HIGH-POWER & LOW-VOLTAGE AUDIO POWER AMPLIFIER

Similar documents
HIGH-POWER & LOW-VOLTAGE AUDIO POWER AMPLIFIER

HIGH-POWER & LOW-VOLTAGE AUDIO POWER AMPLIFIER

500mW MONAURAL SPEAKER AMPLIFIER * MEET JEDEC MO-187-DA

LOW VOLTAGE AUDIO POWER AMPLIFIER

NJU High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier

NJM2734SCC. Rail-to-Rail Input/Output Quad Operational Amplifier PACKAGE OUTLINE

NJM2794. Ground Noise Isolation Amplifier PACKAGE OUTLINE

NJM2783. Preliminary. Monaural Microphone Amplifier with ALC

NJU Channels Electronic Volume PACKAGE OUTLINE

Rail-to-Rail Input/Output Quad Operational Amplifier 8. C OUTPUT 9. C -INPUT 10. C +INPUT 11. GND(V ) 12. D +INPUT 13. D INPUT 14.

MUSES8832. Rail-to-Rail Output, High Quality Audio, Dual Operational Amplifier. MUSES and this logo are trademarks of New Japan Radio Co., Ltd.

NJM4585. Low Noise, Bipolar Input Dual, Audio Operational amplifier EQUIVALENT CIRCUIT PIN CONFIGURATION. FEATURES Designed for High-Quality Sound

UNISONIC TECHNOLOGIES CO., LTD

NJU Vrms Ground Referenced Stereo Line Amplifier PACKAGE OUTLINE

AN7511, AN7511S. 1-W BTL audio power amplifier. ICs for Audio Common Use. Overview. Features. Applications. Block Diagram AN7511

NJM2734. Rail-to-Rail Input/Output Quad Operational Amplifier

±18V Operation 2-Channel Electronic Volume. Selectable 8-Chip Address Available for using eight chips on same serial bus line

NJU Channels Electronic Volume PACKAGE OUTLINE

NJU7076/NJU7077/NJU7078

NJM2761RB2. Audio Limiter

7-INPUT / 3-OUTPUT DUAL ANALOG SWITCH

Wide-Band,High-Speed,Low-Offset,Low-Noise Rail-to-Rail Input/Output CMOS Operational Amplifier

UNISONIC TECHNOLOGIES CO., LTD M4670 Preliminary CMOS IC

NJM2732. Rail-to-Rail Input/Output Dual Operational Amplifier

4in-1out Audio Selector with Isolation amplifier

UNISONIC TECHNOLOGIES CO., LTD PA4838

NJM2904C / NJM2904CA SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

NJU Channels Electronic Volume PACKAGE OUTLINE

NJM8801. High Quality Audio Dual Operational Amplifier FEATURES. EQUIVALENT CIRCUIT ( 1/2 Shown ) -1-

SIGNAL LEVEL SENSOR SYSTEM

AN7561Z. BTL output power IC for car audio. ICs for Audio Common Use. Overview. Features. Applications

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 -

NJU7046/NJU7047/NJU7048

THE PHYSICAL MAP GENERAL DESCRIPTION APPLICATIONS BLOCK DIAGRAM FEATURES SHENZHEN XPTEK TECHNOLOGY CO., LTD

NJM Input / 1-Output Stereo Audio Selector

AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control. ICs for Audio Common Use. Overview. Features.

CE0030A. Audio Power Amplifier with low power supply INTRODUCTION FEATURES PIN DIAGRAM

AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control. ICs for Audio Common Use. Overview. Features.

NJM Input / 1-Output Stereo Audio Selector

NJM4582 AUDIO DUAL OPERATIONAL AMPLIFIER

NJM4558C DUAL OPERATIONAL AMPLIFIER V + OUTPUT -INPUT +INPUT V -

IS31AP W AUDIO POWER AMPLIFIER WITH ACTIVE-HIGH STANDBY MODE. August 2013

A2211 CLASS AB 1.25 W DIFFERENTIAL AUDIO POWER AMPLIFIER WITH INTERNAL FEEDBACK CIRCUIT

NJM4580 DUAL OPERATIONAL AMPLIFIER

NJM2718. Single-Supply High-Operating voltage Dual Operational Amplifier PACKAGE OUTLINE

A W CLASS AB BTL AUDIO POWER AMPLIFIER EXTERNAL GAIN CONFIGURATION CAPABILITY

ESMT Preliminary AD51652

NJW Vrms Ground Referenced 6-Channel Line Amplifier PACKAGE OUTLINE

NJM8512/NJM8513. Precision, JFET Input Operational Amplifier

Obsolete Product(s) - Obsolete Product(s)

