InGaAs MOSFET Electronics

Similar documents
Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

InGaAs Nanoelectronics: from THz to CMOS

Nanoscale III-V CMOS

III-V CMOS: Quo Vadis?

III-V Channel Transistors

InGaAs MOSFETs for CMOS:

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

Vertical Nanowire InGaAs MOSFETs Fabricated by a Top-down Approach

Towards Sub-10 nm Diameter InGaAs Vertical nanowire MOSFETs and TFETs

III-V CMOS: the key to sub-10 nm electronics?

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

III-V Vertical Nanowire FETs with Steep Subthreshold Towards Sub-10 nm Diameter Devices

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

InAs Quantum-Well MOSFET for logic and microwave applications

Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

Single suspended InGaAs nanowire MOSFETs

InGaAs is a promising channel material candidate for

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik

In principle, the high mobilities of InGaAs and

SUPPLEMENTARY INFORMATION

Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mv/decade and Ion = 10 A/m for Ioff = 1 na/m at VDS = 0.

Electrical Characterization and Modeling of Gate-Last Vertical InAs Nanowire MOSFETs on Si

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Self-aligned, gate-last process for vertical InAs nanowire MOSFETs on Si

Ultra High-Speed InGaAs Nano-HEMTs

CMOS beyond Si: Nanometer-Scale III-V MOSFETs

InGaAs channel MOSFET with self-aligned source/drain MBE regrowth technology

EECS130 Integrated Circuit Devices

FinFET Devices and Technologies

MOS Capacitance and Introduction to MOSFETs

General look back at MESFET processing. General principles of heterostructure use in FETs

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

1020 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH 2016

A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS

EECS130 Integrated Circuit Devices

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program.

Drain. Drain. [Intel: bulk-si MOSFETs]

Transistors for VLSI, for Wireless: A View Forwards Through Fog

CMOS Scaling Beyond FinFETs: Nanowires and TFETs

Device architectures for the 5nm technology node and beyond Nadine Collaert

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

High-Performance Si Nanowire FET with a Semi Gate-Around Structure Suitable for Integration

Nanometer-Scale III-V MOSFETs

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Enabling Breakthroughs In Technology

SEVERAL III-V materials, due to their high electron

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Performance Analysis of InGaAs Double Gate MOSFET

Power, speed and other highlights at IEDM

Acknowledgements. Curriculum Vitæ. List of Figures. List of Tables. 1 Introduction Si MOSFET Scaling... 2

Alternative Channel Materials for MOSFET Scaling Below 10nm

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

Fundamentals of III-V Semiconductor MOSFETs

Chapter 1. Introduction

ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing

Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)

GaN power electronics

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

Comparative Study of Silicon and Germanium Doping-less Tunnel Field Effect Transistors

NAME: Last First Signature

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT)

Planarization and Regrowth of Self-Aligned Ohmic Contacts on InGaAs

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

NW-NEMFET: Steep Subthreshold Nanowire Nanoelectromechanical Field-Effect Transistor

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

This Week s Subject. DRAM & Flexible RRAM. p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor

In0.53Ga0.47As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth

Session 10: Solid State Physics MOSFET

Transistors for THz Systems

Challenges and Innovations in Nano CMOS Transistor Scaling

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications

Design of Tunnel FET and its Performance characteristics with various materials

III-V on Si for VLSI. 200 mm III-V on Si. Accelerating the next technology revolution. III-V nfet on 200 mm Si

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Fully Depleted Devices

PERSPECTIVES FOR DISRUPTIVE 200MM/8-INCH GAN POWER DEVICE AND GAN-IC TECHNOLOGY DR. DENIS MARCON SR. BUSINESS DEVELOPMENT MANAGER

MOSFET & IC Basics - GATE Problems (Part - I)

Customized probe card for on-wafer testing of AlGaN/GaN power transistors

32nm Technology and Beyond

Innovation to Advance Moore s Law Requires Core Technology Revolution

Scaling of Vertical InAs GaSb Nanowire Tunneling Field-Effect Transistors on Si

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

Nanoelectronics and the Future of Microelectronics

Complementary Tunneling-FETs (CTFET) in CMOS Technology

Opportunities and Challenges for Nanoelectronic Devices and Processes

Organic Electronics. Information: Information: 0331a/ 0442/

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Vertical Nanowire Gate-All-Around p-type Tunneling Field-Effect Transistor With Si 0.8 Ge 0.2 /Si Heterojunction

