Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET

Similar documents
Using the Latest Wolfspeed C3M TM SiC MOSFETs to Simplify Design for Level 3 DC Fast Chargers

Demands for High-efficiency Magnetics in GaN Power Electronics

Cree PV Inverter Tops 1kW/kg with All-SiC Design

Improvements of LLC Resonant Converter

GaN in Practical Applications

Design and implementation of a LLC-ZCS Converter for Hybrid/Electric Vehicles

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

VDSS (V) 900. V(TR)DSS (V) 1000 RDS(on)eff (mω) max* 205. QRR (nc) typ 49. QG (nc) typ 10

Maximizing efficiency of your LLC power stage: design, magnetics and component selection. Ramkumar S

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

Complementary MOSFET

HCD80R600R 800V N-Channel Super Junction MOSFET

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 10

Introducing SiC Schottky Diode QFN Package

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 )

Development of reliable, efficient, medium voltage (2.5kV-15kV) SiC power MOSFETs for new applications

Title. Description. Date 16 th August, Revision 1.1 RD W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A

HCS90R1K5R 900V N-Channel Super Junction MOSFET

HCS80R850R 800V N-Channel Super Junction MOSFET

PKP3105. P-Ch 30V Fast Switching MOSFETs

PTU2N8 0/PTD2N8 0. Absolute Maximum Ratings Tc=25 unless other wise noted. Thermal Characteristics. Features. 600V N-Channel MOSFET

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 14 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

ALL Switch GaN Power Switch - DAS V22N65A

Features Package Applications Key Specifications Internal Equivalent Circuit Absolute maximum ratings

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

D AB Z DETAIL "B" DETAIL "A"

Features. Description. AM15572v1_no_tab. Table 1: Device summary Order code Marking Package Packing STFH18N60M2 18N60M2 TO-220FP wide creepage Tube

N-channel 600 V, 0.55 Ω typ., 7.5 A MDmesh M2 Power MOSFET in a TO-220FP wide creepage package. Features. Description.

Dual N - Channel Enhancement Mode Power MOSFET 4502

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

TO-220 G D S. T C = 25 C unless otherwise noted

P-Channel MOSFET SI2369DS-HF (KI2369DS-HF) Symbol Rating Unit Drain-Source Voltage Gate-Source Voltage VDS -30 VGS ±20 *1*2 *1*2 *1*2 *1*2

Features. Description. AM15572v1_no_tab. Table 1: Device summary Order code Marking Package Packing STWA48N60DM2 48N60DM2 TO-247 long leads Tube

Designing High-Efficiency ATX Solutions. Practical Design Considerations & Results from a 255 W Reference Design

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

The First Step to Success Selecting the Optimal Topology Brian King

Features. Description. Table 1: Device summary. Order code Marking Package Packing STL24N60DM2 24N60DM2 PowerFLAT 8x8 HV Tape and reel

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

Introducing egan IC targeting Highly Resonant Wireless Power

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

HCS70R1K6 700V N-Channel Super Junction MOSFET

Features. Description. Table 1: Device summary Order code Marking Package Packing STW70N60DM2 70N60DM2 TO-247 Tube

SSP20N60S / SSF20N60S 600V N-Channel MOSFET

WPM3028 WPM3028. Descriptions. Features. Applications. Order information. Typical R DS(on) (mω) V GS =-10V V GS =-5V -30

PFU70R360G / PFD70R360G

Features. Order code. Description. Table 1: Device summary Order code Marking Package Packing STL28N60DM2 28N60DM2 PowerFLAT 8x8 HV Tape and reel

N-channel 600 V, 0.35 Ω typ., 11 A MDmesh M2 Power MOSFET in a TO-220FP ultra narrow leads package. Features. Description.

N-channel 650 V, Ω typ., 16 A MDmesh M2 Power MOSFET in D2PAK, TO-220FP and TO-220 packages. Features STP24N65M2.