1.3 Watt Audio Power Amplifier

Precision Operational Amplifier

2.6 Watt Mono Filter-Free Class-D Audio Power Amplifier

NJM8202. Single Supply, Rail-to-Rail Output Dual Operational Amplifier

DATA SHEET. Filterless, 2.8W, Mono Class-D Audio Power Amplifier

LY W Mono Filterless Class D Audio power Amplifier

Single-phase DC Brushless Motor Driver IC *MEET JEDEC MO-187-DA / THIN TYPE. PIN No. PIN NAME 1 OUTB 2 VDD 3 IN+ 4 IN- 5 FG 6 PWM 7 OUTA 8 GND + -

UNISONIC TECHNOLOGIES CO., LTD PA3332 Preliminary CMOS IC

TPA6110A2 150-mW STEREO AUDIO POWER AMPLIFIER

PT5321 Dual 2.1W Audio Amplifier Plus Stereo Headphone Function & 3D Enhancement

NJU7026/NJU7027/NJU7028

High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier PIN FUNCTION 1. OUTPUT A 2. INPUT A 3. +INPUT A

PAM8304. Pin Assignments. Description NEW PRODUCT. Features. Applications. Typical Applications Circuit. A Product Line of. Diodes Incorporated

NAU82011WG 2.9 W Mono Filter-Free Class-D Audio Amplifier. 1 Description VIN. Output Driver VIP. Class D Modulator VDD VSS

AN W 2 (18 V, 8 Ω) Power Amplifier with Variable Audio Output and Volume Control. ICs for Audio Common Use. Overview. Features.

SINGLE SUPPLY WIDE BAND

UNISONIC TECHNOLOGIES CO., LTD

SGM4863 Dual 2.1W Audio Power Amplifier Plus Stereo Headphone Function

INTEGRATED CIRCUITS DATA SHEET. TDA x 1 W portable/mains-fed stereo power amplifier. Product specification File under Integrated Circuits, IC01

Dual 2.6W Stereo Audio Amplifier

SN4018. Stereo 2.7W Audio Power Amplifier (with DC_Volume Control) General Description. Features. Applications. Typical Application Circuit

High Quality Audio, Bipolar Input, Dual Operational Amplifier

ADJUSTABLE PRECISION SHUNT REGULATOR NJM431SU NJM431SF NJM432SU NJM432SF 1.CATHODE 1.N.C. 2.ANODE 2.ANODE 3.CATHODE 2.ANODE 3.

SGM W Audio Power Amplifier

EUA W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

EUA2011A. Low EMI, Ultra-Low Distortion, 2.5-W Mono Filterless Class-D Audio Power Amplifier DESCRIPTION FEATURES APPLICATIONS

NJM2737. Low Noise, Rail-to-Rail Input/Output Dual Operational Amplifier

NJM5532C LOW-NOISE DUAL OPERATIONAL AMPLIFIER NJM5532CG (SOP8) FEATURES PIN CONFIGURATION. EQUIVALENT CIRCUIT (Each Amplifier) - 1 -

EUA6210 Output Capacitor-less 67mW Stereo Headphone Amplifier

PAM8402. General Description. Key Features. Applications. Typical Application Vdd. 2 W Class-D Stereo Audio Amplifier with Enable

SINGLE SUPPLY QUAD OPERATIONAL AMPLIFIER

Monaural BTL Output Clock-less Switching Driver for Class D Amplifier

A2327. AiT Semiconductor Inc. ORDERING INFORMATION APPLICATION

BA Features. General Description. Applications. Marking Information. 3W Mono Filterless Class D Audio Power Amplifier

6.4W Anti-Clipping Mono Audio Power Amplifier

2.95W Mono Filter-less Class-D Audio Power Amplifier

NJU7116 SUPER LOW OPERATING CURRENT AND LOW OFFSET VOLTAGE TINY SINGLE CMOS COMPARATOR

140mW Headphone Amplifier with Unity-gain Stable

NJM324C. Low power quad operational amplifiers

Precision Operational Amplifier

UNISONIC TECHNOLOGIES CO., LTD

Maintenance/ Discontinued

NJM2722. Single Ultra-High speed and Wide Band Operational Amplifier

Dual Precision Operational Amplifier

1.2W Audio Power Amplifier with Active-low Standby Mode

Maintenance/ Discontinued

Low Noise, High-Speed Dual Operational Amplifier. Vni = 3nV/ Hz typ. (at f=10khz) ft = 90MHz typ. (at V + /V - = ±2.5V)

HIGH SPEED SINGLE SUPPLY OPERATIONAL AMPLIFIER V + B OUTPUT B -INPUT B +INPUT SOP8 SSOP8 MSOP8(VSP8) SOP14 SSOP14

2W 2 Class AB Audio Power Amplifier

FEATURES. Pd-Free Package Temperature Order Part Number Transport Media Marking. PT5381 XXXXXC Note: THD+N(%) 0.1

Transcription:

