GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

Similar documents
Michael de Rooij Efficient Power Conversion Corporation

egan FET Wireless Energy Transfer Solutions Efficient Power Conversion Corporation

The egan FET Journey Continues

GaN Transistors for Efficient Power Conversion

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier

GaN Transistors for Efficient Power Conversion

Efficient Power Conversion Corporation

GaN on Silicon Technology: Devices and Applications

Introducing egan IC targeting Highly Resonant Wireless Power

Improving Performance of High Speed GaN Transistors Operating in Parallel for High Current Applications

GaN Brings About a New Way of Thinking to Power Conversion Stephen Colino Efficient Power Conversion Corporation

EPC2015 Enhancement Mode Power Transistor

Michael de Rooij & Yuanzhe Zhang Comparison of 6.78 MHz Amplifier Topologies for 33W, Highly Resonant Wireless Power Transfer Efficient Power

EPC2007C Enhancement Mode Power Transistor

EPC8004 Enhancement Mode Power Transistor

EPC2014 Enhancement Mode Power Transistor

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

EPC2016C Enhancement Mode Power Transistor

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

Symbol Parameter Typical

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated)

T C =25 unless otherwise specified. Symbol Parameter Value Units V DSS Drain-Source Voltage 40 V

Enhancement Mode N-Channel Power MOSFET

Symbol Parameter Typical

35mW V SiC Cascode UJ3C120040K3S Datasheet. Description. Typical Applications. Maximum Ratings

Switch mode power supplies Low gate charge. Power factor correction modules Low intrinsic capacitance

HCA80R250T 800V N-Channel Super Junction MOSFET

Second Generation egan FETs are Lead Free and Offer Improved Performance Alex Lidow, CEO, Efficient Power Conversion Corporation

UNISONIC TECHNOLOGIES CO., LTD UT3N01Z

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

Enhancement Mode N-Channel Power MOSFET

TO-220-3L Inner Circuit Product Summary C) RDS(on) Parameter Symbol Test Conditions Value Unit

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

UNISONIC TECHNOLOGIES CO., LTD UTT6N10Z

UNISONIC TECHNOLOGIES CO., LTD

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

HCI70R500E 700V N-Channel Super Junction MOSFET

UNISONIC TECHNOLOGIES CO., LTD

Enhancement Mode N-Channel Power MOSFET

SSF6014D 60V N-Channel MOSFET

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

HGI290N10SL. Value T C =25 31 Continuous Drain Current (Silicon Limited) I D T C = Drain to Source Voltage. Symbol V DS

HCA60R080FT (Fast Recovery Diode Type) 600V N-Channel Super Junction MOSFET

N-CHANNEL POWER MOSFET TRANSISTOR APPLICATION. Auotmobile Convert System Networking DC-DC Power System Power Supply etc..

Enhancement Mode N-Channel Power MOSFET

Enhancement Mode N-Channel Power MOSFET

UNISONIC TECHNOLOGIES CO., LTD

HCD80R1K4E 800V N-Channel Super Junction MOSFET

Enhancement Mode N-Channel Power MOSFET

HCD80R600R 800V N-Channel Super Junction MOSFET

egan FETs Enable Low Power High Frequency Wireless Energy Converters M. A. de Rooij & J. T. Strydom Efficient Power Conversion

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

Enhancement Mode N-Channel Power MOSFET

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

TO-247-3L Inner Circuit Product Summary C) RDS(on) Parameter Symbol Test Conditions Value Unit

Enhancement Mode N-Channel Power MOSFET

Enhancement Mode N-Channel Power MOSFET

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

Switch mode power supplies Excellent reverse recovery. Power factor correction modules Low gate charge Motor drives Low intrinsic capacitance

HCS80R1K4E 800V N-Channel Super Junction MOSFET

AO3401 P-Channel Enhancement Mode Field Effect Transistor

UNISONIC TECHNOLOGIES CO., LTD UF7476 Preliminary POWER MOSFET

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

WFP830. nnel. Thermal Characteristics. Features. General Description TO220. Symbol Parameter Value Units. Value Min Typ Max. Units. Rev, C Nov.