SMC6216SN. Single N-Channel MOSFET FEATURES VDS = 60V, ID = 3.5A DESCRIPTION APPLICATIONS PART NUMBER INFORMATION

STB33N60DM2, STP33N60DM2, STW33N60DM2

Features. Description. Table 1: Device summary Order code Marking Package Packing STF24N60DM2 24N60DM2 TO-220FP Tube

Features. Description. AM15572v1_tab. Table 1: Device summary Order code Marking Package Packing STP18N60DM2 18N60DM2 TO-220 Tube

Features. Symbol Parameter Typ. Max. Unit RθJA Thermal Resistance Junction to ambient /W RθJC Thermal Resistance Junction to Case

SUPER-SEMI SUPER-MOSFET. Super Junction Metal Oxide Semiconductor Field Effect Transistor. 800V Super Junction Power Transistor SS*80R380S

TO-220F. 1. Gate 2. Drain 3. Source. Item Sales Type Marking Package Packaging 1 SW P 4N60 SW4N60 TO-220 TUBE 2 SW F 4N60 SW4N60 TO-220F TUBE

Design Guide. 100 khz Dual Active Bridge for 3.3kW Bi-directional Battery Charger. Introduction. Converter Design

High Voltage, Silicon Carbide MOSFET

Features. Description. Table 1: Device summary Order code Marking Package Packing STW48N60M2-4 48N60M2 TO247-4 Tube

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

N-channel 600 V, 0.13 Ω typ., 21 A MDmesh DM2 Power MOSFETs in D²PAK, TO-220 and TO-247 packages. Features. Order code STB28N60DM2 STW28N60DM2

VDS = 20V, ID = 13A. Pin 1. Symbol Parameter Rating Units VDSS Drain-Source Voltage 20 V VGSS Gate-Source Voltage ±10 V TA=25 C 13 A TA=70 C 10.

HCS70R350E 700V N-Channel Super Junction MOSFET

TO-220. Item Sales Type Marking Package Packaging 1 SW P 640 SW640 TO-220 TUBE 2 SW W 640 SW640 TO-3P TUBE

HCI70R500E 700V N-Channel Super Junction MOSFET

Silicon Carbide Technology Overview

SMD Type. P-Channel Enhancement MOSFET SI2333CDS (KI2333CDS) Features. Absolute Maximum Ratings Ta = 25

HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET

Features. Description. Table 1: Device summary Order code Marking Package Packing STW56N65DM2 56N65DM2 TO-247 Tube

SVF2N65CF/M/MJ/D/NF_Datasheet

10-PZ126PA080ME-M909F18Y. Maximum Ratings

N-channel 650 V, 0.15 Ω typ., 20 A MDmesh M2 Power MOSFET in a TO-220FP ultra narrow leads package. Features. Description.

WNM2046 G S WNM2046. Descriptions. Features. Applications. Order information. Single N-Channel, 20V, 0.

STB10N60M2, STD10N60M2, STP10N60M2, STU10N60M2

N- & P-Channel Enhancement Mode Field Effect Transistor

Complementary MOSFET

SJ-FET TSD5N60S/TSU5N60S

Symbol Parameter TSB10N60S TSP10N60S TSF10N60S Unit V DSS Drain-Source Voltage 600 V Drain Current -Continuous (TC = 25 ) 9.5*

SSG4501-C N & P-Ch Enhancement Mode Power MOSFET N-Ch: 7A, 30 V, R DS(ON) 28mΩ P-Ch: -5.3A, -30 V, R DS(ON) 50mΩ

HCD80R1K4E 800V N-Channel Super Junction MOSFET

SiC Solution for Industrial Auxilliary Power Supply

TO-220-3L Inner Circuit Product Summary C) RDS(on) Parameter Symbol Test Conditions Value Unit

Future Power Architectures for Servers and Proposed Technologies

N-Channel MOSFET IRLML0100 (KRLML0100) Symbol Rating Unit Drain-Source Voltage Gate-Source Voltage

HCD80R650E 800V N-Channel Super Junction MOSFET

TC = 25 C unless otherwise noted. Maximum lead temperature for soldering purposes, 300 1/8" from case for 5 seconds

V DD =30V, I D =200mA, Turn-On Rise Time tr V GS =10V, Turn-Off Delay Time td (off) (Note 1,2) R G =10Ω Turn-Off Fall Time tf