NJU789 HIGH-POWER & LOW-VOLTAGE AUDIO POWER AMPLIFIER GENERAL DESCRIPTION The NJU789 is an audio power amplifier designed for telephone applications. No external coupling capacitors are required because of the differential outputs. The closed loop gain is adjusted by two external resistors, and a SD pin permit power down with muting the input signal. The NJU789 improves high output power compared with other amplifier. PACKAGE OUTLINE NJU789R NJU789VC3 FEATURES Operating Voltage V + =.8 to 5.5V Operating Current I DD =3.mA typ. (V + =5V,R L =, no signal) I DD =2.5mA typ. (V + =3V,R L =, no signal) Output Power P =.2W typ. (V + =5V,R L =8,THD=%) P =5mW typ.(v + =3.3V,R L =8,THD=%) Supply Current in Shutdown Mode Thermal Shutdown Circuit Pop Noise Suppression Circuit Over Current Protection Circuit C-MOS Technology Package Outline VSP8 / SSOP2 / ESON8 NJU789KV PIN CONFIGURATION & BLOCK DIAGRAM V+ -IN OUTA +IN Bypass OUTB SD BIAS TSD GND Ver.e - -

NJU789 PIN CONFIGURATION VSP8 8 8 7 6 5 ESON8 2 3 4 * () 4 5 2 3 4 8 7 6 5 Surface * () The PAD in the center part on the back is connected with the internal GND, therefore it connects to GND No. Symbol Function SD Shutdown Enable 2 Bypass Reference Voltage 3 +IN Inverted Input 4 -IN Noninverted Input 5 OUTA Output A 6 V+ Supply Voltage 7 GND Ground 8 OUTB Output B Backside SSOP2 2 No. Symbol Function No. Symbol Function NC No Connect NC No Connect 2 NC No Connect 2 NC No Connect 3 NC No Connect 3 NC No Connect 4 SD Shutdown Enable 4 OUTA Output A 5 Bypass Reference Voltage 5 V+ Supply Voltage 6 +IN Inverted Input 6 GND Ground 7 -IN Noninverted Input 7 OUTB Output B 8 NC No Connect 8 NC No Connect 9 NC No Connect 9 NC No Connect NC No Connect 2 NC No Connect - 2 -

NJU789 ABSOLUTE MAXIMUM RATINGS (Ta=25 C) PARAMETER SYMBOL RATINGS UNIT Supply Voltage V + +7 V Power Dissipation P D 57 * ) / 77 * 2) (VSP8) 97 * ) / 4 * 2) (SSOP2C3) mw 57 * 3) / 7 * 4) (ESON8) Output Peak Current I op 6 ma Input Voltage Range V IN -.3 to V + +.3 * 5) V Operating Temperature Range T opr -4 to +85 C Storage Temperature Range T stg -4 to +5 C * ) EIA/JEDEC STANDARD Test board (76.2 x 4.3 x.6mm, 2layers, FR-4) mounting. * 2) EIA/JEDEC STANDARD Test board (76.2 x 4.3 x.6mm, 4layers, FR-4) mounting. * 3) EIA/JEDEC STANDARD Test board (76.2 x 4.3 x.6mm, 2layers, FR-4) mounting. The PAD connecting to GND in the center part on the back * 4) EIA/JEDEC STANDARD Test board (76.2 x 4.3 x.6mm, 4layers, FR-4, Applying a thermal via hole to a board based on JEDEC standard JESD5-5) mounting. The PAD connecting to GND in the center part on the back * 5) SD, IN+, IN-, OUTA, OUTB terminals. RECOMMENDED OPERATING VOLTAGE RANGE (Ta=25 C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Operating Voltage Range V + -.8 3. 5.5 V ELECTRICAL CHARACTERISTICS Amplifier (Ta=25 C,V + =5V,G V =6dB,f=kHz,R L =8,Active) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Operating Current I DD No signal, R L =, Active - 3. 6 ma Operating Current 2 I DD2 No signal, R L =, V SD =.25V - - 2 A Output Power P O THD %.9.2 - W Output Power 2 P O2 V + =3.3V, THD % 375 5 - W Output Power 3 P O3 V + =.8V, THD % - 25 - W Total Harmonic Distortion (THD+N) THD+N P O =W -. - % Shutdown Attenuation ATT SD Vin=Vrms, Shutdown -35 db Supply Voltage Rejection Raito PSRR Vripple=mVrms - 55 - db Output Offset Voltage V OD No signal - - 35 mv (Ta=25 C,V + =3V,G V =6dB,f=kHz,R L =8,Active) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT Operating Current I DD No signal, R L =, Active - 2.5 4 ma Operating Current 2 I DD2 No signal, R L =, V SD =.25V - - 2 A Total Harmonic Distortion (THD+N) THD+N P O =4mW -. - % Shutdown Attenuation ATT SD Vin=5mVrms, Shutdown -3 db Supply Voltage Rejection Raito PSRR Vripple=mVrms - 55 - db Output Offset Voltage V OD No signal - - 35 mv V SD: SD Terminal Voltage Mode Control (Ta=25 C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT High Level Input Voltage V IH -.5 - V + V Low Level Input Voltage V IL - -.25 CONTROL TERMINAL EXPLANATION MODE CONTROL SIGNAL (SD Terminal) STATUS Shutdown L(=V IL ) IC is standby. Active H(=V IH ) IC is active. - 3 -

