UARK SiC Power MOSFET Model V1.0.0

Similar documents
Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

N & P-Channel 100-V (D-S) MOSFET

Modeling and Validation of 4H-SiC Low Voltage MOSFETs for Integrated Circuit Design

Sub-Threshold Region Behavior of Long Channel MOSFET

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Three Terminal Devices

Temperature-Dependent Characterization of SiC Power Electronic Devices

NAME: Last First Signature

MOSFET Terminals. The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals.

Department of Electrical Engineering IIT Madras

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

Study of Static and Dynamic Characteristics of Silicon and Silicon Carbide Devices

IRHNA57264SE JANSR2N7474U2 R 5 250V, N-CHANNEL REF: MIL-PRF-19500/684 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-93816G TECHNOLOGY

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

EE70 - Intro. Electronics

IRHNS57160 R 5 100V, N-CHANNEL. RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SupIR-SMD) PD-97879A TECHNOLOGY. Product Summary

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units

POWER MOSFET SURFACE MOUNT (SMD-1) 200V, N-CHANNEL. Absolute Maximum Ratings PD-94236C

IRF7700GPbF. HEXFET Power MOSFET V DSS R DS(on) max I D

PFU70R360G / PFD70R360G

I D. Operating Junction and -55 to T STG. C Lead Temperature 300 (0.063 in. /1.6 mm from case for 10s) Weight 0.98 (Typical) g

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Circuit Simulation. LTSpice Modeling Examples

IRHF57234SE 100 krads(si) A TO-39

IRHNA57Z60 JANSR2N7467U2 R 5 30V, N-CHANNEL REF: MIL-PRF-19500/683 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-91787J TECHNOLOGY

SURFACE MOUNT (SMD-1) 100V, P-CHANNEL. Absolute Maximum Ratings. Product Summary

IRL5NJ V, P-CHANNEL LOGIC LEVEL POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-94052C. Product Summary

IRHNJ57230SE JANSR2N7486U3 R 5 200V, N-CHANNEL REF: MIL-PRF-19500/704 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-0.5) PD-93836C TECHNOLOGY

IRHNA9160 JANSR2N7425U

IRHNA57064 JANSR2N7468U2 R 5 60V, N-CHANNEL REF: MIL-PRF-19500/673 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-91852J TECHNOLOGY

I E I C since I B is very small

8. Characteristics of Field Effect Transistor (MOSFET)

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRHNJ67130 SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/746. Absolute Maximum Ratings PD-95816D. Features: n Low RDS(on) n Fast Switching

PWRLITE LD1010D High Performance N-Ch Vertical Power JFET Transistor with Schottky G D S

High-Temperature and High-Frequency Performance Evaluation of 4H-SiC Unipolar Power Devices

IRHMS JANSR2N7524T1 R 5 60V, P-CHANNEL REF: MIL-PRF-19500/733. RADIATION HARDENED POWER MOSFET THRU-HOLE (Low Ohmic - TO-254AA) PD-94713E

Bias Stress Testing of SiC MOSFETs

IRHNJ57133SE SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/704 TECHNOLOGY. Absolute Maximum Ratings

IRHF57034 THRU-HOLE (TO-39) REF: MIL-PRF-19500/701. Absolute Maximum Ratings PD-93791D

Fundamentals of Power Semiconductor Devices

IRHNJ V, N-CHANNEL POWER MOSFET SURFACE MOUNT (SMD-0.5) REF: MIL-PRF-19500/703. Absolute Maximum Ratings. Product Summary

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 )

SMPS MOSFET. V DSS R DS(on) max I D

ELEC-E8421 Components of Power Electronics

Linear Derating Factor 17 mw/ C V GS Gate-to-Source Voltage ± 12 V T J, T STG Junction and Storage Temperature Range -55 to C

IRHG V, Quad N-CHANNEL RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036) PD-94432C. 1 TECHNOLOGY. Product Summary MO-036AB

TO-220AB low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

IRHG V, Combination 2N-2P CHANNEL R TECHNOLOGY RADIATION HARDENED POWER MOSFET THRU-HOLE (MO-036AB) PD-94246D

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

IRFE230 JANTXV2N6798U SURFACE MOUNT (LCC-18) 200V, N-CHANNEL REF:MIL-PRF-19500/557. Absolute Maximum Ratings PD-91715C.

