Low Noise, High-Speed Dual Operational Amplifier. Vni = 3nV/ Hz typ. (at f=10khz) ft = 90MHz typ. (at V + /V - = ±2.5V)

Similar documents
NJM2718. Single-Supply High-Operating voltage Dual Operational Amplifier PACKAGE OUTLINE

NJM2737. Low Noise, Rail-to-Rail Input/Output Dual Operational Amplifier

NJM2732. Rail-to-Rail Input/Output Dual Operational Amplifier

NJM2722. Single Ultra-High speed and Wide Band Operational Amplifier

NJM2734. Rail-to-Rail Input/Output Quad Operational Amplifier

NJM2720. Single Ultra-High speed and Wide Band Operational Amplifier

NJM2734SCC. Rail-to-Rail Input/Output Quad Operational Amplifier PACKAGE OUTLINE

NJM8202. Single Supply, Rail-to-Rail Output Dual Operational Amplifier

Rail-to-Rail Input/Output Quad Operational Amplifier 8. C OUTPUT 9. C -INPUT 10. C +INPUT 11. GND(V ) 12. D +INPUT 13. D INPUT 14.

HIGH SPEED SINGLE SUPPLY OPERATIONAL AMPLIFIER V + B OUTPUT B -INPUT B +INPUT SOP8 SSOP8 MSOP8(VSP8) SOP14 SSOP14

NJM8512/NJM8513. Precision, JFET Input Operational Amplifier

NJM4585. Low Noise, Bipolar Input Dual, Audio Operational amplifier EQUIVALENT CIRCUIT PIN CONFIGURATION. FEATURES Designed for High-Quality Sound

Low Offset, Low Drift Dual JFET Input Operational Amplifier. NJM2749M, NJM2749AM : DMP8 NJM2749E, NJM2749AE : SOP8 JEDEC 150mil V + OUTPUT B INPUT B

NJM2115 DUAL OPERATIONAL AMPLIFIER

NJU7046/NJU7047/NJU7048

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER

Wide-Band,High-Speed,Low-Offset,Low-Noise Rail-to-Rail Input/Output CMOS Operational Amplifier

NJM2748/2748A. Low Offset, Low Drift single JFET Input Operational Amplifier -1-

NJU7026/NJU7027/NJU7028

NJM12904 SINGLE SUPPLY DUAL AMPLIFIER -INPUT +INPUT OUTPUT GND(V-)

NJM13404 SINGLE SUPPLY DUAL OPERATIONAL AMPLIFIER 1 8 A

SINGLE SUPPLY QUAD OPERATIONAL AMPLIFIER

High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier PIN FUNCTION 1. OUTPUT A 2. INPUT A 3. +INPUT A

NJM8801. High Quality Audio Dual Operational Amplifier FEATURES. EQUIVALENT CIRCUIT ( 1/2 Shown ) -1-

HIGH SPEED SINGLE SUPPLY OPERATIONAL AMPLIFIER

NJM324C. Low power quad operational amplifiers

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 -

MUSES8832. Rail-to-Rail Output, High Quality Audio, Dual Operational Amplifier. MUSES and this logo are trademarks of New Japan Radio Co., Ltd.

NJU7076/NJU7077/NJU7078

NJM5532 LOW-NOISE DUAL OPERATIONAL AMPLIFIER

NJM2904C / NJM2904CA SINGLE-SUPPLY DUAL OPERATIONAL AMPLIFIER

NJU77000/NJU77001 NJU77002/NJU77004

NJM4582 AUDIO DUAL OPERATIONAL AMPLIFIER

NJU High Output Current, Rail-to-Rail Input/Output Dual CMOS Operational Amplifier