NJU789 TEST CIRCUIT (I DD, I DD2, V OD ) 2kΩ V + + V +.39uF 2kΩ -IN OUTA +IN RL= Bypass OUTB uf V + SD BIAS TSD GND TEST CIRCUIT (P O, P O2, P O3, THD+N, ATT SD ) 2kΩ V + + V + Vin.39uF 2kΩ -IN OUTA +IN RL=8Ω uf Bypass OUTB V + SD BIAS TSD GND - 4 -

NJU789 TEST CIRCUIT (PSRR) 2kΩ V + + V + Vin.39uF 2kΩ -IN OUTA +IN RL=8Ω uf Bypass OUTB V + SD BIAS TSD GND - 5 -

NJU789 TERMINAL DESCRIPTION TERMINAL SYMBOL FUNCTION EQUIVALENT CIRCUIT VOLTAGE SSOP2 VSP8 ESON8 V+ 4 SD Shutdown Enable 3Ω V SD kω GND V+ V+ V+ Bypass 5 2 Bypass Reference Voltage 3Ω 75kΩ V + /2 5kΩ GND V+ 6 3 +IN Inverted Input V + /2 +IN 3Ω GND V -IN 3 7 4 -IN Noninverted Input V + /2 GND V+ 4 7 5 8 OUTA OUTB Output A Output B OUTA OUTB 2kΩ 3Ω V + /2 GND - 6 -

NJU789-7 - APPLICATION CIRCUIT BIAS + TSD SD Bypass +IN -IN OUTB OUTA 8Ω Speaker V+ GND Shutdown Control Cb Ci Ri Vin Rf BIAS + TSD SD Bypass +IN -IN OUTB OUTA 8Ω Speaker V+ GND Shutdown Control Cb Ci Ri Vin- Rf Ci Ri Vin+ Rf

NJU789 APPLICATION NOTES The NJU789 is a.2w mono bridge tied-load [BTL] amplifier designed to drive a speaker with 8 impedance. The NJU789 can run from a.8v to 5.5V supply. The voltage gain is set by the user-selected resister (Ri, Rf). The NJU789 is equipped with a shutdown [SD] mode that will reduce the supply current and pop noise during the SD mode ON/OFF. In this application note, detailed information on the usage of this IC and its operation are discussed.. Operating Overview Fig. shows the NJU789 internal circuit. It comprises of two power amps (Amp-A, Amp-B), a bias circuit, and a thermal shutdown[tsd] circuit. Pin 4 and Pin 3 are the inverting and noninverting terminal to Amp-A. A reference voltage is provided at Pin 2, which should be connected to Pin 3. Pin 5 is the output terminal to Amp-A. A second operational amplifier, Amp-A is configured with a fixed gain of Av=- and produces the inverted signal of Pin5. The NJU789 outputs at Pin 5 and Pin 8 produce a bridged configuration output to which a speaker can be connected. Twice the output voltage and four times output power in a bridged amplifier are possible as compared to a single-ended amplifier. When a SD mode is active, the internal switch(sw) turns off to stop an internal bias current. As a result, a SD mode reduces the supply current. The external capacitor (C b ) and Internal resistance eliminate disturbing pop noise during the SD mode ON/OFF. (Ref. Page 3) The external capacitor (C b ) value depends on the turn-on time. (Ref. Page 7) Rf 2kΩ Supply Voltage Ci.39uF Input Singnal Ri 2kΩ 4 -IN 3 +IN - + Amp-A 6 V+ 5 V OUTA Cv uf + SW Cb uf 2 + Bypas s Iref - + Amp-B 8 V OUTB R L 8Ω Shutdown Input SD BIAS TSD 7 GND Fig. Block diagram and Application circuit - 8 -

