H. Takayanagi. Toward the development of quantum media interface from optical to superconducting state: Report of recent progress

Similar documents
Installation Manual WIND TRANSDUCER

Omochi rabbit amigurumi pattern

Lepton Flavor Physics with Most Intense DC Muon Beam Yusuke Uchiyama

CER7027B / CER7032B / CER7042B / CER7042BA / CER7052B CER8042B / CER8065B CER1042B / CER1065B CER1242B / CER1257B / CER1277B

Nano-structured superconducting single-photon detector

Edge-mode superconductivity in a two-dimensional topological insulator

The Josephson light-emitting diode

Cavity QED with quantum dots in semiconductor microcavities

超伝導加速空洞のコストダウン. T. Saeki (KEK) 24July ILC 夏の合宿一ノ関厳美温泉

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head

D80 を使用したオペレーション GSL システム周波数特性 アンプコントローラー設定. Arc 及びLine 設定ラインアレイスピーカーを2 から7 までの傾斜角度に湾曲したアレイセクションで使用する場合 Arcモードを用います Lineモード

Omni LED Bulb. Illustration( 实际安装, 설치사례, 設置事例 ) Bulb, Downlight OBB. OBB-i15W OBB-i20W OBB-i25W OBB-i30W OBB-i35W. Omni LED.

アルゴリズムの設計と解析. 教授 : 黄潤和 (W4022) SA: 広野史明 (A4/A8)

TDK Lambda A /9

Superconducting Nanowire Single Photon Detector (SNSPD) integrated with optical circuits

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices

TDK-Lambda A C 1/27

photolithographic techniques (1). Molybdenum electrodes (50 nm thick) are deposited by

Lecture 18: Photodetectors

Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al-Al 2 O 3 -Al Trilayers

Supplementary Materials for

Spectrally Selective Photocapacitance Modulation in Plasmonic Nanochannels for Infrared Imaging

Chapter 4 Radio Communication Basics

Laser machining of CFRP composites using. a ultra short pulsed laser

Spectroscopy of Andreev States in superconducting atomic contacts

GaAs polytype quantum dots

The Original SQUID. Arnold H. Silver. Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012

Nanoscale Systems for Opto-Electronics

XG PARAMETER CHANGE TABLE

Overview. Tasks: 1.1. Realization of a direct coherent microwave-to-optical link

Title inside of Narrow Hole by Needle-Typ. Issue Date Journal Article. Text version author.

Multi-bit Sigma-Delta TDC Architecture for Digital Signal Timing Measurement

Nanowires for Quantum Optics

Ti/Au TESs as photon number resolving detectors

The seven pillars of Data Science

U N I T. 1. What are Maxine and Debbie talking about? They are talking about. 2. What doesn t Maxine like? She doesn t like. 3. What is a shame?

Optical Interconnection in Silicon LSI

TDK Lambda INSTRUCTION MANUAL. TDK Lambda C A 1/35

300mm RFSOI Development toward IoT Era

TDK Lambda C /35

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Flip-Flopping Fractional Flux Quanta

4. Contact arrangement 回路形式 1 poles 1 throws 1 回路 1 接点 (Details of contact arrangement are given in the assembly drawings 回路の詳細は製品図による )

Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by

P (o w) P (o s) s = speaker. w = word. Independence bet. phonemes and pitch. Insensitivity to phase differences. phase characteristics

We are right on schedule for this deliverable. 4.1 Introduction:

Two-Tone Signal Generation for Communication Application ADC Testing

Engineering and Measurement of nsquid Circuits

Intermediate Conversation Material #10

Supplementary Information:

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode

Measurement and noise performance of nano-superconducting-quantuminterference devices fabricated by focused ion beam

Solar Cell Parameters and Equivalent Circuit

Quantum Devices and Integrated Circuits Based on Quantum Confinement in III-V Nanowire Networks Controlled by Nano-Schottky Gates

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

[ 言語情報科学論 A] 統計的言語モデル,N-grams

EUV Interference Lithography in NewSUBARU

S1. Current-induced switching in the magnetic tunnel junction.

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate

SUPPLEMENTARY INFORMATION

membrane sample EUV characterization

RF4C050AP. V DSS -20V R DS(on) (Max.) 26mΩ I D ±10A P D 2W. Pch -20V -10A Middle Power MOSFET Datasheet

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Glycymeris totomiensis Glycymeris rotunda. Glycymeris rotunda

相関語句 ( 定型のようになっている語句 ) の表現 1. A is to B what C is to D. A と B の関係は C と D の関係に等しい Leaves are to the plant what lungs are to the animal.