SMD Type. N-Channel MOSFET SI2366DS-HF (KI2366DS-HF) Features. Absolute Maximum Ratings Ta = 25

SSF6602. Main Product Characteristics. Features and Benefits. Description. Absolute Maximum Ratings (T A =25 C unless otherwise specified)

Transcription:

Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET Cree Power Application Engineering Rev. 2 1

Overview ZVS converters are typically used in the following applications: Industrial power supply Telecommunications power supply EV Battery charger FETs can simplify ZVS converter designs AND offer the following advantages: Lower system cost Improved performance Smaller size Copyright 2012, Cree Inc. 2

Simplify with SiC Example 1 Three-level (3L) Resonant Tank Two-level (2L) Resonant Tank Silicon: 600V MOS Three-level LLC Full bridge Typical switching frequency: 100KHZ-200KHZ Si to SiC Silicon Carbide: Two-level FB ZVS LLC resonant Target switching: >200KZ-400KHZ Can reduce BOM cost and improve efficiency 3

Simplify with SiC Example 2 Two-level 1 Resonant Tank 1 Two-level (2L) Resonant Tank Resonant Tank 2 Two-level 2 Silicon: 600V MOS Interleaved Two level LLC Full bridge Typical switching frequency: 100KHZ-200KHZ Si to SiC Silicon Carbide: Two-level FB ZVS LLC resonant Target switching: >200KZ-400KHZ Can reduce BOM cost and improve efficiency 4

TO-247 MOSFET Parameters Comparison (Gen2 1.2kV FET Vs 650V Si CoolMOS) Parameters C2M0160120D Si CoolMOS SPW47N60CFD Si CoolMOS IPW65R110CFD Breakdown Voltage @Tjmax 650V 650V Rdson @Tc=110degC 0.22Ω 0.14Ω (x2 for three-level) 0.19Ω (x2 for three-level) Ciss @f=1mhz VDS=100V 527pF 7700pF 3240pF Coss @f=1mhz VDS=100V 100pF 300pF 160pF Crss @f=1mhz VDS=100V 5pF 10pF 8pF Td(on)V Turn on delay time 7ns (VDD=800V) 30ns (VDD=400V) 16ns(VDD=400V) Td(off)V Turn off delay time 13ns (VDD=800V) 100ns(VDD=400V) 68ns(VDD=400V) Tr Rise time 12ns (VDD=800V) 30ns(VDD=400V) 11ns(VDD=400V) Tf Fall time 7ns (VDD=800V) 15ns(VDD=400V) 6ns(VDD=400V) Qg, typ 32.6nC 248nC 118nC Body diode reverse recovery time trr 35ns 210ns 150ns Body diode charge Qrr 0.120uC 2uC 0.8uC Note: The comparison is based on the datasheets 5

Gen2 FET Advantage in ZVS Converters Over 1.2kV blocking voltage. Simplifies Topology Low R dson to reduce conduction losses. Lower turn off losses due to short fall time and low C oss. Short turn off delay time can reduce dead time. Lower Q g will allow lower gate drive losses when switching frequency is high. Low body diode t rr and Q rr, which will reduce diode switching losses and electrical noise due to short reverse recovery time. Increases efficiency and power density. 6

DC Gain Design with Resonant Tank Parameters Voltage Gain (M) Voltage Gain (M) 1 fr:= fr:= 2π Lr Cr 2π 1 Lr Cr 135KHZ Resonant frequency 260KHZ Resonant frequency 650V I/P DC Gain 700V I/P DC Gain 750V I/P DC Gain Frequency (KHZ) Frequency (KHZ) Large passive LLC resonant tank Lm=150uH Lr=35uH Cr=40nF Si to SiC DC Gain Curve Small passive LLC resonant tank Lm=100uH Lr=15uH Cr=25nF

8KW Full Bridge LLC ZVS Resonant Converter Specification Item Parameters Input Voltage 650Vdc-750Vdc Rated Input Voltage 700Vdc Output Voltage 270Vdc Full loading Current 28A Input Power 8KW Resonant Frequency 265KHZ Frequency Range 230KHZ-320KHZ Efficiency >98% Board Size 8 x12.5 x3.5 Power Density >35W/inch^3 8