Characterization and Modeling of 4H-SiC Low Voltage MOSFETs and Power MOSFETs

Compact Modeling of SiC Insulated Gate Bipolar Transistors

AN-1001 Understanding Power MOSFET Parameters

IRHF57133SE THRU-HOLE (TO-39) REF: MIL-PRF-19500/706. Absolute Maximum Ratings

SMPS MOSFET. V DSS R DS(on) max I D. Absolute Maximum Ratings Symbol Parameter Max 20 V V GS A I DM. 90 W P A = 70 C Maximum Power Dissipation e

MEI. 20V P-Channel Enhancement-Mode MOSFET P2301BLT1G. Features. Simple Drive Requirement Small Package Outline Surface Mount Device G 1 2 V DS -20

SMPS MOSFET. V DSS R DS(on) max I D

THE SPICE DYNAMIC BEHAVIOURAL ELECTROTHERMAL MODEL OF SILICON CARBIDE POWER MOSFET

IRF7821PbF. HEXFET Power MOSFET

IRHNA JANSR2N7524U2 R 5 60V, P-CHANNEL REF: MIL-PRF-19500/733 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) PD-94604D TECHNOLOGY

Absolute Maximum Ratings for Each N-Channel Device

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

C3M J. Silicon Carbide Power MOSFET C3M TM MOSFET Technology. N-Channel Enhancement Mode. Features. Package. Benefits.

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

Description. Symbol Parameter FCMT180N65S3 Unit V DSS Drain to Source Voltage 650 V. - Continuous (T C = 25 o C) 17 - Continuous (T C = 100 o C) 11

PFP15T140 / PFB15T140

80mW - 650V SiC Cascode UJ3C065080K3S Datasheet. Description. Typical Applications. Maximum Ratings

27mW - 650V SiC Cascode UJ3C065030K3S Datasheet. Description. Typical Applications. Maximum Ratings

IRLR8103VPbF. Absolute Maximum Ratings. Thermal Resistance PD A DEVICE CHARACTERISTICS. IRLR8103V 7.9 mω Q G Q SW Q OSS.

IRF5M V, P-CHANNEL HEXFET MOSFET TECHNOLOGY POWER MOSFET THRU-HOLE (TO-254AA) PD-94155A

S2 6 1 S1 3 D2 2 G1. Pin configuration (Top view) Parameter Symbol 10 S Steady State Unit Drain-Source Voltage V DS +20 Gate-Source Voltage V GS 6

UNIT 3: FIELD EFFECT TRANSISTORS

V DSS R DS(on) max (mw)

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

IRFZ48NS IRFZ48NL HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D

35mW V SiC Cascode UJ3C120040K3S Datasheet. Description. Typical Applications. Maximum Ratings

Power SiC DMOSFET Model Accounting for JFET Region Nonuniform Current Distribution

IRF7MS V, N-CHANNEL HEXFET MOSFET TECHNOLOGY. POWER MOSFET THRU-HOLE (Low-Ohmic TO-254AA) PD-94609A

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

Unit III FET and its Applications. 2 Marks Questions and Answers

Field - Effect Transistor

AUIRFR4105Z AUIRFU4105Z

TO-220 G. T C = 25 C unless otherwise noted. Drain-Source Voltage 80 V. Symbol Parameter MSP120N08G Units R θjc

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

IRF7328PbF. HEXFET Power MOSFET V DSS R DS(on) max I D

IRL3102S. HEXFET Power MOSFET V DSS = 20V. R DS(on) = 0.013W I D = 61A PRELIMINARY

APPLICATION NOTE ANxxxx. Understanding the Datasheet of a SiC Power Schottky Diode

Power MOSFET Basics. Table of Contents. 2. Breakdown Voltage. 1. Basic Device Structure. 3. On-State Characteristics