Semiconductor Physics and Devices

Introduction to VLSI ASIC Design and Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Transcription:

InGaAs MOSFET Electronics J. A. del Alamo Microsystems Technology Laboratories, MIT The 17 th International Symposium Physics of Semiconductors and Applications Jeju, Korea, December 7-11, 2014 Acknowledgements: D. Antoniadis, A. Guo, L. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, W. Lu, A. Vardi, N. Waldron, L. Xia Sponsors: Intel, FCRP-MSD, ARL, SRC, NSF, Sematech, Samsung Labs at MIT: MTL, NSL, SEBL 1

InGaAs electronics in your pocket! 2

A bit of perspective Invention of AlGaAs/GaAs HEMT: Fujitsu Labs. 1980 First InAlAs/InGaAs HEMT on InP: Bell Labs. 1982 First AlGaAs/InGaAs Pseudomorphic HEMT: U. Illinois 1985 Main attraction of InGaAs: RT μ e = 6,000~30,000 cm 2 /V.s Mimura, JJAPL 1980 Chen, EDL 1982 Ketterson, EDL 1985 3

InGaAs High Electron Mobility Transistor (HEMT) Modulation doping: 2-Dimensional Electron Gas in narrow-bandgap channel 4

InGaAs HEMT: high-frequency record vs. time f T (GHz) 800 700 600 500 400 300 200 100 Teledyne/MIT: f T =688 GHz InGaAs HEMT 0 1980 1990 2000 2010 Year Devices fabricated at MIT f T =710 GHz Chang, APEX 2013 (NCTU) Kim, EDL 2010 Highest f T of any FET on any material system 5

InGaAs HEMTs: circuit demonstrations 9-stage 850 GHz LNA 80 Gb/s multiplexer IC Deal, MTT-S 2014 Wurfl, GAAS 2004 25 Gb/s wireless data at 113 GHz Sarkozy, IPRM 2013 Thome, MTT-S 2014 6

InGaAs HEMTs map infant universe WMAP=Wilkinson Microwave Anisotropy Probe Launched 2001 Full-sky map of Cosmic Microwave Background radiation (oldest light in Universe) age of Universe: 13.73B years (±1%) http://map.gsfc.nasa.gov/ 0.1 µm InGaAs HEMT LNA Pospieszalski, MTT-S 2000 7

Record f T InGaAs HEMTs: megatrends Classic scaling trajectory: L g, t ins Recently: L g, t ins saturated no more progress possible? 8

Limit to HEMT barrier scaling: gate leakage current InGaAs HEMTs practical limit L g =40 nm V DS =0.5 V Kim, EDL 2013 At L g =30-40 nm, modern HEMTs are at the limit of scaling! 9

Solution: introduce gate oxide! InGaAs HEMTs 10-5 x! L g =40 nm V DS =0.5 V Al 2 O 3 (3 nm)/inp (2 nm)/ingaas MOSFET Kim, EDL 2013 Need high-k gate dielectric: HEMT MOSFET! 10

InGaAs MOSFET with f T =370 GHz Channel: 10 nm In 0.7 Ga 0.3 As Barrier: 1 nm InP + 2 nm Al 2 O 3 Kim, APL 2012 L g = 60 nm f T = 370 GHz g m = 2 ms/μm 11

InGaAs HEMT vs. MOSFET Since when can we make III-V MOSFETs? 12

Historical evolution: InGaAs MOSFETs vs. HEMTs Transconductance (g m ): g m =3.1 ms/μm * *inversion-mode Lin, IEDM 2014 Recent progress due to improvement of oxide/iii-v interface 13

What made the difference? Atomic Layer Deposition (ALD) of oxide ALD eliminates native oxides that pin Fermi level Self cleaning Huang, APL 2005 Clean, smooth interface without native oxides First observed with Al 2 O 3, then with other high-k dielectrics First seen in GaAs, then in other III-Vs 14

