10W Ultra-Broadband Power Amplifier

Similar documents
Gallium Nitride MMIC Power Amplifier

GaAs MMIC Power Amplifier

Gallium Nitride MMIC Power Amplifier

GaAs MMIC Power Amplifier

50MHz 3.0GHz Gallium Nitride MMIC Power Amplifier

Gallium Nitride MMIC 5W DC 10.0 GHz Power Amplifier

GaAs MMIC Power Amplifier

AM003536WM-BM-R AM003536WM-EM-R AM003536WM-FM-R

Gallium Nitride MMIC 15W GHz Power Amplifier

PCS Base Station High output power, P1dB = 38 dbm. GPS Applications High gain > 20 db. WLAN Repeaters Efficiency > 30%

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment

GaAs MMIC Power Amplifier

GaAs MMIC Power Amplifier

Three Dimensional Transmission Lines and Power Divider Circuits

Gallium Nitride MMIC 15W GHz Power Amplifier

Design and Layout of a X-Band MMIC Power Amplifier in a Phemt Technology

GaAs MMIC Power Amplifier

Advances in Microwave & Millimeterwave Integrated Circuits

GaAs MMIC Power Amplifier

AM003536WM-BM-R AM003536WM-FM-R

GaAs MMIC Power Amplifier

0.5-4GHz Low Noise Amplifier

AM153540WM-BM-R AM153540WM-EM-R AM153540WM-FM-R

0.5-4GHz Low Noise Amplifier

GaAs MMIC Power Amplifier

1-22 GHz Wideband Amplifier

GaAs MMIC Power Amplifier for VSAT & ITU Applications

SGA7489Z DC to 3000MHz SILICON GERMANIUM HBT CASCADABLE GAIN BLOCK

Ceramic Packaged GaAs Power phemt DC-12 GHz

GaN/SiC Bare Die Power HEMT DC-15 GHz

RF3375 GENERAL PURPOSE AMPLIFIER

Silicon-Carbide High Efficiency 145 MHz Amplifier for Space Applications

GaAs MMIC Power Amplifier

Advance Datasheet Revision: May 2013

GaN/SiC Bare Die Power HEMT DC-15 GHz

AM002535MM-BM-R AM002535MM-FM-R

Application Note 5057

1.0 6 GHz Ultra Low Noise Amplifier

CGA-6618Z Dual CATV 5MHz to 1000MHz High Linearity GaAs HBT Amplifier CGA-6618Z DUAL CATV 5MHz to 1000MHz HIGH LINEARITY GaAs HBT AMPLIFIER Package: E

Application Note 1360

SGA2386ZDC to 5000MHz, Cascadable. SiGe HBT. MMIC Amplifier. Frequency (GHz) 2800 MHz >10dB 97 C/W

Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios

NOT FOR NEW DESIGNS SGA5386Z. Absolute Maximum Ratings MHz. Parameter Rating Unit. Typical Performance at Key Operating Frequencies

Amplifier Configuration

Advance Datasheet Revision: April 2015

AH102. Product Description. Functional Diagram. Product Features. Typical Parameters. Specifications. Absolute Maximum Ratings. Ordering Information

MMA C 30KHz-50GHz Traveling Wave Amplifier Data Sheet

6-18 GHz MMIC Drive and Power Amplifiers

GHz Ultra-wideband Amplifier

IEEE Topical Symposium on Power Amplifiers for Wireless Communications: Matthew Poulton, David Aichele, Jason Martin 9/15/2009

RF2044 GENERAL PURPOSE AMPLIFIER

2 40 GHz Ultra-Wideband Amplifier

MMA D 30KHz-50GHz Traveling Wave Amplifier With Output Power Detector Preliminary Data Sheet

AMMC KHz 40 GHz Traveling Wave Amplifier

SGA4586Z DC to 4000MHz, CASCADABLE SiGe HBT MMIC AMPLIFIER

= 25 C) Parameter 6.0 GHz 7.5 GHz 9.0 GHz 10.5 GHz 12.0 GHz Units Small Signal Gain db P OUT

A New Topology of Load Network for Class F RF Power Amplifiers

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371

MMA GHz, 0.1W Gain Block Data Sheet

Design of a Broadband HEMT Mixer for UWB Applications

MMA GHz 1W Traveling Wave Amplifier Data Sheet

TAT7457-EB. CATV 75 Ω phemt Adjustable Gain RF Amplifier. Applications. Ordering Information

InGaP HBT MMIC Development

NLB-310. RoHS Compliant & Pb-Free Product. Typical Applications

NDA-310-D 4 GENERAL PURPOSE. Gain Stage or Driver Amplifiers for MWRadio/Optical Designs

