UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

Similar documents
Elektriese stroombane: Weerstand (Graad 11) *

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

PRIMARY SCHOOL GRADE 4 MATHEMATICS FORMAL ASSESSMENT TASK (FAT) 3. 3 JUNE 2016 EXAMINATIONS NAME & SURNAME GRADE 4 INSTRUCTIONS

Meghan van Wouw ( Christo Janse van Rensburg ( Blessing Buthelezi (

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions

University Of Pretoria

OEFENVRAESTEL VRAESTEL 2

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

UNIVERSITY OF PRETORIA Department of Mechanical and Aeronautical Engineering MACHINE DESIGN MOW323

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

GRADE 7 - FINAL ROUND QUESTIONS GRAAD 7 - FINALE RONDTE VRAE

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

INGENIEURSTATISTIEK BES 210 ENGINEERING STATISTICS BES 210

Inligtingkunde/Information Science INL 220 HEREKSAMEN/RE-EXAMINATION Eksaminatore/Examiners: NOVEMBER 2009

Inligtingkunde/Information Science INL 220

MATH 105: Midterm #1 Practice Problems

Trigonometrie: Die trig funksies vir enige hoek en toepassings (Graad 10) *

EKURHULENI NOORD DISTRIK NOVEMBER EKSAMEN TEGNOLOGIE GRAAD 8 AFDELING MOONTLIKE PUNT PUNTE BEHAAL GEMODEREERDE PUNT A 30 B 50 C 20 TOTAAL 100

Practice problems from old exams for math 233

Practice problems from old exams for math 233

Whispers from the Past Kopiereg: Helen Shrimpton, 2016.

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2

GRADE 10 / GRAAD 10 NOVEMBER 2015 ENGINEERING GRAPHICS & DESIGN TOTAL / TOTAAL INGENIEURSGRAFIKA EN ONTWERP PAPER 2 / VRAESTEL 2

WESI 205 Workbook. 1 Review. 2 Graphing in 3D

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

MATH Exam 2 Solutions November 16, 2015

Trigonometrie: Trig identiteite (Graad 11)

Plekwaardes van heelgetalle *

Final Examination Copyright reserved. Finale Eksamen Kopiereg voorbehou. Analoogelektronika ENE Junie 2008

Graphical Communication MGC 110 Grafiese Kommunikasie MGC 110

Review guide for midterm 2 in Math 233 March 30, 2009

Maak 'n waterwiel * Siyavula Uploaders. 1 TEGNOLOGIE 2 Graad 7 3 STELSELS EN BEHEER: WATER 4 Module 8 5 MAAK `N WATERWIEL 6 Opdrag 1: 7 8 Opdrag 2:

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

AFRIKAANS AS A SECOND LANGUAGE 0548/3, 0556/3

1. PRAISE EN WORSHIP 2. BATTLES: 3. DIE LEUENS VAN SATAN 4. WIE KAN DAN GERED WORD?

Definitions and claims functions of several variables

Math 148 Exam III Practice Problems

Final Examination Copyright reserved. Finale Eksamen Kopiereg voorbehou. Analogue Electronics ENE June 2007

4 to find the dimensions of the rectangle that have the maximum area. 2y A =?? f(x, y) = (2x)(2y) = 4xy

Speel met battery elektrisiteit *

Math 2411 Calc III Practice Exam 2

OOREENKOMS AANGEGAAN DEUR EN TUSSEN:

Om die werking van steenkool-aangedrewe kragstasies as sisteme te kan demonstreer

Math Final Exam - 6/11/2015

Die atmosfeer * Siyavula Uploaders. 1 NATUURWETENSKAPPE 2 Graad 5 3 DIE AARDE EN DIE HEELAL 4 Module 25 5 DIE ATMOSFEER

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

i + u 2 j be the unit vector that has its initial point at (a, b) and points in the desired direction. It determines a line in the xy-plane:

[f(t)] 2 + [g(t)] 2 + [h(t)] 2 dt. [f(u)] 2 + [g(u)] 2 + [h(u)] 2 du. The Fundamental Theorem of Calculus implies that s(t) is differentiable and

FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DIFFERENTIATION

Exam 2 Summary. 1. The domain of a function is the set of all possible inputes of the function and the range is the set of all outputs.