HEXFET Power MOSFET V DSS = 40V. R DS(on) = Ω I D = 130A

N-Channel Enhancement Mode Field Effect Transistor

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

TO-220F. 1. Gate 2. Drain 3. Source. Item Sales Type Marking Package Packaging 1 SW P 4N60 SW4N60 TO-220 TUBE 2 SW F 4N60 SW4N60 TO-220F TUBE

n Low RDS(on) n Avalanche Energy Ratings n Simple Drive Requirements n Ease of Paralleling n Hermetically Sealed n Surface Mount n Light Weight

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

Absolute Maximum Ratings Parameter Symbol IRF7809A V Units Drain-Source Voltage V DS. 30 V Gate-Source Voltage V GS = 25 C I D

Transcription:

Who we are We are the semiconductor device modeling group which is part of MSCAD laboratory at University of Arkansas, Fayetteville. UARK SiC Power MOSFET Model V1.0.0 MSCAD Laboratory, CSRC 1475 Cato Springs Rd, Fayetteville, AR - 72701 Email: rmkotech@uark.edu Web: http://mixedsignal.eleg.uark.edu/ University of Arkansas 1475 Cato Springs Rd, Fayetteville, AR - 72701 UNIVERSITY OF ARKANSAS Fayetteville

Table of Contents Overview of SiC Power MOSFET model... 3 Parameter Extraction Sequence... 4 Transient Simulation and Model Validation... 11 Comparison between Verilog-A and MAST model 15 Synchronous mode.22 Parameter list...23 Symbolic equivalent circuit 26 List of Equations 27 People involved..32

1. Overview of UARK SiC Power MOSFET model 2. The SiC Power MOSFET model presented here is based on the analytical model published in [1] and [2]. A 1200 V, CREE device (C2M0025120D) has been used in this work to illustrate the parameter extraction and model validation. Chapter 2 explains the process of parameter extraction sequence using the device datasheet and Chapter 3 shows the model validation using double pulse tester circuit. Chapter 4 shows the comparison between MAST and Verilog-A codes of the model. Chapter 5 entails all the parameters used in the model and Chapter 6 comprises of the model equations. Finally, chapter 7 includes the people involved in this project. References: [1] T. R. McNutt, A. R. Hefner, H. A. Mantooth, D. Berning, and S. H. Ryu, Silicon carbide power MOSFET model and parameter extraction sequence, IEEE Trans. Power Electron., vol. 22, no. 2, pp. 353-363, Mar. 2007. [2] M. Mudholkar, S. Ahmed, M. N. Ericson, S. S. Frank, C. L. Britton, Jr., H. A. Mantooth, Datasheet driven silicon carbide power MOSFET model, IEEE Trans. Power Electron, vol. 29, no. 5, pp 2220-2228, May 2014. Sponsor: This material is based upon work supported by the National Science Foundation under Award Number IIP-1465243.

2. Parameter Extraction Sequence The SiC Power MOSFET model parameters are extracted in a set sequence such that only the characteristics that are readily available in the device datasheets of most commercial devices are required. In the absence of device datasheets, the user may be required to measure the device characteristics to extract the device model parameters. The parameter extraction sequence requires the following device characteristics in the given order for the extraction of useful parameters for any transient simulation or power electronic application. 1) Capacitance vs. Voltage Characteristics (also referred to as CV characteristics) 2) Device Transfer Characteristics (also referred to as Id Vgs Characteristics) 3) Device Output Characteristics (also referred to as Is Vds Characteristics) To demonstrate the parameter extraction sequence, the characteristics from a commercially available datasheet of the 1200 V CREE power MOSFET (C2M0025120D) are used. 1) Capacitance vs. Voltage Characteristics: The parameters which must be adjusted to fit the CV characteristics are listed in the order below: CRSS Curve: Coxd, Vtd, nb, and agd COSS Curve: Cds, and m CISS Curve: Cgs Fig. 1(a) shows the test schematic used to simulate the CV characteristics and Fig. 1(b) shows the CV characteristics for the C2M0025120D CREE device and the simulated characteristics after the extraction of the aforementioned parameters. The plots also reveal the regions within the curves that are affected by the parameters as shown in [2].