Application Note 5480

LECTURE 6 BROAD-BAND AMPLIFIERS

= 25 C) Parameter 1.0 GHz 2.0 GHz 3.0 GHz 4.0 GHz 5.0 GHz 6.0 GHz Units. Gain db. 32 dbm W

GaAs, phemt, MMIC, Single Positive Supply, DC to 7.5 GHz, 1 W Power Amplifier HMC637BPM5E

0.5-20GHz Driver. GaAs Monolithic Microwave IC

Keysight TC GHz High Power Output Amplifier

Data Sheet. VMMK GHz Positive Gain Slope Low Noise Amplifier in SMT Package. Features. Description

Advance Datasheet Revision: October Applications

Application Note 1373

RFIC DESIGN ELEN 351 Session4

RF2317. Laser Diode Driver Return Channel Amplifier Base Stations. CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks

Features. Parameter* Min. Typ. Max. Units Frequency Range GHz Gain 2 5 db. Gain Variation over Temperature

MAGX L00 MAGX L0S

Data Sheet. VMMK GHz Variable Gain Amplifier in SMT Package. Features. Description. Specifications (6 GHz, Vdd = 5 V, Zin = Zout = 50 Ω)

8 11 GHz 1 Watt Power Amplifier

A 2.5-GHz GaN power amplifier design and modeling by circuit-electromagnetic co-simulation

Dual-band LNA Design for Wireless LAN Applications. 2.4 GHz LNA 5 GHz LNA Min Typ Max Min Typ Max

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER

ASL 1005P3 Data Sheet Rev: 1.0 Apr 2017

Application Note 5499

MMA GHz, 0.1W Gain Block

PH9 Reliability. Application Note # 51 - Rev. A. MWTC MARKETING March 1997

11-15 GHz 0.5 Watt Power Amplifier

i. At the start-up of oscillation there is an excess negative resistance (-R)

5 6.4 GHz 2 Watt Power Amplifier

GaN MMIC PAs for MMW Applicaitons

Frequency (GHz) 5000 MHz

AM036MX-QG-R 1 WATT, 2 GHz POWER AMPLIFIER

= 35 ma (Typ.) Frequency (GHz)

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features:

ABA GHz Broadband Silicon RFIC Amplifier. Application Note 1349

5 6 GHz 10 Watt Power Amplifier

TAT Ω phemt Adjustable Gain RF Amplifier

MACOM GaN Reliability Presentation GaN on Silicon Processes and Products

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

Transcription:

(TH1B-01 ) 10W Ultra-Broadband Power Amplifier Amin K. Ezzeddine and Ho. C. Huang AMCOM Communications, Inc 401 Professional Drive, Gaithersburg, MD 20879, USA Tel: 301-353-8400 Email: amin@amcomusa.com

Outline Introduction Two-Step Design Concept: - Step-1: 50-ohm unit-cell PA design - Step-2: Power combiner / impedance transformer design Measured results Conclusion

Introduction Broadband PA (f 2 / f 1 >/= 100) design is a major challenge Common approach is Traveling Wave Amplifier (TWA) This paper presents an alternative approach, which uses smaller semiconductor real estate, smaller PA size, and lower cost. This PA has several potential applications for broadband communications, Software radio, Broadband jammer, Instrumentations etc

Basic Design Concept The design concept uses a 2-step approach: Step-1: Design a unit-cell PA with optimal output 50Ω impedance, such that no matching is required. We use HIFET technique to maximize the output power. Step-2: Use broadband push-pull power combiner/ impedance transformer to power combine the unitcell PA, in low impedance environment, to achieve high power.

Output power of unit-cell FET Assuming a DC-to-RF power efficiency of 50% we have: P rf = 0.5 V dc x I dc (1) The optimal RF output impedance is proportional to: R opt = V dc / I dc (2) Substituting equation (2) into equation (1), we have: P rf = V dc2 / (2 R opt ) (3) Therefore, the device output power capability is proportional to the square of DC bias voltage and inversely proportional to the circuit impedance.

Step 1: Use HIFET to increase Vd and Tailor Zopt to be 50-ohm HIFET is an innovative power combining technique, connecting unit-cell FETs RF & DC in series, yet thermally in parallel DC bias voltage and Zopt are proportional to the number of unit cells. Output impedance could be tailored to be 50Ω Hence no output matching HIFET enjoys a bonus gain of 10 Log 10 (N) db. HIFET concept applies to all devices such as MESFET, CMOS, LDMOS, GaN, SiC etc.