Board Size of 8KW Full Bridge LLC Resonant Converter (Size: 8 x12.5 x3.5 ) SiC SBD Lm Resonant Tank Cr Input with heatsink Lr Output Controller Gate Driver 9

Three-Level with Si Vs Two-level with SiC (8-10KW case) Items Three-level FB w/ Si MOS @ 120KHZ resonant freq. Two-level FB w/ @ 260KHZ resonant freq. MOSFETs 16pcs SPW47N60CFD 8pcs C2M0160120D Flying diode Resonant Inductor Magnetize transformer 4pcs 2pcs PQ3535 2pcs PQ5050 None 1pcs PQ3535 Lr=15uH 1pcs PQ6560 Lm=100uH Resonant Capacitors MOS Drivers 35nF 8pcs 25nF 4pcs 10

Waveforms

Full Loading with 28A/270V and 700Vdc input V gsq3 (10Vdiv) V gsq4 (10Vdiv) Body diode conduction current ip(10a/div) Vab(500V/div) Rise time 1us/div Body diode conduction current 650V-800V Q1 C1 Q2 C2 b T1 DR1 Cf Cbus Lm a Lr Cr DR2 Q3 C3 Q4 C4 12

Half Loading with 14A/270V and 700Vdc input V gsq3 (10Vdiv) V gsq4 (10Vdiv) Body diode conduction current ip(10a/div) Vab(500V/div) Rise time 1us/div Body diode conduction current 650V-800V Q1 C1 Q2 C2 b T1 DR1 Cf Cbus Lm a Lr Cr DR2 Q3 C3 Q4 C4 13

Min Loading with 2A/270V and 700Vdc input V gsq3 (10Vdiv) V gsq4 (10Vdiv) ip(10a/div) Vab(500V/div) Rise time 1us/div 650V-800V Q1 C1 Q2 C2 b T1 DR1 Cf Cbus Lm a Lr Cr DR2 Q3 C3 Q4 C4 14

Full Loading with 28A/270V and 650Vdc input V gsq3 (10Vdiv) V gsq4 (10Vdiv) Body diode conduct current ip(10a/div) Vab(500V/div) Rise time 1us/div Body diode conduct current 650V-800V Q1 C1 Q2 C2 b T1 DR1 Cf Cbus Lm a Lr Cr DR2 Q3 C3 Q4 C4 15

Full Loading with 28A/270V and 750Vdc input V gsq3 (10Vdiv) V gsq4 (10Vdiv) Body diode conduction current ip(10a/div) Vab(500V/div) Rise time 1us/div Body diode conduction current 650V-800V Q1 C1 Q2 C2 b T1 DR1 Cf Cbus Lm a Lr Cr DR2 Q3 C3 Q4 C4 16

Scenario One: High Efficiency, Dual FET in parallel per Switch (SiC C2M0160120D Vs Si SPW47N60CFD)

Calculation Losses Breakdown (700Vdc Input and 28A Output full load) @265KHZ SiC 2L and 135KHZ Si 3L (Dual MOS per switch) SiC Two Level @260KHZ Each Loss (W) Qty Total Loss (W) Conduc,on 4.6 8 36.8 Switching 1.9 8 15.2 Gate Drive 0.15 8 1.2 Body Diode 0.34 8 2.72 Xfrm T1 PQ60 Copper 10.5 1 10.5 Xfrm T1 PQ60 Core 9.9 1 9.9 Res Ind. L1 PQ35 Copper 6.1 1 6.1 Res Ind. L1 PQ35 Core 6.3 1 6.3 Each Item Total Loss (W) 55.92 20.4 12.4 Output Diode 10.8 4 43.2 43.2 Miscellaneous (w/fan) 18 1 18 18 Target Eff. 98.1% Total Loss 149.92W Si Three- Level @135KHZ Each Loss (W) Qty Total Loss (W) Si MOS Conduc,on 2.5 16 40 Si MOS Switching 1 16 16 Si MOS Gate Drive 0.5 16 8 Si MOS Body Diode 0.24 16 3.84 Xfrm T1 PQ50 Copper 7.5 2 15 Xfrm T1 PQ50 Core 4.5 2 9 Res Ind. L1 PQ35 Copper 6 2 12 Res Ind. L1 PQ35 Core 2.5 2 5 Total Loss (W) 67.84 Output Diode 10.8 4 43.2 43.2 Miscellaneous (w/fan) 18 1 18 18 Efficiency 97.8% Total 170.04W 24 17 43.2W 18W 6.3W 6.1W 9.9W 36.8W 15.2W 1.2W 2.72W 10.5W Conduction Switching Gate Drive Body Diode Xfrm T1 Copper Xfrm T1 Core Res Ind. L1 Copper Res Ind. L1 Core Output Diode Miscellaneous (Fan) 43.2W 5W 12W 18W 9W 15W 40W 8W 3.84W 16W MOS Conduction MOS Switching MOS Gate Drive MOS Body Diode Xfrm T1 Copper Xfrm T1 Core Res Ind. L1 Copper Res Ind. L1 Core Output Diode 18