UNISONIC TECHNOLOGIES CO., LTD

27mW - 650V SiC Cascode UJ3C065030K3S Datasheet. Description. Typical Applications. Maximum Ratings

80mW - 650V SiC Cascode UJ3C065080K3S Datasheet. Description. Typical Applications. Maximum Ratings

Advanced Power Electronics Corp.

Enhancement Mode N-Channel Power MOSFET

Super Junction MOSFET

HCS80R380R 800V N-Channel Super Junction MOSFET

Fig. 1 - Enhancement mode GaN has a circuiut schematic similar to silicon MOSFETs with Gate (G), Drain (D), and Source (S).

SSG4503 N-Ch: 6.9A, 30V, R DS(ON) 25 mω P-Ch: -6.3A, -30V, R DS(ON) 36 mω N & P-Ch Enhancement Mode Power MOSFET

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 60 V V GS Gate-Source Voltage ±20 V

Features. Table 1: Device summary Order code Marking Package Packing STL160N4F7 160N4F7 PowerFLAT TM 5x6 Tape and reel

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

AO6801 Dual P-Channel Enhancement Mode Field Effect Transistor

OptiMOS 2 Power-Transistor

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

SSF6602. Main Product Characteristics. Features and Benefits. Description. Absolute Maximum Ratings (T A =25 C unless otherwise specified)

SMK0460IS Advanced N-Ch Power MOSFET

UNISONIC TECHNOLOGIES CO., LTD 2NNPP06 60V COMPLEMENTARY ENHANCEMENT MODE MOSFET H-BRIDGE (N-CHANNEL/P-CHANNEL)

Super Junction MOSFET

MDS9652E Complementary N-P Channel Trench MOSFET

Features. Information SOT-223. Part Number. Marking. Package SOT-223 SNN01Z60. Unit. V Gate-source voltage A A I DM T c =25 C I D.

Enhancement Mode N-Channel Power MOSFET

SSF2341E. Main Product Characteristics V DSS -20V. R DS(on) 37mΩ (typ.) I D. Features and Benefit. Description

HRLD150N10K / HRLU150N10K 100V N-Channel Trench MOSFET

UNISONIC TECHNOLOGIES CO., LTD

D1/D2 S1 G1 S2 G2 TO-252-4L

Product Summary. BV DSS typ. 84 V R DS(ON) max. 8.0 mω I D 80 A

Enhancement Mode N-Channel Power MOSFET

Enhancement Mode N-Channel Power MOSFET

Enhancement Mode N-Channel Power MOSFET

12N60 12N65 Power MOSFET

AO3408 N-Channel Enhancement Mode Field Effect Transistor

Transcription:

GaN is Crushing Silicon EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 1

Agenda How egan FETs work Hard Switched DC-DC converters High Efficiency point-of-load converter Envelope Tracking buck converter Resonant DC-DC Converters Bus Converter ZVS Class D Wireless Power Transmission A Look into the Future Q & A egan is a registered trademark of Efficient Power Conversion Corporation EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 2

Power Switch Wish List Lower On Resistance Faster Less Capacitance Smaller Lower Cost EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 3

Material Comparison EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 4

State of the Art Theoretical on-resistance vs. blocking voltage capability for silicon, silicon carbide, and gallium nitride. EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 5

GaN Magic V S AlGaN GaN (Piezoelectric) D EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 6

Device Construction Concept Source Gate AlGaN Protection Dielectric Drain GaN Silicon Forms the foundation for a Depletion Mode device EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 7

Enhancement Mode egan FET S D A positive voltage from Gate-To-Source establishes an electron gas under the gate EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 8

Body Diode? No Minority Carriers = Zero Q rr S D A positive voltage from Gate-To-Drain also establishes an electron gas under the gate enabling reverse conduction EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 9

