasitic HBT gain, trapping, self-heating, reliability, co-integration with p-type VNW on Si, 48

A lot of work ahead but exciting future for III-V electronics 49