Fig. 1 (a) Test circuit implemented in Saber simulator for C-V characteristics

Capacitance, C (F) Device C-V characteristics 1.00E-07 1.00E-08 Ciss 1.00E-09 Coss 1.00E-10 1.00E-11 Crss 0 100 200 300 400 500 600 700 Drain to Source voltage, Vds (V) Measured_Ciss Measured_Coss Measured_Crss Simulated_Ciss Simulated_Crss Simulated_Coss Fig. 1 (b) Simulated and datasheet C-V characteristics for C2M0025120D CREE device 2) Device Transfer Characteristics The parameters which must be adjusted to fit the Id-Vgs characteristics are listed below: rs, kph, kpl, and vt Fig. 2(a) shows the test schematic used to simulate the Device Transfer Characteristics and Fig. 2(b) shows the transfer characteristics for the C2M0025120D CREE device and the simulated characteristics after the extraction of the aforementioned parameters. The extraction of the parameters is performed by adjusting the parameters in the appropriate regions of the curve as indicated in the figure [1] and [2].

Fig. 2 (a) Test circuit implemented in Saber simulator for dc characteristics

Drain Current, Id (A) Device transfer characteristics 120 100 80 60 40 20 0 0 2 4 6 8 10 12 Gate to Source Voltage, Vgs (V) Measured_Vd=20V Simulated_Vd=20V Fig. 2 (b) Simulated and datasheet transfer characteristics for C2M0025120D CREE device 3) Device Output Characteristics: The parameters which must be adjusted to fit the output characteristics are listed below: kfh, kfl, and pvf Fig. 3 shows the output characteristics for the C2M0025120D CREE device and the simulated characteristics after the extraction of the aforementioned parameters. Fig. 3 also shows the regions within the output characteristics which are directly affected by the adjustment of the listed parameters as shown in [2].

Drain Current, Id (A) Device Output characteristics 180.00 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Drain to Source Voltage, Vds (V) Measured_Vg=10V Measured_Vg=12V Measured_Vg=14V Measured_Vg=16V Simulated_Vg=10V Simulated_Vg=12V Simulated_Vg=14V Simulated_Vg=16V Fig. 3 Simulated and datasheet output characteristics for C2M0025120D CREE device The described parameter extraction strategy is performed at room temperature, using T = TNOM in the model. To extract the temperature scaling parameters, the same extraction is performed at several temperature increments and the model temperature T is set equal to the simulation temperature in each case. Only the parameters which have temperature scaling are extracted at each temperature, and the rest of the parameters are fixed to their room temperature values. Finally, values for the temperature scaled parameters are obtained at several temperature points. Then, using the temperature scaling equations of the model, the temperature scaling parameters (kphtexp, kpltexp, kfhtexp, kfltexp, thetahtexp, thetaltexp, vthtco, vtltco) are extracted using the parameter values as function of the temperature.

Drain current, Id (A) 120 Device transfer characteristics at 150ᵒC 100 80 60 40 20 0 0 2 4 6 8 10 Gate to source voltage, Vgs (V) simulated_vd=20 measured_vd=20 Fig. 4 Simulated and datasheet transfer characteristics for C2M0025120D CREE device at 150ᵒC

Drain current, Id (A) Device output characteristics at 150ᵒC 120 100 80 60 40 20 0 0 1 2 3 4 5 6 7 Drain to Source Voltage, Vds (V) vgs_sim=10 vgs_sim=14 vgs_meas=12 vgs_sim=12 vgs_meas=10 vgs_meas=14 Fig. 5 Simulated and datasheet output characteristics for C2M0025120D CREE device at 150ᵒC