NJU789 2. External Component 2. Bypass Capacitor Power source bypass capacitor (Cv) should have margin for temperature characteristics and the better characteristic in high frequency. Design to provide low impedance for the wiring between the IC and the capacitor. 2.2 Input Resistor and Feedback Resistor The voltage gain is set by the user-selected resistor(ri, Rf) []. 2Rf Gv = 2Log( ) [] *Gain setting for BTL output R i Design to lower the resistance value for Ri and Rf, because of the increase in output noise voltage and disturbing pop noise. Ri forms a HPF with the input coupling capacitor (Ci). (Ref. 2.3) 2.3 Input Coupling Capacitor The input coupling capacitor (Ci) is necessary for DC cut. Ci forms a HPF with Ri. The cutoff frequency is calculated using [2]. C i [2] *f c =Cut-off frequency 2 R f i c 2.4 Bypass Capacitor for Reference Voltage The capacitor (Cb) stabilzes DC bias voltage. As Cb becomes lager, PSRR and pop noise are improved but turn on time becomes longer. Component Function Default value Recommendation Ranges Cv Supply bypass capacitor uf uf<cv Ri input resistor 2kΩ kω<ri<5kω Rf feedback resistor 2kΩ kω<rf<5kω Ci Input coupling capacitor.39uf.47uf<ci Cb Bypass pin capacitor uf.uf<cb R L Load resistor(speaker) 8Ω 4Ω<R L Table Cv,Ri,Rf,Ci,Cb,and R L has limits in below table. Please set these component values in the ranges. - 9 -

NJU789 3. Pop Noise during SD mode ON/OFF NJU789 builds anti-pop circuit, but Pop noise is dependent on the value of external elements. 3. Shutdown (SD terminal = Low) -> Active (SD terminal=high) BTL amplifier does not generate sound, if there is no voltage difference between two outputs. But, common power amplifier generates pop noise according to the voltage difference of IN- and IN+ resulting from the difference of the charge time of Ci and Cb. NJU789 does not generate pop noise by changing amp(fig3) from amp2(fig2), after Ci and Cb are charged. Ci Ri charge Rf Ci Ri Rf INPUT INPUT IN- IN- IN + amp - + AmpA V OUTA IN + amp - + AmpA V OUTA amp2 + - amp2 + - charge Bypass V+ - + AmpB V OUTB Bypass V+ - + AmpB V OUTB Cb Cb Fig2. Voltage follower amplifier Fig3. Inverting amplifier - -

NJU789 The terminal voltage in application circuit and the relation of time are shown in Fig. 4. SD SD Small voltage difference Large voltage difference Terminal voltage[5v/div] IN+,IN- OUTA OUTB terminal voltage[5v/div] IN+,IN- OUTA OUTB OUTA-OUTB OUTA-OUTB.25.5.75.25.5.75 Small pop noise Time[sec] Large pop noise Time[sec] Fig4. Terminal Voltage at application circuit Fig5. Terminal Voltage at Rf=kΩ Fig. 5 shows that the pop noise became large by the input terminal voltage difference resulting from change of the time constant. In order to make small the pop noise which became large by increase of Rf, etc., it is necessary to enlarge Cb and to make small Ci. (However, Cb influences a turn on time, and Ci influences a frequency characteristic.) Table2~6 show the value of Cb for realizing the pop noise at an application circuit. - -

NJU789 Cin Rf kω 2kΩ 3kΩ 4kΩ 5kΩ.47uF uf.33uf.33uf.33uf.33uf.uf.33uf.33uf uf uf uf.39uf uf uf 2uF 2uF 3.3uF.47uF uf 2uF 2uF 3.3uF 3.3uF uf 2uF 3.3uF 4.7uF uf uf Table2 the value of Cb at Ri=kΩ Cin Rf kω 2kΩ 3kΩ 4kΩ 5kΩ.47uF uf.33uf.33uf.33uf.33uf.uf.33uf.33uf uf uf uf.39uf uf uf 2uF 2uF 3.3uF.47uF uf 2uF 2uF 3.3uF 3.3uF uf 2uF 3.3uF 4.7uF uf uf Table3 the value of Cb at Ri=2kΩ Cin Rf kω 2kΩ 3kΩ 4kΩ 5kΩ.47uF uf.33uf.33uf.33uf.33uf.uf.33uf.33uf uf uf uf.39uf uf uf 2uF 2uF 3.3uF.47uF uf 2uF 2uF 3.3uF 3.3uF uf 2uF 3.3uF 4.7uF uf uf Table4 the value of Cb at Ri=3kΩ Cin Rf kω 2kΩ 3kΩ 4kΩ 5kΩ.47uF uf.33uf.33uf.33uf.33uf.uf.33uf.33uf uf uf uf.39uf uf uf 2uF 2uF 3.3uF.47uF uf 2uF 2uF 3.3uF 3.3uF uf 2uF 3.3uF 4.7uF uf uf Table5 the value of Cb at Ri=4kΩ Cin Rf kω 2kΩ 3kΩ 4kΩ 5kΩ.47uF uf.33uf.33uf.33uf.33uf.uf.33uf.33uf uf uf uf.39uf uf uf 2uF 2uF 3.3uF.47uF uf 2uF 2uF 3.3uF 3.3uF uf 2uF 3.3uF 4.7uF uf uf Table6 the value of Cb at Ri=5kΩ - 2 -