MATH 259 FINAL EXAM. Friday, May 8, Alexandra Oleksii Reshma Stephen William Klimova Mostovyi Ramadurai Russel Boney A C D G H B F E

SKRYFBEHOEFTELYS GRAAD 7

Die wonder van water *

Review Sheet for Math 230, Midterm exam 2. Fall 2006

Classwork Klaswerk. Classwork Lesson 5 Klaswerkles 5. Monday Maandag

Om veld- en atletiekbaantegnieke aan te leer *

11.7 Maximum and Minimum Values

WISKUNDE-IN IN-AKSIE AKSIE: VRAESTEL VIR GRAAD 6 EN 7 INSTRUKSIES 15:00

The Chain Rule, Higher Partial Derivatives & Opti- mization

Instructions: Good luck! Math 21a Second Midterm Exam Spring, 2009

Math 5BI: Problem Set 1 Linearizing functions of several variables

Lecture 15. Global extrema and Lagrange multipliers. Dan Nichols MATH 233, Spring 2018 University of Massachusetts

Calculus 3 Exam 2 31 October 2017

Math 2321 Review for Test 2 Fall 11

MATH Review Exam II 03/06/11

PROVINCIAL GAZETTE / PROVINSIALE KOERANT, 04 JUNE 2010 / 04 JUNIE [NO. 33 OF 2010] PROVINCIAL NOTICE MUNICIPAL DEMARCATION BOARD DELIMITATION O

SAOU. Posbus Hadisonpark 8306 E-pos: Faks Desember 2015 No: 28 van 2015

VISUELE KUNSTE AFDELING FINE ARTS SECTION

LAERSKOOL HELDERKRUIN

Handleiding vir die gebruik van SAEF Registrasie Stelsel

ANSWER KEY. (a) For each of the following partials derivatives, use the contour plot to decide whether they are positive, negative, or zero.

MATH 253 Page 1 of 7 Student-No.: Midterm 2 November 16, 2016 Duration: 50 minutes This test has 4 questions on 7 pages, for a total of 40 points.

Functions of several variables

CHAPTER 11 PARTIAL DERIVATIVES

SOLUTIONS 2. PRACTICE EXAM 2. HOURLY. Problem 1) TF questions (20 points) Circle the correct letter. No justifications are needed.

Review Problems. Calculus IIIA: page 1 of??

Name: ID: Section: Math 233 Exam 2. Page 1. This exam has 17 questions:

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

TrumpetNet, 31 May 2007

Johannesburg Cluster Common Examination Vraestel3 Kreatiewe Skryfwerk

Partial Differentiation 1 Introduction

Similarly, the point marked in red below is a local minimum for the function, since there are no points nearby that are lower than it:

11/18/2008 SECOND HOURLY FIRST PRACTICE Math 21a, Fall Name:

AN INTEGRATED CONTINUOUS OUTPUT LINEAR POWER SENSOR USING HALL EFFECT VECTOR MULTIPLICATION

2.1 Partial Derivatives

Getalle - waar kom hulle vandaan?

Final Exam Review Problems. P 1. Find the critical points of f(x, y) = x 2 y + 2y 2 8xy + 11 and classify them.

Math for Economics 1 New York University FINAL EXAM, Fall 2013 VERSION A

Ondersoek twee-dimensionele vorms *

I II III IV V VI VII VIII IX X Total

(d) If a particle moves at a constant speed, then its velocity and acceleration are perpendicular.

Hierdie vraestel is deel van InternetLearning se ExamKit pakket.

THE DEVELOPMENT OF A COMPUTER DRIVEN JIGSAW. A.J. Lubbe and H. Raath

Lecture 4 : Monday April 6th

MATH 261 EXAM II PRACTICE PROBLEMS

MATH 8 FALL 2010 CLASS 27, 11/19/ Directional derivatives Recall that the definitions of partial derivatives of f(x, y) involved limits

Wat is elektrisiteit? *

Lecture 19. Vector fields. Dan Nichols MATH 233, Spring 2018 University of Massachusetts. April 10, 2018.