1. 5 1 0. 5 0-0. 5-1 -1. 5 0 1 2 3 4 5 6 7 HIFET Voltage Waveforms* R 2 V out = 4V m 1.5 1 1.5 1 Z opt 0.5 C 3 R 1 3V m 0.5 0 0 1 2 3 4 5 6 7-0.5 0 0 1 2 3 4 5 6 7-0.5-1 C 2 1.5-1.5 1-1 R 1 2V m 0.5 0 0 1 2 3 4 5 6 7-1.5-0.5-1 C 1 1.5 1-1.5 R 1 V m 0.5 0 0 1 2 3 4 5 6 7-0.5-1 V in *Amin K. Ezzeddine and Ho C. Huang, The High-Voltage/High Power FET (HiVP), 2003 IEEE RFIC Symposium Digest, pp. 215-218, June 2. -1.5

I-V of a 3mm x 4 MESFET HIFET 0.8 0V 0.6 Current (A) 0.4 0.2-0.5V -1V -1.5V 0 0 10 20 30 40 Vdd (V) -2V -2.5V Doesn t it look like a GaN HEMT?

MMIC Block Diagram

MMIC Schematic

HIFET MMIC PA Design 1 st stage: 4 x 2mm; 2 nd stage: 2 x (4 x 2mm) Feedback resistors for: gain flatness, good input & output VSWR and stability Input series resistor and inter-stage series resistors for good gain flatness and stability Bias provided thru external chokes Large blocking capacitors for maximum bandwidth P out = (N. V ds ) 2 / 2 * Z out Stability & device thermal considerations

Output Matching Circuit Z opt = N (V ds -V knee ) / I ds We have 2 degrees of freedom: N & I ds (Device size) In this 2-stage MMIC PA: output stage is 2 x (4 x 2mm). Hence V ds = 5V, I ds = 0.36A, V knee = 0.5V Z opt = 4 (5-0.5) / 0.36 = 50 Ω No output matching is needed because the device output impedance is designed to be 50Ω Very small chip size: 2.30 x 2.27 mm

MMIC Process (WIN, PHEMT) 0.5µm gate length (Ti-W), double-recess Epitaxial and thin film Nichrome resistors Silicon Nitride capacitor and passivation I dss ~ 200 250mA/mm 4 mils substrate Via hole for source ground

MMIC Photo

Packaged MMIC & Test Fixture Package size 7 x 7 mm 10mils FR4 substrate

S21, S11 & S22 vs Frequency 30 Gain & Return Losses (db) 20 10 0-10 -20 Output RL Gain Input RL -30 0 1 2 3 4 Frequency (GHz)

Power and Efficiency vs Freq. (20V/ 650mA) 40 P3dB (dbm) & Efficiency (%) 35 30 25 20 P3dB P1dB Efficiency @ 3dB Efficiency @ 1dB 15 0 1 2 3 4 Frequency (GHz)

IP3 vs Frequency 60 50 40 IP3 (dbm) 30 20 10 0 0 1 2 3 4 Frequency (GHz)

Step 2 Broadband Power combiner / Impedance transformer

P α N 2 8-Way Combiner/Divider

2-Way Combiner/Impedance transformer (Back to Back)

Performance of 2 Broadband Baluns Back-to-Back 0 0-5 S21-1 -10-2 Return Loss (db) -15-20 -25-30 -35 S11 S22-3 -4-5 -6-7 Loss (db) -40-8 -45-9 -50 0 500 1000 1500 2000 2500-10 Frequency (MHz)

Schematic of 10W BB PA

Photo of 10W BB PA

Small Signal Gain, Return Loss vs Frequency (24V/2.9A) Gain & Return Losses (db) 35 30 25 20 15 10 5 0-5 -10-15 -20-25 Gain Output RL Input RL 0 1 2 3 4 5 Frequency (GHz)

Output Power, Gain vs Frequency 50 Power (dbm) & Efficiency (%) 40 30 20 10 P1dB Eff. 1dB P3dB Eff. 3dB 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Frequency (GHz)

IP3, IP5 versus Frequency IP3 & IP5 (dbm) 80 70 60 50 40 30 20 10 IP3 IP5 0 0 1 2 3 4 Frequency (GHz)

Conclusion We presented the approach to achieving ultra-broadband. High-power PA, as well as the measured state-of-the-art results. The basic approach is to develop a HIFET 50-ohm device (Unit-cell PA), then use push-pull combiner / impedance transformer to power combine the unit-cell PA s. The unit-cell MMIC PA has 3W P1dB from 20 to 3500MHz with 24dB gain and good linearity The power combined PA module has 10W P1dB from 20 to 3500MHz with 23dB gain and good linearity This design concept can be applied to GaN HEMT for very high power, and to CMOS to overcome low-voltage operation

Low Frequency Small Signal 30 Gain Gain & Return Losses (db) 20 10 0-10 -20 Input RL -30 Output RL 0 0.05 0.1 0.15 0.2 Frequency (GHz)