NJM4580 DUAL OPERATIONAL AMPLIFIER

Low power quad operational amplifiers

Dual Precision Operational Amplifier

NJM12904L SINGLE SUPPLY DUAL AMPLIFIER

Low power dual operational amplifier

ULTRA HIGH SPEED SINGLE OPERATIONAL AMPLIFIER

Precision Operational Amplifier

NJM2794. Ground Noise Isolation Amplifier PACKAGE OUTLINE

Designated client product

NJM5532C LOW-NOISE DUAL OPERATIONAL AMPLIFIER NJM5532CG (SOP8) FEATURES PIN CONFIGURATION. EQUIVALENT CIRCUIT (Each Amplifier) - 1 -

NJM4558C DUAL OPERATIONAL AMPLIFIER V + OUTPUT -INPUT +INPUT V -

Precision Operational Amplifier

High Quality Audio, Bipolar Input, Dual Operational Amplifier

MUSES8820. High Quality Audio Dual Operational Amplifier - + PACKAGE OUTLINE

High Quality Audio, J-FET Input, Dual Operational Amplifier

UNISONIC TECHNOLOGIES CO., LTD LM833 Preliminary CMOS IC

OPERATIONAL AMPLIFIER & VOLTAGE REFERENCE KL103/A TECHNICAL DATA DESCRIPTION. PIN CONNECTIONS (top view) OPERATIONAL AMPLIFIER

UNISONIC TECHNOLOGIES CO., LTD

LF153 LF253 - LF353 WIDE BANDWIDTH DUAL J-FET OPERATIONAL AMPLIFIERS

High Quality Audio, J-FET Input, Dual Operational Amplifier

NJM320A/NJM321A. Low power single channel OP-Amp

NJU Channels Electronic Volume PACKAGE OUTLINE

4 MHz, 7 nv/ Hz, Low Offset and Drift, High Precision Amplifier ADA EP

FHP3350, FHP3450 Triple and Quad Voltage Feedback Amplifiers

TL072 TL072A - TL072B

Ultralow Distortion Current Feedback ADC Driver ADA4927-1/ADA4927-2

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

LM833 Dual Audio Operational Amplifier

NJU7116 SUPER LOW OPERATING CURRENT AND LOW OFFSET VOLTAGE TINY SINGLE CMOS COMPARATOR

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

TSV611, TSV611A, TSV612, TSV612A

NJU7056/NJU7057/NJU7058

300MHz, Low-Power, High-Output-Current, Differential Line Driver

NJM2783. Preliminary. Monaural Microphone Amplifier with ALC

LM833 Dual Audio Operational Amplifier

Low-Cost, +3V/+5V, 620µA, 200MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

UNISONIC TECHNOLOGIES CO., LTD

TEB1033 TEF1033-TEC1033

Dual Precision, Low Cost, High Speed BiFET Op Amp AD712-EP

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

ADA485-/ADA485- TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... Specifications... 3 Spe

Non-inverting input 1. Part Number Temperature Range Package Packing Marking. 4558C MC4558CPT TSSOP8 Tape & Reel MC4558IN

Low Cost, Precision JFET Input Operational Amplifiers ADA4000-1/ADA4000-2/ADA4000-4

LOW VOLTAGE AUDIO POWER AMPLIFIER

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

NJM2355 TWO OUTPUT HIGH VOLTAGE SWITCHING REGULATOR

ABLIC Inc., 2018 Rev.1.0_00

S Series MINI ANALOG SERIES LOW INPUT OFFSET VOLTAGE CMOS OPERATIONAL AMPLIFIER. Features. Applications. Packages.

Single-phase DC Brushless Motor Driver IC *MEET JEDEC MO-187-DA / THIN TYPE. PIN No. PIN NAME 1 OUTB 2 VDD 3 IN+ 4 IN- 5 FG 6 PWM 7 OUTA 8 GND + -

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

TABLE OF CONTENTS Features... Applications... Pin Configurations... General Description... Revision History... 2 Specifications... 3 Absolute Maximum

UNISONIC TECHNOLOGIES CO., LTD LM321

Rail-to-rail input/output, 29 µa, 420 khz CMOS operational amplifiers. Description. TSV62x TSV622 TSV623 TSV624 TSV625