Efficiency with loading with different Input Voltage (Dual MOSFET per Switch) 0.9860 0.9830 Vin (V) Iin (A) Pin (W) Vout (V) Iout (A) Pout (W) Eff 699.44 0.8951 626.07 274.76 2.1227 583.23 0.9316 699.41 1.2687 887.34 273.13 3.0924 844.63 0.9519 699.43 2.4157 1689.61 272.99 6.0210 1643.67 0.9728 699.46 3.5119 2456.43 273.58 8.7893 2404.58 0.9789 699.44 4.6993 3286.88 274.07 11.7706 3225.97 0.9815 699.45 5.9640 4171.52 274.26 14.9463 4099.17 0.9827 699.45 6.9910 4889.85 274.31 17.5370 4810.57 0.9838 699.45 8.324 5822.22 274.15 20.8940 5728.09 0.9838 699.45 9.3 6504.89 273.95 23.3410 6394.27 0.9830 699.46 10.973 7675.17 273.42 27.5630 7536.28 0.9819 Efficiency 0.9800 0.9770 0.9740 0.9710 0.9680 0.9650 0.9620 0.9590 0.9560 0.9530 0.9500 700VDC Input 650VDC Input 750VDC Input 10% 20% 30% 40% 50% 60% 70% 80% 100% Loading Note: Fan cooling the system and efficiency does not include the auxiliary power supply losses for efficiency test One 12W fan to cooling the system Yokogawa WT230 power meter is used to measure input and output current Each data is measured after 3min operation 19

Thermal Performance @ full load with fan cooling system (Dual MOSFET per switch) Input port High Side MOS Low Side MOS Fan Main transfromer Resonant Inductor O/P Diode O/P Diode Output port Transformer Tr Resonant Inductor Lr Heatsink Output SiC Diode 20

Scenario Two: Low Cost, Single FET per Switch (SiC C2M0160120D Vs Si SPW47N60CFD)