Lesson 5 What The Last Supper Tells Us

P Z N V S T I. センサ信号入力仕様 Input signal type. 1 ~ 5 V 4 ~ 20 ma 1 ~ 5 V 4 ~ 20 ma 1 ~ 5 V 4 ~ 20 ma 1 ~ 5 V 4 ~ 20 ma

Josephson Circuits I. JJ RCSJ Model as Circuit Element

Integrated Focusing Photoresist Microlenses on AlGaAs Top-Emitting VCSELs

SY-SNSPD-001 Superconducting Nanowire Single Photon Detector System

Design, Fabrication, Characterization, and Application of Semiconductor Nanocomposites

Keysight 16451B Dielectric Test Fixture

Hybrid Group IV Nanophotonic Structures. Incorporating Diamond Silicon-Vacancy Color

SUPPLEMENTARY INFORMATION

L1 Cultures Go Around the World

Infineon 24GHz Radar Solution. May 2017 PMM RSF DM PMM Business development

Analog Synaptic Behavior of a Silicon Nitride Memristor

InP-based Waveguide Photodetector with Integrated Photon Multiplication

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

Development of ultra-fine structure t metrology system using coherent EUV source

Study on Multipath Propagation Modeling and Characterization in Advanced MIMO Communication Systems. Yi Wang

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM

Realization of H.O.: Lumped Element Resonator

State-of-The-Art Dielectric Etch Technology

rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

DAITO DENSO MODEL. DFS50-24 Conducted Emission (VCCI-B) with Cover and Chassis Conditions Vin : 100VAC / 50Hz Iout : 100% Phase : WJ-01

Multi-Band CMOS Low Noise Amplifiers Utilizing Transformers


Supplementary information for Stretchable photonic crystal cavity with

Industry first! Development of low load TP compatible with multi-touch In the G/G resistive film method

Decisions in games Minimax algorithm α-β algorithm Tic-Tac-Toe game

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Superconducting Transition-Edge Sensors and Superconducting Tunnel Junctions for Optical/UV Time-Energy Resolved Single-Photon Counters

アナログ RF 回路の先端設計技術動向. Akira Matsuzawa. Department of Physical Electronics Tokyo Institute of Technology A.

F01P S05L, F02P S05L, F03P S05L SERIES

Optical Absorption Spectra of deposited Gold-Clusters from Cavity Ring-Down Spectroscopy

MoS 2 nanosheet phototransistors with thicknessmodulated

Tunable wideband infrared detector array for global space awareness

SUPPLEMENTARY INFORMATION Polarization response of nanowires à la carte

Transcription:

Meeting (2011. Dec. 13-16) Toward the development of quantum media interface from optical to superconducting state: Report of recent progress H. Takayanagi Tokyo University of Science, Tokyo, Japan NIMS, Tsukuba, Japan S. Kim, M. Kamio, H. Yabuki, B. Kaviraj, R. Ishiguro, E. Watanabe, D. Tsuya, K. Shibata, K. Hirakawa

Outline I. Research motivation II. single quantum dot (QD) coupled to SQUID III. QD with SIS SQUID IV. Preliminary experiment for optical excitation of QD spin

Superconducting qubit team From website of FIRST project http://first-quantum.net/subgroups/superconductingqcom/index.html

I. Research motivation Optical quantum bit 1.5 mm 0.826 ev Large mismatch on energy X Transport of quantum information Spin in QD Superconducting Quantum bit Δ E~10GHz (~400 μev) Toward the development of quantum media interface which can transfer quantum information from optical to superconducting state, our approach is based on the spin state of self-assembled InAs quantum dot (and ring) in hybrid semiconductorsuperconductor system. InAs Self-assembled quantums dot -Optically excited spin (spin memory) -Electronically coupled and embedded into active device - Strong spin orbit interaction - Schottky barrier free contact - Highly controllable electron system SA-QD SA-QR

Study for single spin/spin ensemble of electron(s) in InAs QD a. For single spin b. For spin ensemble QD Al/Au 70 nm Al/Au Laser QDs - + or or or SQUID with metal mask (SEM image from R. Ishiguro) QD-SQUID Al-SQUID 2011/12/26 5

II. QD-coupled to SQUID Quantum dot (QD) Superconducting quantum interference device (SQUID) QD-SQUID QD + = Highly controllable electron system Most sensitive detector for magnetic flux Applications for future quantum information device. By employing InAs self-assembled quantum dot (SAQD) to QD- SQUID, we study the electrical transport properties of our device with two side-gates in order to study its potential for a quantum information device.