LM6172 Dual High Speed, Low Power, Low Distortion, Voltage Feedback Amplifiers

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers

NJU Channels Electronic Volume PACKAGE OUTLINE

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

RT2904WH. RobuST low-power dual operational amplifier. Applications. Features. Description

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

UNISONIC TECHNOLOGIES CO., LTD

400MHz, Ultra-Low-Distortion Op Amps

PART MAX4144ESD MAX4146ESD. Typical Application Circuit. R t IN- IN+ TWISTED-PAIR-TO-COAX CABLE CONVERTER

LM321 Low Power Single Op Amp

Single and Dual, Ultralow Distortion, Ultralow Noise Op Amps AD8597/AD8599 PIN CONFIGURATIONS FEATURES APPLICATIONS

Transcription:

Low Noise, High-Speed Dual Operational Amplifier NJM2719 GENERAL DESCRIPTION The NJM2719 is a high speed voltage feedback dual operational amplifier specifically optimized for low voltage noise. Combining a voltage noise of 2.n/ Hz typ. (at f =1kHz) and unity gain of 1MHz, the NJM2719 is ideal for I/Q baseband amplifier, RFID reader application and other wireless communication system designs. The NJM2719 is available in two 8-lead package options: tiny fine pitch surface mount (SSOP/MSOP). PACKAGE OUTLINE NJM2719RB1 (MSOP8(TSP8)) NJM2719 (SSOP8) FEATURES Low Noise Unity Gain Bandwidth Phase Margin Slew Rate Output Rail-to-Rail ni = 2.n/ Hz typ. (at f=1khz) ni = 3n/ Hz typ. (at f=1khz) ft = 1MHz typ. (at + / - = ±) ft = 9MHz typ. (at + / - = ±2.) Φm = 6deg typ. 6/µs typ. (at + / - = ±) 3/µs typ. (at + / - = ±2.) OH +4.7, OL -4.8 (at + / - = ±) OH +2.4, OL -2.4 (at + / - = ±2.) Operating oltage ±2.2 ~ ± Bipolar Technology Package Outline NJM2719 : SSOP8 NJM2719RB1 : MSOP8 (TSP8) MEET JEDEC MO-187-DA / THIN TYPE APPLICATION Wireless Communication Equipment I/Q Baseband Application RFID Reader Application Active Filter ADC/DAC Buffer Ultrasound Amplifier PIN CONFIGURATION A OUTPUT 1 A -INPUT 2 ( Top iew ) - + 8 7 + B OUTPUT A +INPUT 3 + - 6 B -INPUT - 4 B +INPUT SSOP8 [NJM2719] MSOP8(TSP8) [NJM2719RB1] er.21-7-9-1 -

ABSOLUTE MAXIMUM RATINGS (Ta=2 C) PARAMETER SYMBOL RATINGS UNIT Supply oltage + ±. Common Mode Input oltage Range ICM ±. (Note1) Differential Input oltage Range ID ±3 Power Dissipation P D 31[SSOP8], 4[MSOP8(TSP8)] mw 41[SSOP8](Note2), 1[MSOP8(TSP8)] (Note2) mw Operating Temperature Range T opr -4 to +8 C Storage Temperature Range T s t g - to +1 C (Note 1) The output voltage of normal operation will be the Output oltage Swing of electrical characteristics. (Note 2) On the PCB " EIA/JEDEC (114.3x76.2x1.7mm, two layers, FR-4) " (Note 3) Do not exceed "Power dissipation: PD" in which power dissipation in IC is shown by the absolute maximum rating. Refer to following Figure 1 for a permissible loss when ambient temperature (Ta) is Ta 2 o C. Figure1: Power Dissipation Ambient Temperature Package type 6 (4) (1)SSOP8 : ΔP D = -2.(mW/ C) (2)SSOP8[tw o layer] : ΔP D = -3.4(mW/ C) (3)MSOP8(TSP8) : ΔP D = -3.2(mW/ C) (4)MSOP8(TSP8) [tw o layer] : ΔP D = -4.(mW/ C) (2) Power Dissipation PD(mW) 4 3 2 (3) (1) 1 2 7 1 Ambient Temperature Ta( ) - 2 - er.21-7-9