Interface quality: Al 2 O 3 /InGaAs vs. Al 2 O 3 /Si Al 2 O 3 /InGaAs Al 2 O 3 /Si E v E c E v E c Brammertz, APL 2009 Werner, JAP 2011 Close to E c, Al 2 O 3 /InGaAs comparable D it to Al 2 O 3 /Si interface 15

Electron velocity: InGaAs vs. Si Measurements of electron injection velocity in HEMTs: del Alamo, Nature 2011 v inj (InGaAs) increases with InAs fraction in channel v inj (InGaAs) > 2v inj (Si) at less than half V DD ~100% ballistic transport at L g ~30 nm 16

Logic InGaAs MOSFET: possible designs Enhanced gate control enhanced scalability 17

Self-aligned Planar InGaAs MOSFETs W Mo Recess-gate process: CMOS-compatible Refractory ohmic contacts (W/Mo) Extensive use of RIE Lin, IEDM 2012, 2013, 2014 18

Fabrication process Mo/W ohmic contact + SiO 2 hardmask SF 6, CF 4 anisotropic RIE Resist CF 4 :O 2 isotropic RIE SiO 2 W/Mo n + InGaAs/InP InGaAs/InAs InAlAs δ-si InP Waldron, IEDM 2007 Cl 2 :N 2 anisotropic RIE Digital etch O 2 plasma diluted H 2 SO 4 Gate stack and pads Pad Mo HfO 2 Lin, EDL 2014 Ohmic contact first, gate last Precise control of vertical (~1 nm), lateral (~5 nm) dimensions MOS interface exposed late in process 19

L g =20 nm InGaAs MOSFET SiO 2 W Mo n + cap Channel Buffer 20 nm Ti/Au pad Gate: Mo Spacer: Oxide Contact: Mo Mo/HfO 2 20 nm 15 nm 1.0 L g =20 nm V gs -V t = 0.5 V 0.8 R on =224 Ω.µm 0.4 V 0.6 0.4 0.2 0.0 InAs 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) I d (ma/µm) Lin, IEDM 2013 L g = 20 nm, L access = 15 nm MOSFET tightest III-V MOSFET ever made? 20

Highest performance InGaAs MOSFET L g =80 nm, EOT=0.5 nm (2.5 nm HfO 2 ), t c =9 nm, L access =15 nm I d (ma/µm) 1.4 1.2 1.0 V gs = -0.3 to 0.4 V in 0.1 V step L g = 80 nm R on =190 Ω.µm 0.8 0.6 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) g m (ms/µm) 3.5 3.0 gm,max = 3.1 ms/µm 2.5 2.0 1.5 1.0 0.5 L g = 80 nm V ds = 0.5 V 0.0-0.4-0.2 0.0 0.2 V gs (V) Record g m,max = 3.1 ms/µm at V ds = 0.5 V R on = 190 Ω.µm Lin, IEDM 2014 21

Subthreshold characteristics L g =80 nm, EOT=0.5 nm (2.5 nm HfO 2 ), t c =9 nm, L access =15 nm 10-3 10-4 V ds =0.5 V I d (A/µm) 10-5 10-6 V ds =0.05 V BTBT V ds =0.5 V: S min =159 mv/dec DIBL=310 mv/v 10-7 10-8 -0.4-0.2 0.0 0.2 V gs (V) Lin, IEDM 2014 Modest subthreshold swing, DIBL explore channel thickness scaling Excess OFF current at V ds =0.5 V Band-to-Band Tunneling (BTBT) 22

Impact of channel thickness scaling Lin, IEDM 2014 S min (mv/dec) 400 300 200 100 t c =12 nm t c 3 nm V ds =0.5 V V ds =0.5 V 0 0.01 0.1 1 10 L g (µm) g m,max (ms/µm) 3 2 1 t c =9 nm 8 nm 11 nm 7 nm 12 nm 4 nm 3 nm V ds =0.5 V 0 0.01 0.1 1 10 L g (µm) t c S but also g m,max Even at t c =3 nm, L g,min ~40 nm planar MOSFET at limit of scaling 23