Cross Section of an egan FET EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 10

egan FET Low Voltage Product Family Solder side View Gate 2.1 x 1.6 mm Substrate (Connect to Source on PWB) Drain Source Part Number Package (mm) V DS (V) V GS (V) R DS(on) @5V (mω) Q G @5 V Typ. (nc) EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 11 Q GS Typ. (nc) Q GD Typ. (nc) R G Typ. (Ω) V th Typ. (V) EPC2015 LGA 4.1x1.6 40 6 4 10.5 3 2.2 0.6 1.4 0 33 150 EPC2014 LGA 1.7x1.1 40 6 16 2.5 0.67 0.48 0.6 1.4 0 10 150 EPC2001 LGA 4.1x1.6 100 6 7 8 2.3 2.2 0.6 1.4 0 25 125 EPC2016 LGA 2.1x1.6 100 6 16 4.1 0.93 0.75 0.6 1.4 0 11 125 EPC2007 LGA 1.7x1.1 100 6 30 2.1 0.5 0.6 0.6 1.4 0 6 125 EPC2010 LGA 3.6x1.6 200 6 25 5 1.3 1.7 0.6 1.4 0 12 125 EPC2012 LGA 1.7x0.9 200 6 100 1.5 0.33 0.57 0.6 1.4 0 3 125 Q RR (nc) I D (A) T J Max. ( C)

Ultra High Frequency egan FETs EPC Part No. BV (V) Max. R DS(ON) (mω) (V GS = 5V, Min. Peak Id (A) (Pulsed, 25 o C, I D = 0.5 A) T pulse = 300 µs) Typical Charge (pc) Q G Q GD Q GS Q OSS Q RR Typical Capacitance (pf) (V DS = 20 V; V GS = 0 V) C ISS C OSS C RSS EPC8004 40 125 7.5 358 31 110 493 0 45 17 0.4 EPC8007 40 160 6 302 25 97 406 0 39 14 0.3 EPC8008 40 325 2.9 177 12 67 211 0 25 8 0.2 EPC8009 65 138 7.5 380 36 116 769 0 47 17 0.4 EPC8005 65 275 3.8 218 18 77 414 0 29 9.7 0.2 EPC8002 65 530 2 141 9.4 59 244 0 21 5.9 0.1 EPC8003 100 300 5 315 34 110 1100 0 38 18 0.2 EPC8010 100 160 7.5 354 32 109 1509 0 47 18 0.2 * Preliminary Data Subject to Change without Notice EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 12

Threshold vs. Temperature 1.2 1.1 Normalized Thershold Voltage 1 0.9 0.8 0.7 egan FET MOSFET A 0.6-50 -25 0 25 50 75 100 125 150 Junction Temperature ( C) EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 13

Total Gate Charge EPC2001 = 100 V, 5.6 mω typ. BSC057N08 = 80 V, 4.7 mω typ. BSC057N08NS EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 14

egan FET Reverse Conduction MOSFET + Q RR egan FET + Zero Q RR EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 15

Conduction Figure of Merit Q G (nc) 100 10 Conduction Figure of Merit 200 V EPC 200 V Si 100 V EPC 100 V Si 40 V EPC 40 V Si 1 R DS(ON) (mω) 1 10 100 1000 EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 16

egan FET Loss Mechanisms Like A MOSFET I²R Conduction Loss Capacitive Switching Losses Gate Drive Losses V I Switching Loss Not Like A MOSFET High Reverse Conduction Loss No Body Diode Reverse Recovery Loss Can be much, much better than comparable silicon MOSFET EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 17

Design Examples EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 18

Design Example Hard-Switched DC-DC Conversion Buck Converter Envelope Tracking Resonant DC-DC Conversion Resonant Bus Converter Wireless Power EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 19

Ideal Hard Switching t VR t CF V IN V DS I OFF I DS V GS V PL V TH t EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 20

100 V Device Comparison 90 FOM = (Q GD +Q GS2 ) R DSON (pc Ω) 80 70 60 50 40 30 20 10 100 V egan FET Q GS2 Q GD Q GS2 Q GD 100 V MOSFETs Q GS2 Q GS2 Q GS2 Q GD Q GD Q GD 0 EPC 2001 FDMC86160 SiR870ADP BSZ150N10LS3 G AON7290 V DS =0.5*V DS, I DS = 10 A EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 21

egan FET vs MOSFET Efficiency (%) 100 95 90 85 80 75 70 65 60 40 V egan FET 40 V Si MOSFET Buck Converter 500 khz 1 MHz 55 80 V Si MOSFET 50 10 15 20 25 30 35 40 45 50 55 60 65 Input Voltage (V) 100 V egan FET 80 V Si MOSFET Measured Efficiency V OUT =1.2 V I OUT =10 A EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 22 22