3. Transient Simulation: Fig. 6 (a) Double pulse test schematic in Saber

After the extraction of useful parameters, the model is validated for transient simulations using a double-pulse tester switching circuit as shown in Fig. 6 (a). The dynamic current and voltage characteristics using a clamped inductive load are shown in fig. 6(b) and 6 (c), respectively. Fig. 6(b) Simulated and measured transient drain current using double pulse tester

Fig. 6 (c) Simulated and measured transient drain-source voltage using double pulse tester

Drain Current, Id (A) 4. Comparison between Verilog-A and MAST codes Comparison between Verilog-A and MAST code simulation for I d -V ds : 70 60 50 40 30 20 10 Comparison between Verilog-A and MAST code simulations for output characteristics 0 0 1 2 3 4 5 6 7 Drain to source voltage, Vds (V) ver2_spectre (Vg=10) ver2_mast (Vg=10) ver2_mast (Vg=12) ver2_mast (Vg=14) ver2_mast (Vg=16) ver2_spectre (Vg=12) ver2_spectre (Vg=14) ver2_spectre (Vg=16) Figure 7(a): Id-Vds characteristics comparison between Verilog-A and MAST codes

Drain Current, Id (A) Comparison between Verilog-A and MAST code simulation for I d -V gs : 9.00E+01 8.00E+01 7.00E+01 Comparison between Verilog-A and MAST code simulations for transfer characteristics 6.00E+01 5.00E+01 4.00E+01 3.00E+01 2.00E+01 1.00E+01 0.00E+00 0 2 4 6 8 10 12 14 16 Gate to Source voltage, Vgs (V) MAST_ver2 Verilog-A_ver2 Figure 7(b): Id-Vgs characteristics comparison between Verilog-A and MAST codes

Input Capacitance, Ciss(F) Comparison between Verilog-A and MAST code simulation for Input Capacitance (C iss ): 2.50E-09 Ciss_MAST vs VerilogA 2.00E-09 1.50E-09 1.00E-09 5.00E-10 0.00E+00 0 100 200 300 400 500 600 700 Drain to source voltage, Vds (V) ciss_mast ciss_veriloga Figure 7(c): Input Capacitance (Ciss) characteristics comparison between Verilog-A and MAST

Output Capacitance,Coss (F) Comparison between Verilog-A and MAST code simulation for Input Capacitance (C iss ): 2.50E-09 Coss_MAST_vs_verilogA 2.00E-09 1.50E-09 1.00E-09 5.00E-10 0.00E+00 0 100 200 300 400 500 600 700 Drain to Source Voltage, Vds (V) Coss_ver2_MAST Coss_ver2_verilogA Figure 7(d): Output Capacitance (Coss) characteristics comparison between Verilog-A and MAST

Reverse Transfer Capacitance,Crss (F) Comparison between Verilog-A and MAST code simulation for Reverse Transfer Capacitance (C rss ): 7.00E-10 VerilogA vs MAST_for Crss 6.00E-10 5.00E-10 4.00E-10 3.00E-10 2.00E-10 1.00E-10 0.00E+00 0 100 200 300 400 500 600 700 Drain to Source Voltage, Vds (V) VER2_MAST ver2_veriloga Figure 7(e): Reverse Transfer Capacitance (Crss) characteristics comparison between Verilog-A and MAST

Transient characteristics comparison Verilog-A and MAST codes using double pulse test in Spectre: 1000 Transient Vds_Verilog-A vs MAST 800 600 400 200 0 0.E+00 1.E-06 2.E-06 3.E-06 4.E-06 5.E-06 6.E-06 7.E-06 Transient Vds_ver2_Spectre doublepulse_2switches_test_version_parasitics_image3/c2m0025120b_final.c2m0025120b _final4/vds`v Figure 7(f): Comparison of transient Vds characteristics between MAST in Saber and Verilog-A in Spectre simulations

Transient Id_Verilog-A vs MAST 40 35 30 25 20 15 10 5 0 0.E+00 1.E-06 2.E-06 3.E-06 4.E-06 5.E-06 6.E-06 7.E-06 Transient Id_ver2_Spectre doublepulse_2switches_test_version_parasitics_image3/c2m0025120b_final.c2m0025120b_ final4/i(drain)`a Figure 7(g): Comparison of transient Id characteristics between MAST in Saber and Verilog-A in Spectre simulations