Excess OFF-state current Transistor fails to turn off: I d (A/µm) 10-5 L g =500 nm 10-7 10-9 10-11 V ds V ds =0.3~0.7 V step=50 mv -0.6-0.4-0.2 0.0 V gs (V) OFF-state current enhanced with V ds Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013 24

Excess OFF-state current I d (A/µm) 10-4 10-5 10-6 10-7 10-8 T=200 K V ds =0.7 V L g =80 nm 120 nm 280 nm 500 nm -0.6-0.4-0.2 0.0 V gs -V t (V) Lin, EDL 2014 L g OFF-state current additional bipolar gain effect due to floating body I d (A/µm) I d (A/µm) 10-5 L g =500 nm 10-7 10-9 10-11 10-5 w/ W/ BTBT+BJT w/o W/O BTBT+BJT L g =500 nm 10-7 10-9 10-11 V ds V ds =0.3~0.7 V step=50 mv -0.6-0.4-0.2 0.0 V gs (V) Simulations V ds =0.3~0.7 V step=50 mv -0.4-0.2 0.0 0.2 V gs (V) 25

Planar Regrown-contact InGaAs MOSFET g m =2.5 ms/μm selective MOCVD Lee, EDL 2014 Regrown contact MOSFET: Avoids RIE in intrinsic region Contacts self-aligned to dummy gate 26

InGaAs Trigate MOSFET 60 nm Kim, IEDM 2013 L g =60 nm W F =30 nm 400 300 200 100 0 0.01 0.1 1 10 g m =1.5 ms/µm, S=77 mv/dec, DIBL=10 mv/v L g (µm) S min (mv/dec) t c =12 nm t c V ds =0.5 V 3 nm V ds =0.5 V 27

InGaAs double-gate MOSFET 40 nm 30 nm Key enabling technologies: BCl 3 /SiCl 4 /Ar RIE digital etch Zhao, EDL 2014; Vardi, DRC 2014 28

InGaAs double-gate MOSFET Long-channel MOSFET characteristics (W f =12~37 nm): I D [µa/µm] 20 Wf =12 nm L g =5 μm 15 10 5 V GS =0.5 V V GS =0 V 0 0.0 0.1 0.2 0.3 0.4 0.5 V DS [V] At sidewall: D it,min ~ 3x10 12 ev -1.cm -2 Vardi, DRC 2014 29

Vertical nanowire InGaAs MOSFET 30 nm diameter InGaAs NW-MOSFET Zhao, IEDM 2013 Zhao, EDL 2014 Nanowire MOSFET: ultimate scalable transistor Vertical NW: uncouples footprint scaling from L g scaling Top-down approach based on RIE + digital etch 30

Tomioka, Nature 2012 Persson, DRC 2012 Process flow 31

Trade-off between transport and short-channel effects Persson, EDL 2012 Bottom up Top down Persson, DRC 2012 Tomioka, Nature 2012 Tanaka, APEX 2010 D S but also g m 32

Si integration: SOI-like InGaAs planar MOSFETs n + cap Mo InGaAs channel BOX p-si III-V bonded SOI process: Czornomaz, IEDM 2012 Lin, DRC 2014 BOX: Al 2 O 3 InP donor wafer InGaAs channel n + cap InP donor wafer InP donor wafer BOX p-si BOX p-si 1. MBE growth 2. ALD Al 2 O 3 3. Wafer bonding 4. InP etch back 33

Si integration: SOI-like InGaAs planar MOSFETs SiGe p-mosfet InGaAs n-mosfet Czornomaz, IEDM 2013 CMOS inverter transfer characteristics 34

Si integration: InGaAs Trigate MOSFETs by Aspect Ratio Trapping Fin growth in narrow trench Mg-doped InP buffer Si Waldron, VLSI Tech 2014 35

Si integration: InGaAs Vertical Nanowire MOSFETs by direct growth Au seed InAs NWs on Si by SAE Vapor-Solid-Liquid (VLS) Technique Selective-Area Epitaxy Riel, MRS Bull 2014 Björk, JCG 2012 36

Conclusion: exciting future for InGaAs electronics 37