OPERATING OLTAGE (Ta=2 C) Supply oltage + / - (Note3) ±2.2 - ±. ELECTRICAL CHARACTERISTICS DC CHARACTERISTICS ( + / =±2., Ta=2 C) Supply Current Icc No Signal - 11 14 ma Input Offset oltage IO Rs=Ω - 1 9 m Input Offset oltage Drift Δio/ΔT Rs=Ω - 1 - µ/deg Input Bias Current I B - 2.9 2 µa Input Offset Current I IO -.2 2 µa oltage Gain Av R L = 1kΩ to, o = ±1 68 91 - db Common Mode Rejection Ratio CMR -2 CM +1.2 82 92 - db Supply oltage Rejection Ratio SR ±2.2 + / - ± 84 97 - db Maximum Output oltage 1 Maximum Output oltage 2 Common Mode Input oltage Range OH1 +2.3 +2.4 - R L = 1kΩ to OL1 - -2.4-2.3 OH2 Isource =4mA, +Input =+.1, -Input =-.1 +2.2 +2.3 - OL2 Isink =4mA, +Input =-.1, -Input =+.1 - -2.3-2.2 ICM+ +1.2 - - CMR 82dB ICM- - - -2 AC CHARACTERISTICS ( + / =±2., Ta=2 C) Unity Gain ft Av=+4dB, - 9 - MHz Phase Margin φm Rf =1.98kΩ, Rg =2Ω, - 6 - deg Gain Margin Gm R L =1kΩ to, C L =pf - 1 - db Equivalent Input Noise oltage NI1 f =1kHz - 2. - NI2 f =1kHz - 3 - n/ Hz Equivalent Input Noise Current I NI f =1kHz - 3 - pa/ Hz Channel Separation CS f =1MHz, in =.2pp, Av =+1, R L =1kΩ to, C L =pf - 7 - db TRANSIENT CHARACTERISTICS ( + / =±2., Ta=2 C) Slew Rate 1 Slew Rate 2 +SR1 Av =db, R L =1kΩ to, C L =pf, - 3 - -SR1 out =2pp - 3 - +SR2 Av =+6dB, R L =1kΩ to, C L =pf, - 3 - -SR2 out =2pp - 3 - Rise Time tr Av =+6dB, R L =1kΩ to, C L =pf, - 8.3 - Fall Time tf out =.2pp, 1% to 9% - 8.3 - Power Band Width Total Harmonic Distortion PBW THD Av =+6dB, R L =1kΩ to, C L =pf, out =2pp, HD2-4dB, HD3-4dB Av =+6dB, R L =1kΩ to, C L =pf, f =1kHz, out =2pp /μs /μs ns - 3 - MHz -.1 - % Second Harmonic HD2 Av =+6dB, R L =1kΩ to, C L =pf, - - - Third Harmonic HD3 f =1MHz, out =2pp - - - Settling time (1%) ts1 Av =+6dB, R L =1kΩ to, C L =pf, - 1 - Settling time (.1%) ts2 out =2pp - 11 - dbc ns er.21-7-9-3 -