1. Electrode pad Laser lithography Deposition Lift-off <SQUID design on AFM image > Ti/Au(50Å/2500Å) 3. SQUID design on QD AFM mapping CAD design QD-SQUID InAs dot growth by Hirakawa group (Univ. of Tokyo) <Device configuration> <SEM image> Source Al D InAs SAQDs 2. Address mark SQUID loop area: 4.02x3.23 mm 2 I SD (+) V SD(+) V SG1 SG2 EB lithography Deposition lift-off J2 QD-SQUID Drain Ti/Pt (50Å/250Å) J1 Address mark (Dot size: ~200 nm) J2 J1 4.SQUID SG1 fabrication EB lithography V SG2 V RF sputter sg2 (or V J2 SD(-) chemical etching) Au Al I J1 Deposition SD(-) Al Ti/Al (50Å/1000Å) Al Au lift-off InAs SAQDs InAs QDs GaAs 200 nm AlGaAs 100 nm Si-GaAs 200 nm n+ GaAs substrate V

Current (na) I SD (na) I c (na) Supercurrent flow I-V curve @ 30 mk Tunable supercurrent 4 2 QD I c 1.0 0.5 (a) (b) E 0-2 -4 off on -20 0 20 V SD mv) 2 g 1. Observable supercurrent flow Highly transparent interface 2. Tunable supercurrent V by G <on/off tuning resonance energy tuned level by of gate QD voltage > 0.0-0.6-0.4-0.2 0.0 0.2 0.4 0.6 1.5 1.0 0.5 0.0-0.5-1.0-1.5 V BG (V) (a) V BG Vsg2=0.1V Vsg2=-0.09 V BG -10 0 10 Voltage (mv) (b)

I c (na) I c (na) SQUID operation 3.0 2.5 2.0 1.5 1.0 0.5 Critical current (I c ) oscillation as a function of external magnetic fields 3.0 2.5 2.0 1.5 1.0 0.5 I c (F ext =F 0 )= I c1 +I c2 I c (F 1/2 )= I c1 I c2 0.0-3 -2-1 0 1 2 3 0.0-4 -2 0 2 4 F Magnetic ext /F field 0 (Guass) I c Measured period: 1.500443 Gauss 15 0 2.07 10 [ Wb] F0 1.59[ Gauss] 2 A 4.02 3.23[ mm ] H 0 : the field needed to add a flux quantum F 0 =h/2e to the effective SQUID area. (In the limit of small self inductance) F I 2 2 ext 1/ 2 c( Fext ) [ Ic 1 Ic2 2Ic 1Ic2 cos 2 ] F0 Ic Ic( F0) Ic( F0 / 2) 2Ic2 Ic2 Ic / 2 I ( c1 Ic F0) Ic2 * Individual I c can be tuned by each side gate

V BG (V) V BG (V) Side-gate controlled junction behavior 0.3 0.0 (a) V SG1 =0V 0.3 I c (na) 0 1.88 3.00 0.0 (b) V SG1 =-0.2V I c (na) 0 1.88 3.00 0 Junction I c maximum at zero field Josephson relation: Is I c sin( ) -0.3 0.3 0.0 (c) 0 1 2 V SG1 = -0.4V -0.3 I c (na) -0.1 0 1.88 3.00-0.2 0 1 2 (d) phase shift I c (na) 0.50 1.38 1.90 Junction - phase shift and a reversal of the sign of the supercurrent in a Josephson device -0.3 0 1 2 0 1 2 I s I c sin( ) I c sin( ) F ext /F 0 F ext /F 0