Calculation Losses Breakdown (700Vdc Input and 28A Output full load) @265KHZ SiC 2L and 135KHZ Si 3L (Single MOSFET per switch) SiC Two Level @260KHZ Each Loss (W) Qty Total Loss (W) Conduc,on 19.3 4 77.2 Switching 3.2 4 12.8 Gate Drive 0.15 4 0.6 Body Diode 0.5 4 2 Xfrm T1 PQ60 Copper 10.5 1 10.5 Xfrm T1 PQ60 Core 9.9 1 9.9 Res Ind. L1 PQ35 Copper 6.1 1 6.1 Res Ind. L1 PQ35 Core 6.3 1 6.3 Each Item Total Loss (W) 92.6 20.4 12.4 Output Diode 10.8 4 43.2 43.2 Miscellaneous (w/fan) 25 1 25 25 Target Eff. 97.6% Total Loss 193.6W Si Three- Level @135KHZ Each Loss (W) Qty Total Loss (W) Si MOS Conduc,on 10.7 8 85.6 Si MOS Switching 1.9 8 15.2 Si MOS Gate Drive 0.5 8 4 Si MOS Body Diode 0.6 8 4.8 Xfrm T1 PQ50 Copper 7.5 2 15 Xfrm T1 PQ50 Core 4.5 2 9 Res Ind. L1 PQ35 Copper 6 2 12 Res Ind. L1 PQ35 Core 2.5 2 5 Total Loss (W) 109.6 Output Diode 10.8 4 43.2 43.2 Miscellaneous (w/fan) 25 1 25 25 Efficiency 97.3% Total 218.8W 24 17 43.2W 6.3W 6.1W 25W 9.9W 12.8W 10.5W 2W 0.6W 77.2W Conduction Switching Gate Drive Body Diode Xfrm T1 Copper Xfrm T1 Core Res Ind. L1 Copper Res Ind. L1 Core Output Diode Miscellaneous (Fan) 43.2W 5W 12W 9W 25W 15W 15.2W 4.8W 4W 85.6W MOS Conduction MOS Switching MOS Gate Drive MOS Body Diode Xfrm T1 Copper Xfrm T1 Core Res Ind. L1 Copper Res Ind. L1 Core Output Diode Miscellaneous Fan 22

Efficiency with loading with different Input Voltage (Single MOSFET per switch) Vin(V) Iin (A) Pin(W) Vout(V) Iout(A) Pout(W) Eff 699.34 0.8886 621.43 274.41 2.1173 581.01 0.9349 699.36 1.2630 883.29 273.43 3.0762 841.13 0.9523 699.36 2.3918 1672.73 271.55 5.9916 1627.02 0.9727 699.37 3.4630 2421.92 271.92 8.7177 2370.52 0.9788 699.48 4.6241 3234.47 272.17 11.6563 3172.50 0.9808 699.39 5.8720 4106.82 272.29 14.8070 4031.80 0.9817 699.41 6.9010 4826.63 272.60 17.3850 4739.15 0.9819 699.43 8.262 5778.69 273.01 20.7690 5670.14 0.9812 699.41 9.272 6484.93 273.2 23.2650 6356.00 0.9801 699.43 10.998 7692.33 272.91 27.5770 7526.04 0.9784 Efficiency 0.984 0.981 0.978 0.975 0.972 0.969 0.966 0.963 0.960 0.957 0.954 0.951 0.948 0.945 0.942 0.939 0.936 0.933 0.930 Input 700V Input 650V Input 750V 10% 20% 30% 40% 50% 60% 70% 80% 100% Loading Note: Fan cooling the system and efficiency does not include the auxiliary power supply losses for efficiency test Two 12W fan to cooling the system Yokogawa WT230 power meter is used to measure input and output current Each data is measured after 3min operation 23

Thermal Performance @ full load with fan cooling system (Single MOSFET per switch) Fan Input port High Side MOS Low Side MOS Fan Main transfromer Resonant Inductor O/P Dio de O/P Dio de Outp ut port Transformer Tr Resonant Inductor Lr Heatsink Output SiC Diode 24

Efficiency Difference Dual MOSFET vs. Single MOSFET per switch @ 700Vdc Input 98.5% 98.0% 97.5% 97.0% 96.5% Efficiency 96.0% 95.5% 95.0% 94.5% Single MOS Per Switch 94.0% Dual MOS Per Switch 93.5% 93.0% 5% 10% 20% 30% 40% 50% 60% 70% 80% 100% Loading 25

Summary Reduce system complexity and lower part count with a simplified 2-Level ZVS topology. Optimize solution To Improve efficiency performance. To reduce system cost. Reduce system weight and size by designing to a higher resonant frequency. Copyright 2012, Cree Inc. 26

Appendix: Simplify driver Circuit for LLC Full Bridge Topology Copyright 2014 Cree Inc. 27

Proposed Full Bridge topology gate drive circuit Minus voltage generator for turn off The -ve voltage for turn-off is generated by charging 1uF cap across 2V zener when MOS is turned on. The MOSFET on secondary side of gate drive transformer speeds up turn off turn-off of. 1:2 gate drive transformer turns ratio allows a single 12V supply voltage for gate drive without any additional voltage supply requirements. 28