5. Synchronous mode: When synchronous mode is activated the model supports both first and third quadrant of MOSFET characteristics. This mode incorporates internal bodydiode of PowerFET. Synchronous mode DC-characteristics 150 100 50 0-5 -3-1 1 3 5 7 9-50 -100-150 -200 (vgs2=10) Y (vgs2=12) Y (vgs2=14) Y (vgs2=16) Y (vgs2=18) Y (vgs2=20) Y Figure 8: Synchronous mode DC-characteristics for C2M0025120D CREE device at 25ᵒC

6. Parameter list: The parameters that were used to build up the PowerFET model are listed below: Parameter name Default value Unit Comment Mtrlmod 1 Material type: "0" corresponds to Si and "1" corresponds to SiC Syncmod 1 Mode type: "0" corresponds to synchronous operation disabled and "1" corresponds to synchronous operation enabled. cgs 2e-9 F Gate to source capacitance cds 2e-9 F Drain to source zero bias capacitance cgd0 1e-12 F Gate drain overlap capacitance coxd 7e-9 F Gate oxide capacitance vtd 10e-3 V Gate drain overlap depletion threshold voltage vtdtco 0 V/K Temp. coefficient of vtd fc 0 Forward-bias depletion capacitance coefficient m 440e-3 Junction grading coefficient wb 150e-6 cm Metallurgical drift region width nb 1.4e15 cm -3 Base doping concentration a 0.1667 cm 2 Device active area agd 11e-3 cm 2 Gate drain overlap active area thetal 10e-6 Empirical parameter to model transconductance reduction low gate-source voltage thetah 10e-6 Empirical parameter to model transconductance reduction for high gate-source voltage

thetaltexp 0 Temperature exponent for thetal thetahtexp 0 Temperature exponent for thetah rs 1e-3 Ω Parasitic drain resistance kfl 12 Transconductance parameter to scale current in triode region and low threshold voltage region kfh 5 Transconductance parameter to scale current in triode region and high threshold voltage region kpl 4.2 Transconductance parameter to scale current in triode and saturation region and low threshold voltage region kph 80e-3 Transconductance parameter to scale current in triode and saturation region and high threshold voltage region kfltexp 0 Temp. exponent for kfl kfhtexp 0 Temp. exponent for kfh kpltexp 0 Temp. exponent for kpl kphtexp 0 Temp. exponent for kph vtl 3.7 V Low current threshold voltage vth 32e-3 V High current threshold voltage vtltco 0 V/K Temp. coefficient of vtl vthtco 0 V/K Temp. coefficient of vth vbigd 0.1 V Gate-drain neck region built-in potential pvf 440e-3 Pinch-off voltage parameter to adjust drain-source saturation voltage fxjbe 0.5 F/cm 2 Fraction depletion charge at gate-drain overlap edge fxjbm 0.75 F/cm 2 Fraction depletion charge at gate-drain overlap middle slmin 1e-9 A/V Minimum slope for MOSFET current id0 0 A Leakage current at breakdown voltage vb 1330 V Breakdown voltage of the device tnom 27 Nominal temperature rd 13e-3 Ω Parasitic drain resistance rdvd 0 Ω/V Drain voltage coefficient of drift resistance rdvg11 0 Ω/V First gate voltage coefficient of drift resistance rdvg12 1.0 Ω/V Second gate voltage coefficient of drift resistance

rdtemp1 0 Ω/K First temperature coefficient of rd rdtemp2 0 Ω/K Second temperature coefficient of rd rdvdtemp1 0 Ω/V.K First temperature coefficient of rdvd rdvdtemp2 0 Ω/V.K Second temperature coefficient of rd kvsg1 0 1/V Gate bias dependent first body diode parameter kvsg2 0 1/V Gate bias dependent second body diode parameter nd 1.0 Emission coefficient of body diode