NJU789 3.2 Active (SD terminal = High) -> Shutdown (SD terminal=low) When changing to a shutdown, pop noise is very small, because the voltage of OUTA and OUTB falls steeply and simultaneously. (This theory is realized only BTL) SD Terminal Voltage[5V/div] OUTA OUTB OUTA and OUTB fall simultaneously Pop noise is not generated OUTA-OUTB.25.5.75 Time[sec] Fig6. Terminal Voltage at Shutdown 3.3 Cut-off frequency In order to make small the pop noise, it is necessary to make small Ci. But, The value of Ci affects the low frequency performance of the circuit, because Ci forms with Ri a high-pass filter. f c = (Hz) 2πR C i i - 3 -

NJU789 4. Turn on/off time As Cb becomes smaller, turn on time becomes shorter but pop noise and PSRR become worse. Turn off time is always very short. (It does not depend on the value of Cb.) Relationship of turn on time and the value of Cb are shown in Fig. 7~8..5 TON = - Cb kω ln(.5 - + ) (sec) V Turn on time vs Cb V+=5V Vin=Vrms f=khz RL=8Ω Ta=25 Turn on time vs Cb V+=3V Vin=.5Vrms f=khz RL=8Ω Ta=25 6 6 5 5 Turn on time[ms] 4 3 2 Turn on time[ms] 4 3 2 2 3 4 5 Cb[uF] 2 3 4 5 Cb[uF] Fig7. Turn on time vs Cb (V + =5V) Fig.8 Turn on time vs Cb (V + =3V) 5. PSRR vs Cb As Cb becomes lager, PSRR becomes good. Relationship of PSRR and the value of Cb are shown in Fig. 9~. PSRR vs Frequency V+=5V RL=8Ω RIN=GND PSRR vs Frequency V+=3V RL=8Ω RIN=GND 7 7 6 6 5 5 PSRR[dB] 4 Cb=2.2uF 3 Cb=uF 2 Cb=.47uF Cb=.uF.E+.E+2.E+3.E+4.E+5 PSRR[dB] 4 Cb=2.2uF 3 Cb=uF 2 Cb=.47uF Cb=.uF.E+.E+2.E+3.E+4.E+5 Frequency[Hz] Frequency[Hz] Fig9. PSRR vs Frequency (V + =5V) Fig. PSRR vs Frequency (V + =3V) - 4 -

NJU789 6. Power dissipation and Output Power Pd is the maximum permissible power at Ta=25 C.Pd is dependent on the ambient temperature, which shown in Fig.. 2 Package Power Dissipation [mw] 5 5 VSP8 (4layers) ESON8 (4layers) SSOP2 (4layers) SSOP2 (2layers) VSP8 (2layers) ESON8 (2layers) -5 5 5 Ambient Temperature [ C] Fig. Power derating curves - 5 -

NJU789 Maximum output power can be determined from Power dissipation vs Output Power characteristics with P D (ABSOLUTE MAXIMUM RATINGS). An example is shown in Fig.2. Power Dissipation vs Output Power[W] V+=5V Gv=6dB RL=8Ω Ta=25 C BTL Power Dissipation[W].8.7.6.5.4.3.2. P D :VSP8 (4layers) Maximum output power is restricted by P D. P D :VSP8 (2layers) Maximum output power is not restricted by P D..2.4.6.8.2 Output Power[W] Output Power Range Fig2. Power dissipation vs Output Power - 6 -

NJU789 7. PCB layout In order to demonstrate the performance of IC, it is necessary to design a PCB appropriately. Power line, GND line, and signal line should be drawn so that wiring resistance may become small. And please connect all the GND to the single point of Cv. NJU789 demo board layout pattern Layer(Top Layer) - 7 -

NJU789 Layer2(Ground plane) Layer3(Power plane) - 8 -

NJU789 Layer4(Bottom Layer) [CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 9 -

NJU789 TYPICAL CHARACTERISTICS 4. Supply Current vs Temperature R L =OPEN, SD=V + 4.5 Supply Current vs Supply Voltage R L =OPEN SD=V + Ta=25 3.5 3. V + =3.3V V + =5V 4. 3.5 Ta=85 o C Ta=5 o C Supply Current[mA] 2.5 2..5. V + =.8V Supply Current[mA] 3. 2.5 2..5. Ta=-4 o C Ta=25 o C.5.5. -5-25 25 5 75 25 5 Temperature [ o C]. 2 3 4 5 6 7 Supply Voltage [V] Supply Current vs Temperature [STANDBY] VSD Terminal vs Supply Current.E-3 V + =5V R L =OPEN SD=.25V.E+ V + =5V R L =OPEN Ta=25 o C Supply Current [A].E-4.E-5.E-6.E-7.E-8.E-9.E- -5 5 5 Temperature [ o C] Supply Current [A].E-.E-2.E-3.E-4.E-5.E-6.E-7.E-8.E-9.E- Ta=5 o C Ta=85 o C Ta=25 o C Ta=-4 o C 2 3 4 5 VSD Terminal [V] Supply Current [A] Supply Current vs Temperature [STANDBY] V + =3V R L =OPEN SD=.25V.E-3.E-4.E-5.E-6.E-7.E-8.E-9.E- -5 5 5 Temperature [ o C] Supply Current [A].E+.E-.E-2.E-3.E-4.E-5.E-6.E-7.E-8.E-9.E-.E-.E-2 VSD Terminal vs Supply Current V + =3V R L =OPEN Ta=5 o C Ta=85 o C Ta=25 o C Ta=-4 o C.5.5 2 2.5 3 VSD Terminal [V] - 2 -