Low Voltage Device Comparison FOM=(Q GD +Q GS2 )*R DSON (pc*ω) 35 30 25 20 15 10 5 40 V egan FET Q GS2 Q GD 40 V MOSFETs Q GS2 Q GS2 Q GD Q GD 25 V MOSFETs Q GS2 Q GS2 Q GD Q GD 0 EPC2015 BSZ097N04LSG BSZ040N04LSG BSZ060NE2LS BSZ036NE2LS V DS =12 V, I DS = 20 A EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 23

Optimal Layout Top View Side View Top View Inner Layer 1 Ref: D. Reusch, J. Strydom, Understanding the Effect of PCB Layout on Circuit Performance in a High Frequency Gallium Nitride Based Point of Load Converter, APEC 2013 EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 24

egan FET vs. MOSFET Efficiency Efficiency (%) 91 90 89 88 87 86 85 84 83 82 81 80 40 V Discrete egan FET 40 V Discrete MOSFET 25 V Discrete MOSFET 30 V Module MOSFET 2 4 6 8 10 12 14 16 18 20 22 Output Current (A) V IN =12 V V OUT =1.2 V f sw =1 MHz L=300 nh EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 25

Impact of Parasitics on Overshoot 40 V egan FET 30 V Si MOSFET Module 40 V Si MOSFET Switch Node Voltage 3 V/Div 20 ns/ div V IN =12 V V OUT =1.2 V I OUT =20 A f sw =1 MHz L=300 nh egan FET T/SR: EPC2015 MOSFET T:BSZ097N04 SR:BSZ040N04 MOSFET Module: CSD97370Q5M EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 26

EPC9107 Demonstration Board V IN =12-28 V V OUT =3.3 V I OUT =15 A f sw =1 MHz 2 x EPC2015 ~3V overshoot @ 15 A OUT V IN =28 V Switching Node Voltage V IN =28 V, I OUT =15 A ~1.1ns rise time @ 15 A 20ns 5 V/ div EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 27

Higher Current?...Parallel 97.5 97 1 x EPC2001 2 x EPC2001 4 x EPC2001 Efficiency (%) 96.5 96 95.5 95 T 1 T 4 SR 1 SR 4 SR 2 SR 3 T 2 T 3 94.5 2 6 10 14 18 22 26 30 34 38 42 Output Current (A) V IN =48 V, V OUT =12 V, f sw =300 khz EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 28

Envelope Tracking (ET) EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 29

Envelope Tracking W/O ET With ET Red represents wasted energy dissipated as heat Envelope Tracking can double base station efficiency. EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 30

Envelope Tracking Supply ET power supply topologies vary Hybrid / linear-assisted Buck* (one option) Buck ~10% Bandwidth ~ 90% Power Linear AMP ~ 10% Power Highest 90% of Bandwidth * V. Yousefzadeh, et. al, Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers, ISCAS 2005 EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 31 31

Efficiency Efficiency 95% 90% 85% 80% 5 MHz V IN =42 V V OUT =20 V 10 MHz 75% 70% 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Output current (A) EPC8005 65 V 230 mω EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 32

Resonant Converters EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 33

Resonant Bus Converter High Frequency DC/DC Transformer L K1 S 1 V GS(Q2,Q4) V GS(S2) Q 1 Q 4 4:1 I LK1 V GS(Q1,Q3) V GS(S1) D V IN + - I PRIM C O I PRIM I LM 48V Q 2 Q 3 L M V DS(Q1) t ZVS V IN L K2 I Lk1 S 2 t 0 t 1 t 2 t 3 Ref: Y. Ren, M. Xu, J. Sun, and F. C. Lee, A family of high power density unregulated bus converters, IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1045 1054, Sep. 2005. EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 34

P G = Q G V DR f s Gate Charge 600 500 egan FET MOSFET Q G *R DS(on) (nc*mω) 400 300 200 100 3x Q G *R DS(on) 4x 6x 0 20 40 60 80 100 120 140 160 180 200 220 Breakdown Voltage (V) EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 35