7. Symbolic equivalent circuit of the model: Drain rdrift Res_bdiode Cap_dg imos Gate Cap_ds bodydiode rs Cap_gs Source

8. Equations: The equations that have been used in the model are given below: Permittivity, intrinsic carrier concentration and mobility calculation for Si eps = eps0 epsrsi ni = 3.88 1016 (temperature) 1.5 7000 exp ( temperature ) 5.1 10 18 + 92 nb 0.91 mun = 2.5 (3.75 10 15 + nb 0.91 300 ) ( temperature ) Permittivity, intrinsic carrier concentration and mobility calculation for SiC eps = eps0 epsrsic ni = 1.7 1016 temperature 1.5 e 2.08 10 4 temperature 947 mun = 0.61 nb (1 + ( 1.94 10 17) ) ( temperature 300 ) 2.15 Voltage definition Drain to internal drain voltage, vddnr = V(res_drain) Internal drain to internal source voltage, vdnrsnr = V(imos_intrinsic)

Internal source to source voltage, vsnrs = V(res_source) gate to internal source voltage, vgsnr = V(cap_gs) Gate to internal drain voltage, vgdnr = V(cap_gd) Drain to source voltage, vds = vddnr + vdnrsnr + vsnrs Internal drain to gate voltage, vdnrg = ( 1) vgdnr Voltage across bodydiode resistance, vdiodnr = V(res_bdiode) Voltage across bodydiode, vbdiode = V(cap_ds) Current calculation through parasitic resistance ires_drain = vddnr rdrift ires_source = vsnrs rs ires_bdiode = vdiodnr res_bdiode Mosfet low current in triode region (vgsnr vtl) vdnrsnr kfl kpl ( (pvf yl 1 vdnrsnr yl (vgsnr yl vtl)2 ) ) yl imosl = 1 + thetal (vgsnr vtl)

Mosfet low current in saturation region imosl = kpl (vgsnr vtl) 2 2 (1 + thetal (vgsnr vtl)) Mosfet high current in triode region (vgsnr vth) vdnrsnr kfh kph ( (pvf yh 1 vdnrsnr yh (vgsnr yh vth)2 ) ) yh imosh = 1 + thetah (vgsnr vth) Mosfet high current in saturation region: imosh = kph (vgsnr vth) 2 2 (1 + thetah (vgsnr vth)) Total Mosfet current: imos = mode ((imosl + imosh) + slmin vdnrsnr) In case of synchronous rectification is enabled, mode is negative for third quadrant characteristics. Bodydiode current: tmp1 = limexp( vbdiode/(nd vth)) tmp2 = limexp( (kvsg2 vgsnr))

ibdiode = is body tmp2 (tmp1 1) Drain to source capacitance calculation cdsdep = m vbi cds ( vbi + vbdiode ), if vbdiode + vbi > 0 { cdsdep = cds, elsewhere qcdsj = cds vbi m (vbi + vbdiode)(1 m) (1 m) vbi, if vbdiode + vbi > 0 (1 m) { qcdsj = cdsdep vbdiode, elsewhere Two-phase gate to drain capacitance calculation 0, if vdnrg + vtd 0 wgdj = 2 eps { vdnrg + vtd q nb, elsewhere coxd, if vdnrg + vtd 0 cgd = { cgdj coxd coxd + cgdj, elsewhere

coxd vdnrg, if vdnrg + vtd 0 qcdg = { cgd vdnrg, elsewhere Gate to source charge, qcgs = cgs vgsnr Datasheet capacitance definitions ciss = cgd + cgs coss = cgd + cdsdep crss = cgd Temperature scaling equations tdiff = temperature tnom tratio = temperature tnom k(temperature) = k(tnom) tratio ktexp theta(temperature) = theta(tnom) tratio thetatexp vt(temperature) = vt(tnom) + tdiff vtco

9. People Involved 1) Mihir Mudholkar 2) Shamim Ahmed 3) Ty McNutt 4) Ramchandra Kotecha 5) Arman-Ur-Rashid 6) Mr. Tom Vrotsos 7) Prof. Alan Mantooth