Transcription:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS WTW 218 - CALCULUS EKSAMEN / EXAM PUNTE MARKS 2013-06-13 TYD / TIME: 180 min PUNTE / MARKS: 60 VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: GROEP / GROUP Prof Jordaan (Afr) Dr Ntumba (Eng 1) Dr vd Walt (Eng 2) Eksterne Eksaminator / External Examiner : Prof M Sango Interne Eksaminatore / Internal Examiners : Prof K Jordaan Dr P Ntumba Dr J H van der Walt Mr W S Lee LEES DIE VOLGENDE INSTRUK- SIES 1. Die vraestel bestaan uit bladsye 1 tot 15 (vrae 1 tot 12). Kontroleer of jou vraestel volledig is. 2. Doen alle krapwerk op die teenblad. Dit word nie nagesien nie. 3. As jy meer as die beskikbare ruimte vir n antwoord nodig het, gebruik die teenblad en dui dit asseblief duidelik aan. 4. Geen potloodwerk of enige werk in rooi ink word nagesien nie. 5. As jy korrigeerink ( Tipp-Ex ) gebruik, verbeur jy die reg om nasienwerk te bevraagteken of om werk wat nie nagesien is nie aan te dui. READ THE FOLLOWING IN- STRUCTIONS 1. The paper consists of pages 1 to 15 (questions 1 to 12). Check whether your paper is complete. 2. Do all scribbling on the facing page. It will not be marked. 3. If you need more than the available space for an answer, use the facing page and please indicate it clearly. 4. No pencil work or any work in red ink will be marked. 5. If you use correcting fluid ( Tipp-Ex ), you lose the right to question the marking or to indicate work that had not been marked. 6. Geen sakrekenaars word toegelaat nie. 6. No pocket calculators are allowed. 7. Alle antwoorde moet volledig gemotiveer word. 7. All answers have to be motivated in full. 8. Aangeheg tot hierdie vraestel is n 8. Attached to this question paper is an bylae wat sekere stellings bevat. In appendix containing certain theorems. jou argumente moet jy na hierdie stellings verwys, waar nodig. You should refer to these theorems in your arguments, when necessary. Outeursreg voorbehou Copyright reserved 0

VRAAG 1 QUESTION 1 Bepaal of die funksie xy sin(x) x f(x, y) = 2 + y 2 as / if (x, y) (0, 0) 0 as / if (x, y) = (0, 0) Determine whether or not the function kontinu is by die punt (0, 0). is continuous at the point (0, 0). Motiveer jou antwoord volledig. Justify your answer in full. 1

VRAAG 2 QUESTION 2 Beskou die funksie f(x, y) = x y 2 + 1. Consider the function (2.1) Bepaal f x (x, y) en f y (x, y). (2.1) Determine f x (x, y) and f y (x, y). [1] (2.2) Gebruik gepaste stellings om te verduidelik hoekom n raakvlak aan die oppervlak z = f(x, y) bestaan by die punt (2, 1, 1). (2.2) Use suitable theorems to explain why a tangent plane to the surface z = f(x, y) exists at the point (2, 1, 1). [2] (2.3) Bepaal n vergelyking vir die raakvlak aan die oppervlak z = f(x, y) by die punt (2, 1, 1). (2.3) Determine an equation for the tangent plane tot he surface z = f(x, y) at the point (2, 1, 1). [2] (2.4) Gebruik jou antwoord in (3.3) om f(2.1, 0.9) te benader. (2.4) Use your answer in (3.3) to approximate f(2.1, 0.9). [1] 2

VRAAG 3 QUESTION 3 Veronderstel dat f : R 2 R kontinue tweede order parsiële afgeleides het. Laat g(r, t) = tr + f(e rt, sin(t)). Assume that f : R 2 R has continuous second order partial derivatives. Let g(r, t) = tr + f(e rt, sin(t)). (3.1) Druk g t (r, t) uit in terme van r, t en die parsiële afgeleides van f. (3.1) Express g t (r, t) in terms of r, t and the partial derivatives of f. [2] (3.2) As g r (r, t) = t + te rt f x (e rt, sin(t)), druk g rt (r, t) uit in terme van r, t en die parsiële afgeleides van f. (3.2) If g r (r, t) = t + te rt f x (e rt, sin(t)), express g rt (r, t) in terms of r, t and the partial derivatives of f. 3

VRAAG 4 QUESTION 4 Laat D = {(x, y) : x 2 + y 2 16}, en beskou die funksie f : D R gegee deur f(x, y) = 2x 2 + 3y 2 4x 5. Let D = {(x, y) : x 2 + y 2 16}, and consider the function f : D R given by f(x, y) = 2x 2 + 3y 2 4x 5. (4.1) Gebruik Lagrange Vermenigvuldigers om die minimum en maksimum waardes van f op die rand van D te bepaal. (4.1) Use Lagrange Multipliers to find the minimum and maximum values of f on the boundary of D. [5] 4