I c (na) I c (na) I c (na) Which dot has pi junction transition? Individual I c profiles for each dot distinguished by analyzing interference properties of SQUID strong V SG1 : tune of the dot-lead coupling weak 2 (a) V SG1 =0V I c2 (b)v SG1 =-0.2V 2 2 (c) V SG1 =-0.4V 1 1 1 0-0.4-0.2 0.0 0.2 0.4 V BG (V) I c1 0-0.4-0.2 0.0 0.2 0.4 V BG (V) 0 I c2 I c1-0.4-0.2 0.0 0.2 0.4 V BG (V) QD-SQUID Direct observation of negative supercurrent V SG1 J1 (I c1 ) J2 (I c2 ) V BG 11

junction behavior and spin state Spin flip tunneling in S-QD-S system Spin QD Magnetic on doublet 2 g Cooper pair singlet state [I. Kulik, Sov. Phys. JETP, 22, 841 (1966)] [L.N. Bulaevskii et al., JETP Lett. (1977) ] [C. Benjamin et al., Eur. Phys. J. B, (2007)] During tunneling event, the spin-ordering of the Cooper pair is reversed. A reversal of the sign of the supercurrent junction transition by tuning coupling between QD and superconducting leads using side-gate due to transition from the Kondo singlet to magnetic doublet of the spin state of the InAs QD V G (weak) coupling (strong) on Kondo singlet V G ( junction) 2 g (0 junction)

Limitation of directly coupled QD-SQUID + spin state superconducting state + state - - state (a) junction behavior not sensitive to the spin direction results from the presence of electron spin. (b)the switching of magnetization by SQUID find flux change in SQUID loop

III. SIS-SQUID Quantum dot (QD) Superconducting quantum interference device (SQUID) QD + = Highly controllable electron system Most sensitive detector for magnetic flux For spin ensemble measurement Magnetic flux variation induced by the spin >flux sensitivity of SQUID F 4 (R. Ishiguro et al. in Takayanagi lab) F 0 10 ( )

(flux variation) 磁束 (Φ /Φ 0) (Slide from R. Ishiguro) スピンの数とループ磁束の変化の関係 ( 臨界電流の変化の関係 ) 距離 0.1μ m の平面に等方的にスピンが分布しているときのループの磁束 半径 r の高さ d の円筒内に等方的に磁気モーメント m が分布しているときの上面での磁束 F m m0m B 2 02 r m 2 2 r d d N spin How many spins are necessary to detect with our SQUID? - About 10000 spins 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 磁束 (Φ /Φ 0) 1 100 10000 1000000 スピン数 Sensitivity limit of our SQUID (spin number) Considering QD density (25/µm 2 ), SQUID loop are should be more than 400 µm 2.(ex. 20x20 µm 2 )

(Slide from R. Ishiguro group) QD 基板上の SIS SQUID 金による SQUID のマスク InAs QDs substrate Al-SQUID Au metal mask 膜厚 :300/500A 酸化 :0.5Pa 10min 金マスク厚 :2000+2500A 実験後の PL 測定よりドットのギャップは 1430nm±10nm 程度 磁場応答あり

IV. Preliminary experiment for optical excitation of QD spin 1. Photoluminescence measurement 2. Transport measurement under the light irradiation Laser Laser QDs or SQUID with metal mask QD Al/Au 70 nm Al/Au (SEM image from R. Ishiguro) Al-SQUID For spin ensemble QD-Josephson junction For single spin

Optically generated spin state <Spin selection rules for QD exciton state> Circularly polarized photon conveys one unit of angular momentum for and for Produce excitons Total spin changes by J J e, z h, z 1 3 e, ( e, e ) J h, z ( h, h ) 2 2 J z 1 2 1 3 2 3 e h e h 2 2 Only the transitions with (e, h ) for + and (e, h ) for - are optically active. [Heiss, et.al., PRB2007 ] 2011/12/26 18

[M. Kroutvar et. al., Nature, 432, 81, 2004]

Lens Which wavelength is sensitive to create exciton in QD? Check with Photoluminescence(PL) spectrum for Initial characterization of optically excited QD spin Sample structure Cryostat l exc =800 nm (Ti: Sapphire laser) Sample Detector QD substrate (in collaboration with Nomura-lab in Tsukuba Univ.) 1 µm

Intensity (arb. units) Intensity (arb. units) Intensity (arb. units) Intensity (arb.units) l exc =800 nm (Ti: Sapphire laser) 0.15 0.10 0.05 0.00 800 600 400 200 (a) Large area (bulk) 0.6 0.8 1.0 1.2 1.4 0 (b) Small area Energy (ev) Photoluminescence exc 1. 54eV Detector: MCT in FT- IR system 16000 12000 8000 4000 0 0.855 0.860 0.865 0.870 0.875 0.880 Energy (ev) 30*30 mm 2 10*10 mm 2 3*3 mm 2 0.6 0.8 1.0 1.2 1.4 2011/12/26 S. KIM (File:2011-0615-S meeting-kim.ppt) 21 Energy (ev) Broad PL spectrum Due to mixing of different dot size 30x30 mm 2 Detector: CCD 16000 12000 8000 4000 0 PL data from Ishiguro-san 1420 1430 1440 Wavelength (nm) 30*30mm 2 10*10mm 2 3*3mm 2