DC CHARACTERISTICS ( + / =±, Ta=2 C) Supply Current Icc No Signal - 14 17 ma Input Offset oltage IO Rs=Ω - 1 9 m Input Offset oltage Drift Δio/ΔT Rs=Ω - 1 - µ/deg Input Bias Current I B - 2.9 2 µa Input Offset Current I IO -.2 2 µa oltage Gain Av R L = 1kΩ to, o = ±1 7 91 - db Common Mode Rejection Ratio CMR -4. CM +3.7 82 92 - db Supply oltage Rejection Ratio SR ±2.2 + / - ± 84 97 - db Maximum Output oltage 1 Maximum Output oltage 2 Common Mode Input oltage Range OH1 +4.6 +4.7 - R L = 1kΩ to OL1 - -4.8-4.7 OH2 Isource =ma, +Input =+.1, -Input =-.1 +4. +4.6 - OL2 Isink =ma, +Input =-.1, -Input =+.1 - -4.7-4.6 ICM+ +3.7 - - CMR 82dB ICM- - - -4. AC CHARACTERISTICS ( + / =±, Ta=2 C) Unity Gain ft Av=+4dB, - 1 - MHz Phase Margin φm Rf =1.98kΩ, Rg =2Ω, - 6 - deg Gain Margin Gm R L =1kΩ to, C L =pf - 1 - db Equivalent Input Noise oltage NI1 f =1kHz - 2. - NI2 f =1kHz - 3 - n/ Hz Equivalent Input Noise Current I NI f =1kHz - 3 - pa/ Hz Channel Separation CS f =1MHz, in =.2pp, Av =+1, R L =1kΩ to, C L =pf - 7 - db TRANSIENT CHARACTERISTICS ( + / =±, Ta=2 C) Slew Rate 1 Slew Rate 2 +SR1 Av =db, R L =1kΩ to, C L =pf, - 6 - -SR1 out =pp - 6 - +SR2 Av =+6dB, R L =1kΩ to, C L =pf, - - -SR2 out =pp - - Rise Time tr Av =+6dB, R L =1kΩ to, C L =pf, - 8 - Fall Time tf out =.2pp, 1% to 9% - 8 - Power Band Width Total Harmonic Distortion PBW THD Av =+6dB, R L =1kΩ to, C L =pf, out =2pp, HD2-4dB, HD3-4dB Av =+6dB, R L =1kΩ to, C L =pf, f =1kHz, out =2pp /μs /μs ns - 4 - MHz -.1 - % Second Harmonic HD2 Av =+6dB, R L =1kΩ to, C L =pf, - - - Third Harmonic HD3 f =1MHz, out =2pp - - - Settling time (1%) ts1 Av =+6dB, R L =1kΩ to, C L =pf, - 9 - Settling time (.1%) ts2 out =2pp - 11 - dbc ns - 4 - er.21-7-9

TYPICAL CHARACTERISTICS Equivalent Input oltage Noise [n/ Hz] Equivalent Input oltage Noise vs. Frequency + / - =±2., R S =Ω, R F =2kΩ, R G =2Ω, 2 1 1 1 1k 1k 1k Gain [db] 4 3 2 1-1 -2 Closed-Loop Gain/Phase vs. Frequency + / - =±2., R S =Ω, R F =2kΩ, R G =2Ω, R L =1kΩ, C L =pf Gain Phase T a =-4 C -3-13 -4-18 1k 1M 1M 1M 1G T a =-4 C 22 18 13 9 4-4 -9 Phase [deg] Unity Gain Frequency Response Unity Gain Frequency Response 2 + / - =±2., R S =Ω, R L =1kΩ, Ta=2 C 2 + / - =±2., R S =Ω, R L =1kΩ, C L =pf 1 1 1 C L =pf 1 Gain [db] - C L =1pF C L =2pF Gain [db] - T a =-4 C -1-1 -1-1 -2 1k 1M 1M 1M 1G -2 1k 1M 1M 1M 1G Gain [db] 2 1 1 - -1-1 Unity Gain Frequency Response R S =Ω, R L =1kΩ, C L =pf, Ta=2 C + / - =± + / - =±2. Channel Separation [db] 12 1 8 6 4 2 Channel Separation vs. Frequency + / - =±, O =.2pp, G =db, R L =1kΩ, C L =pf, Ta=2 C -2 1k 1M 1M 1M 1G 1k 1M 1M 1M er.21-7-9 - -