NJU789 TYPICAL CHARACTERISTICS Supply Current vs Temperature [STANDBY] VSD Terminal vs Supply Current.E-3 V + =.8V R L =OPEN SD=.25V.E+ V + =.8V R L =OPEN.E-4.E-.E-2 Ta=5 o C.E-5.E-3 Supply Current [A].E-6.E-7.E-8.E-9 消費電流 [A].E-4.E-5.E-6.E-7.E-8.E-9.E- Ta=85 o C Ta=25 o C Ta=-4 o C.E- -5 5 5 Temperature [ o C].E-.5.5 2 VSD Terminal [V] Voltage Gain/Phase vs Frequency Voltage Gain/Phase vs Frequency 6 4 V + =5V Gv=4dB R L =8Ω Ta=25 o C Phase 2 5 6 4 V + =5V Gv=4dB R L =4Ω Ta=25 o C Phase 2 5 Voltage Gain[dB] 2-2 Gain 5-5 Voltage Gain[dB] 2-2 Gain 5-5 - - -4-5 -4-5 -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] Voltage Gain/Phase vs Frequency Voltage Gain/Phase vs Frequency 6 V + =5V Gv=4dB R L =OPEN Ta=25 o C 2 6 V + =3V Gv=4dB R L =8Ω Ta=25 o C 2 4 Phase 5 4 Phase 5 Voltage Gain[dB] 2-2 Gain 5-5 Voltage Gain[dB] 2-2 Gain 5-5 - - -4-5 -4-5 -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] - 2 -

NJU789 TYPICAL CHARACTERISTICS Voltage Gain/Phase vs Frequency Voltage Gain/Phase vs Frequency V + =3V Gv=4dB R L =4Ω Ta=25 o C V + =3V Gv=4dB R L =OPEN Ta=25 o C 6 2 6 2 4 Phase 5 4 Phase 5 Voltage Gain[dB] 2-2 Gain 5-5 Voltage Gain[dB] 2-2 Gain 5-5 - - -4-5 -4-5 -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] Voltage Gain/Phase vs Frequency Voltage Gain/Phase vs Frequency V + =.8V Gv=4dB R L =8Ω Ta=25 o C V + =.8V Gv=4dB R L =4Ω Ta=25 o C 6 2 6 2 4 Phase 5 4 Phase 5 Voltage Gain[dB] 2-2 Gain 5-5 Voltage Gain[dB] 2-2 Gain 5-5 - - -4-5 -4-5 -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] 6 Voltage Gain/Phase vs Frequency V + =.8V Gv=4dB R L =OPEN Ta=25 o C 2 4 Phase 5 Voltage Gain[dB] 2-2 Gain 5-5 - -4-5 -6-2.E+2.E+3.E+4.E+5.E+6.E+7 Frequency [Hz] - 22 -

NJU789 TYPICAL CHARACTERISTICS THD+N vs Output Power THD+N vs Output Power V + =5V Gv=6dB R L =8Ω BW:-8kHz V + =5V Gv=6dB R L =8Ω f=khz BW:-8kHz 2kHz THD+N[%] khz THD+N[%] Ta=85 o C Ta=5 o C.. Hz.... Po[W] Ta=-4 o C Ta=25 o C.... Po[W] THD+N vs Output Power V + =3.3V Gv=6dB R L =8Ω BW:-8kHz THD+N vs Output Power V + =3.3V Gv=6dB R L =8Ω f=khz BW:-8kHz 2kHz THD+N[%] khz THD+N[%] Ta=85 o C Ta=5 o C.. Hz.... Po[W] Ta=-4 o C Ta=25 o C.... Po[W] THD+N vs Output Power Ta=25 V+=.8V Gv=6dB RL=8Ω BW:-8kHz THD+N vs Output Power V + =.8V Gv=6dB R L =8Ω BW:-8kHz 2kHz Ta=85 Ta=5 THD+N[%] khz THD+N[%].. Hz Ta=-4 Ta=25.... Po[W].... Po[W] - 23 -