<New QD substrate > GaAs 20 nm AlGaAs 50 nm SI-GaAs 30 nm SI-GaAs 50 nm P-type GaAs 300 nm GaAs substrate -Capping layer -Uniform small dots (~40 nm) -p-type GaAs

<QD from Hirakawa group> InAs QDs (dot size: 100~200 nm) GaAs (buffer layer) AlGaAs (barrier layer) 100 nm Si-GaAs (buffer layer) n+ GaAs substrate 200 nm 200 nm <New QD substrate > GaAs 20 nm AlGaAs 50 nm SI-GaAs 30 nm SI-GaAs 50 nm P-type GaAs 300 nm GaAs substrate -Capping layer -Uniform small dots (~40 nm) -p-type GaAs Configuration of our device for the spin (ensemble) detection using Al-SQUID Laser InAs QDs substrate Semitransparent layer Al-SQUID Gate electrode Au metal mask SQUID Ti/Au SiO 2 200 nm GaAs 20 nm AlGaAs 50 nm (4/5 nm) SI-GaAs 30 nm SI-GaAs 50 nm P-type GaAs 300 nm GaAs substrate Au mask Au electrode Al 2 O 3 50 nm Schematic view of our device plan 1. We will do PL measurement with new substrate in order to determine the gate-voltage range for each charging state, along with the associated optical transition frequencies. 2.. Fabrication with new scheme of our SQUID device

FC connector (a) Front view Optical setup of TRITON <With Inoue-san and Tusumu-gun> Optical fiber Triton200 Cold finger Thermocoax filter (b) (a) Optical fiber P P PBS BS Holder for optics λ/4 λ/4 ~ Retarder Lens QD RC filter (LPF) magnet Laser 2011/12/26 24 Sample (b) Backside

Photocurrent measurement For the characterization of single dot, we tried photocurrent measurement of QD-Josephson junction. Spectrometer Cryostat (38 mk) I Light irradiation V QD Lock-in amp (I) 2011/12/26 To determine effective wavelength

Transport properties of QD Josephson junction I sd (na) InAs QD (~150 nm) Au Al Au Source Al (100 nm) Drain Al 10 5 0 T=36 mk V sg =0 V Side gate Differential resistance mapping -5-10 -0.08-0.04 0.00 0.04 0.08 V sd (mv) I c = 3 na odd even odd even Open dot regime Δ 2Δ

Power (nw) V sd [mv] Under the light irradiation I c (na) Power (nw) PL int (A.U.) 30 Power dependence of I c 3 80 File: D50 and 25nW.obj 25 20 Power I c l=1800 nm 2 60 D50 25 nw set 15 10 40 5 1 20 0-5 0.4 0.2 0.0-0.2 0 0 20 40 60 80 100 light source voltage (Dial) <Light source: fixed at dial 50> Differential resistance mapping 5000 9766 1.453E+04 1.930E+04 2.406E+04 2.883E+04 3.359E+04 3.836E+04 4.313E+04 4.789E+04 5.266E+04 5.742E+04 6.219E+04 6.600E+04 0 0.10 0.05 1000 1200 1400 1600 1800 Wavelength (nw) (a) Large area (bulk) PL int (A.U.) Detector: MCT in FT- IR system (Data from Ishiguro-san) -0.4 800 1000 1200 1400 1600 1800 Wave Length [nm] 0.00 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 波長 (nm) Sample characteristics is change during irradiation Charge variation due to surface level?

Differential resistance at same power a. Dark b. Under the irradiation (power fixed at 25 nw ) Left : dial 0 Right : Power = 25 nw Laser を当てている場合 当てていない場合で変化が見られない Next experiment -Power is not enough? Try with higher power. -Use of lock-in amp - Use small dot and weak coupling (few electron )

QD-SQUID with metal mask Au mask (200 nm) Ti/Al/Ti/Au Au SiO 2 (200 nm) Al InAs QD Laser Au mask Side gate (Au) Al 2 O 3 (50 nm) GaAs substrate Al Au Schematic diagram of our sample

Thank you for your attention!