Transinet Response Transient Response + / - =±2.,f=4MHz, O =2 PP,G =1,R T =Ω, R L =1kΩ, + / - =±,f=4mhz, O = PP,G =1,R T =Ω, R L =1kΩ, input input 1/div. C L =2pF 2/div. C L =2pF output C L =pf output C L =pf ns/div ns/div Transeint Response Transient Response + / - =±2.,f=4MHz, O =2 PP,G =1,R T =Ω, R L =1kΩ, C L =pf + / - =±,f=4mhz, O = PP,G =1,R T =Ω, R L =1kΩ, C L =pf input input 1/div. 2/div. output T a =-4 C output T a =-4 C ns/div ns/div 18 Supply Current vs. Supply oltage G =db, Ta=2 C 2 Supply Current vs. Temperature G =db, CM = Supply Current [ma] 16 14 12 1 8 6 4 Supply Current [ma] 2 1 1 + / - =± + / - =±2. 2 ±1 ±2 ±3 ±4 ± ±6 Supply oltage [] - -2 2 7 1 12 1-6 - er.21-7-9

Maximum Output oltage [] 3 2 1-1 -2-3 Maximum Output oltage vs.load Resistance + / - =±2., IN =±.2 T a =-4 C 1 1 1 1 Load Resistance [Ω] Maximum Output oltage [] 6 4 3 2 1-1 -2-3 -4 - -6 Maximum Output oltage vs. Supply oltage IN =±.2,R L =1kΩ T a =-4 C T a =-4 C 1 2 3 4 6 Supply oltage [±] Maximum Output oltage vs. Output Current Maximum Output oltage vs. Output Current 3 + / - =±2., IN =±.2 3 + / - =±2., IN =±.2 Maximum Output oltage [] 2 1-1 -2 T a =-4 C Maximum Output oltage [] 2 1-1 -2 T a =-4 C -3 1 2 3 4-3 1 2 3 4 Output Current [ma] Output Current [ma] Input Offset oltage [m] 1. 8. 6. 4. 2.. -2. -4. -6. -8. -1. Input Offset oltage vs. Temperature CM = + / - =± + / - =±2. - -2 2 7 1 12 Input Offset oltage [m] 1. 8. 6. 4. 2.. -2. -4. -6. -8. -1. Input Offset oltage vs. Input Common-mode oltage + / - =±2. Ta=-4 C Ta=2 C Ta=8 C -3. -2. -1.. 1. 2. 3. Input Common-mode oltage [] er.21-7-9-7 -

12 Open-loop oltage Gain vs. Temperature OUT =-1 to +1, R L =1kΩ + / - =± 12 Supply oltage Rejection Ratio vs. Temperature + / - =±2.2 to ± Open-loop oltage Gain [db] 1 8 6 4 2 + / - =±2. Supply oltage Rejection Ratio [db] 1 8 6 4 2 - -2 2 7 1 12 - -2 2 7 1 12 Common-mode Rejection Ratio [db] 12 1 8 6 4 2 Common-mode Rejection Ratio vs. Temperature + / - = - +. to + -1.3 + / - =± + / - =±2. - -2 2 7 1 12 Input Offset Current [μa] 2. 1. 1... -. -1. -1. -2. Input Offset Current vs. Temperature CM = + / - =± + / - =±2. - -2 2 7 1 12-8 - er.21-7-9

APPLICATION Stability Generally, when driving a large capacitive load in low closed-loop gain or unity-gain configurations, circuit stability is reduced. In the case of using the NJM2719 for these configurations, it is necessary to care about unwanted oscillation. An effective way to improve stability and to avoid oscillation is to add an isolation resistor as shown in Figure 1. Figure 2 shows required resistor values (R ISO ) for stability versus load capacitances (C L ) in the unity-gain configuration (Figure 1). To ensure the stability, add a larger isolation resistor in Figure 2. (Resistor values in Figure2 are reference values when parasitic capacitance of an evaluation board is minimized.) 2 Supply oltage ± 2 IN - + R ISO C L OUT R ISO [Ω] 1 1 Supply oltage ±2. Figure 1. 2 4 6 8 1 C L [pf] Figure 2. Required Isolation Resistor values for stability, R ISO [ ], versus Capacitive Loads, C L [pf]. (G =db) er.21-7-9-9 -

NOTE [CAUTION] The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 1 - er.21-7-9