NJU789 TYPICAL CHARACTERISTICS THD+N vs Output Power[differntial] THD+N vs Output Power[differntial] V + =5V Gv=6dB R L =8Ω BW:-8kHz V + =3.3V Gv=6dB R L =8Ω BW:-8kHz 2kHz 2kHz THD+N [%] khz THD+N [%] khz.. Hz.... Po[W] Hz.... Po[W] THD+N vs Output Power[differntial] V + =.8V Gv=6dB R L =8Ω BW:-8kHz 2kHz THD+N [%] khz. Hz.... Po[W] Output Power vs Supply Voltage Output Power vs Supply Voltage R L =8Ω THD=% R L =4Ω THD=%.8.4.6.2 Ta=5, 85, 25, -4 o C Output Power [W].4.2.8.6.4 Ta=5, 85, 25, -4 o C Output Power [W].8.6.4.2.2 2 3 4 5 6 2 3 4 5 6 Supply Voltage [V] Supply Voltage [V] - 24 -

NJU789 TYPICAL CHARACTERISTICS Power Dissipation vs Output Power Power Dissipation vs Output Power V + =5V Gv=6dB R L =4Ω/8Ω BTL V + =3.3V Gv=6dB R L =4Ω/8Ω BTL.4.6.2 R L =4Ω.5 R L =4Ω Power Dissipation [W].8.6.4 R L =8Ω Power Dissipation [W].4.3.2 R L =8Ω.2..5.5 2.25.5.75 Output Power W] Output Power [W] Power Dissipation vs Output Power V + =.8V Gv=6dB R L =4Ω/8Ω BTL PSRR vs Frequency V+=5V RL=8Ω RIN=GND.2.8.6 R L =4Ω 7 6 Ta=5, 85, 25, -4 o C Power Dissipation [W].4.2..8.6 R L =8Ω PSRR[dB] 5 4 3 2.4.2.5..5.2.25 Output Power [W].E+.E+2.E+3.E+4.E+5 Frequency [Hz] PSRR vs Frequency PSRR vs Frequency V + =3V R L =8Ω RIN=GND V + =.8V R L =8Ω RIN=GND 7 7 6 Ta=5, 85, 25, -4 o C 6 5 5 Ta=25, -4, 85, 5 o C PSRR[dB] 4 3 PSRR[dB] 4 3 2 2.E+.E+2.E+3.E+4.E+5.E+.E+2.E+3.E+4.E+5 Frequency [Hz] Frequency [Hz] - 25 -

NJU789 TYPICAL CHARACTERISTICS 6 Turn On Time vs Bypass Capacitor V + =5V Vin=Vrms f=khz R L =8Ω Ta=25 Thermal Shutdown Supply Current vs Temperature 4 V + =5V R L =OPEN 5 3.5 3 Turn On Time [ms] 4 3 2 Supply Current [ma] 2.5 2.5.5 2 3 4 5 Cb[uF] 3 5 7 9 Temperature [ o C] Turn On Time vs Bypass Capacitor Thermal Shutdown Supply Current vs Temperature V + =3V Vin=.5Vrms f=khz R L =8Ω Ta=25 o C V + =3V R L =OPEN 6 4 5 3.5 3 Turn On Time [ms] 4 3 2 Supply Current [ma] 2.5 2.5.5 2 3 4 5 Cb[uF] 3 5 7 9 Temperature [ o C] Turn On Time vs Bypass Capacitor Thermal Shutdown Supply Current vs Temperature V + =.8V Vin=.5Vrms f=khz R L =8Ω Ta=25 o C V + =.8V R L =OPEN 6 4 5 3.5 3 Turn On Time [ms] 4 3 2 Supply Current [ma] 2.5 2.5.5 2 3 4 5 Cb[uF] 3 4 5 6 7 8 9 Temperature [ o C] - 26 -

NJU789 TYPICAL CHARACTERISTICS Output Voltager vs Output Current Current Limit vs Temperature V + =5V V + =5V 6.5 5 OUTAsource, OUTBsource Output Voltage [V] 4 3 2 Ta=-4, 25, 85, 5 o C Ta=-4, 25, 85, 5 o C Current Limit [A].5 -.5 OUTAsink, OUTBsink - 2 3 4 5 6 Output Current [ma] -.5-4 4 8 2 6 Temperature [ o C] Output Voltager vs Output Current V+=3V Current Limit vs Temperature V + =3V 4.5 Ta=-4, 25, 85, 5 o C 3 Output Voltage [V] 2 Ta=-4, 25, 85, 5 o C Current Limit [A].5 -.5 OUTAsource, OUTBsource OUTAsink, OUTBsink - 2 3 4 5 Output Current [ma] -.5-4 6 6 Temperature [ o C] Output Voltager vs Output Current Current Limit vs Temperature V + =.8V V + =.8V 2.5 2 Ta=-4, 25, 85, 5 o C.8.6 Output Voltage [V].5.5 Ta=-4, 25, 85, 5 o C Current Limit [A].4.2 -.2 -.4 -.6 OUTAsource, OUTBsource OUTAsink, OUTBsink -.8 2 3 Output Current [ma] - -4 6 6 Temperature [ o C] - 27 -

NJU789 [CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 28 -