P G = Q G V DR f s Output Charge Q OSS *R DS(on) (nc*mω) 1600 1400 1200 1000 800 600 400 200 1.5x egan FET MOSFET 1.6x Q OSS *R DS(on) 2x 0 20 40 60 80 100 120 140 160 180 200 220 Breakdown Voltage (V) EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 36

egan FET vs. MOSFET Resonant Capacitors Secondary Devices Transformer Primary Devices Input Capacitors MOSFET vs. egan FET EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 37

ZVS Switching Comparison T ZVS = 42 ns egan FET V DS MOSFET V DS T ZVS = 87 ns MOSFET V GS egan FET V GS f sw = 1.2 MHz, V IN = 48 V, and V OUT 12 V EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 38

Duty Cycle Comparison D egan FET = 42% D MOSFET = 34% MOSFET V GS egan FET V DS egan FET V GS MOSFET V DS f sw = 1.2 MHz, V IN = 48 V, and V OUT = 12 V EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 39

Efficiency Comparison Efficiency (%) 98 97 96 95 94 93 92 91 1.2 MHz egan FET 1.2 MHz MOSFET 10 W 12 W 14 W Power Loss (W) 24 22 20 18 16 14 12 10 8 6 4 1.2 MHz MOSFET 5 A 1.2 MHz egan FET 90 0 5 10 15 20 25 30 35 40 Output Current (A) 2 0 5 10 15 20 25 30 35 40 Output Current (A) f sw = 1.2 MHz, V IN = 48 V, and V OUT 12 V EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 40

Resonant Converter Summary egan FETs improve high frequency resonant converter performance Lower output charge Lower gate charge More power delivery per cycle EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 41

Why Wireless Power? egan FETs enable higher efficiency and operation at safer frequencies The global wireless charging market is estimated to grow to $10B by 2018, a CAGR of 42.6% EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 42

Experimental System Setup Coil Feedback egan FETs RF connection Device Coil Device Board 25mm 50mm Source Board Source Coil RF connection EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 43

Wireless Coil-set Overview Simplified representation of coil-set for easy comparison between topologies C devs L devs L src L dev C devp C out R DCload Z load Coil Set EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 44

Class E Overview Switch voltage rating = > 3.56 Supply (V DD ). C OSS absorbed into matching network. V DD V / I + L RFck L e C s 3.56 x V DD V DS Q 1 C sh I D Z load 50% Ideal Waveforms time EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 45

ZVS Voltage Mode Class D C OSS Voltage is transitioned by the ZVS tank Lower egan FET C OSS leads to higher available duty cycle Highest system efficiency Q 1 C sp + V DD V / I V DD L m V DS I D Q 2 C m Z load ZVS tank 50% time Ideal Waveforms EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 46

Efficiency Efficiency [%] 84 82 80 78 76 74 72 70 68 66 6.78 MHz, 23.6 Ω Load, egan FET EPC 2012 EPC 2014 EPC 2012 0 6 12 18 24 30 36 Output Power [W] EPC 2007 ZVS-CD SE-CE CM-CD VM-CD egan FETs enable the highest efficiency in all topologies using 6.78 MHz and 13.56 MHz frequencies. EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 47

Impact of Load Per FET Power loss [mw] 800 600 400 200 ZVS-CD SE-CE CM-CD VM-CD 0 8 14 20 26 32 38 44 50 DC Load Resistance [Ω] ZVS class D has higher efficiency and a broader operating range than class E. EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 48

A Look into the Future EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 49

Silicon vs. egan Transistor Costs Starting Material Epi Growth Wafer Fab Test Assembly 2013 2016 lower lower higher lower same lower ~same? lower same lower OVERALL higher lower! EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 50

EPC Into the Future Mass Production 40 V - 200 V ~500 MHz Ultra High Frequency Family 1-3 GHz Launched Sept 2013 Higher Current 45 A Higher Voltage 600 V More functions on a chip Monolithic half bridge Driver on power chip Next Generation Devices 2 x FOM Improvement EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 51

Summary egan FETs enable exciting new applications have the potential to replace silicon power MOSFETs are straightforward to use, but they can t just drop them into a MOSFET socket. Some R&D is needed start today! EPC - The Leader in GaN Technology IEEE PELS 2014 www.epc-co.com 52