(4.2) Bepaal nou die absolute minimum en absolute maksimum waardes van f op D. (4.2) Now determine the absolute minimum and absolute maximum values of f on D. [2] VRAAG 5 QUESTION 5 Die funksie f(x, y) = x 4 + 4xy + 2y 2 het kritieke punte (0, 0), ( 1, 1) en (1, 1). Bepaal of elkeen van hierdie punte n lokale minimum, lokale maksimum of saalpunt van f is. The function f(x, y) = x 4 + 4xy + 2y 2 has critical points (0, 0), ( 1, 1) and (1, 1). Determine whether each of these points is a local minimum, local maximum or saddle point of f. 5

VRAAG 6 QUESTION 6 Bepaal die gemiddelde waarde van die funksie f(x, y) = 6y + e x2 op die driehoekige gebied met hoekpunte (0, 0), (2, 0) en (2, 4). Determine the average value of the function f(x, y) = 6y + e x2 on the triangular region with vertices (0, 0), (2, 0) and (2, 4). VRAAG 7 QUESTION 7 Laat D gebied in die eerste kwadrant, binne die sirkel x 2 + y 2 = 2y en onder die lyn y = 1 wees. Druk die gegewe integraal uit as n herhaalde integraal in poolkoördinate. I = D xyda. Let D be the region in the first quadrant, inside the circle x 2 +y 2 = 2y and below the line y = 1. Express the given integral as an iterated integral in polar coordinates. [4] 6

VRAAG 8 QUESTION 8 Laat E die gebied binne die sfeer x 2 + y 2 + z 2 = a 2 en onder die keël z = a x 2 + y 2 wees. Let E be the region inside the spheer x 2 + y 2 + z 2 = a 2 and below the cone z = a x 2 + y 2 (8.1) Skets die gebied E op die stel asse hieronder voorsien. Dui alle kenmerke van al die betrokke oppervlakke duidelik aan op jou skets. (8.1) Sketch the region E on the set of axes provided below. Clearly indicate all relevant features of the surfaces involved on your sketch. z x y [4] 7

(8.2) Druk die volume van E uit as n herhaalde integraal in Cartesiese koördinate. (8.2) Express the volume of E as an iterated integral in Cartesian coordinates. (8.3) Druk die volume van E uit as n herhaalde integraal in silindriese koördinate. (8.3) Express the volume of E as an iterated integral in cylindrical coordinates. [2] (8.4) Druk die volume van E uit as n herhaalde integraal in bolkoördinate. (8.4) Express the volume o fe as an iterated integral in spherical coordinates. 8

VRAAG 9 QUESTION 9 Beskou funksies f en g van twee veranderlikes. Aanvaar dat f(x, y) = L en lim (x,y) (a,b) lim (x,y) (a,b) g(x, y) = M. Gebruik die definisie van n limiet om te bewys dat Consider function f and g of two variables. Assume that f(x, y) = L and lim (x,y) (a,b) lim (x,y) (a,b) g(x, y) = M. Use the definition of a limit to prove that lim [f(x, y) + g(x, y)] = L + M. (x,y) (a,b) Motiveer jou argument volledig. Justify your argument in full. 9

VRAAG 10 QUESTION 10 Beskou n funksie f : R 2 R. Veronderstel dat f x en f y kontinu is op R 2, met f x (a, b) 0. Laat C die kontoerkromme van f deur die punt (a, b) wees. In die vrae wat volg moet jy jou argumente volledig motiveer. Consider a function f : R 2 R. Suppose that f x and f y are continuous on R 2, with f x (a, b) 0. Let C be the level curve of f through the point (a, b). In the questions that follow, you must justify your arguments in full. (10.1) Bewys dat C n raakvektor het by (a, b). (10.1) Prove that C has a tangent vector at (a, b). (10.2) Bewys nou dat f(a, b) loodreg is op die kromme C by (a, b). (10.2) Now prove that f(a, b) is perpendicular to C at (a, b). [2] 10

VRAAG 11 QUESTION 11 Aanvaar dat f : R 2 R n kontinue funksie is. Laat D R 2 n geslote, begrensde en samehangende versameling wees, met area A(D) > 0. In die vrae wat volg moet jou argumente volledig gemotiveer word. Assume that f : R 2 R is a continuous function. Let D R 2 be a closed, bounded and connected set with area A(D) > 0. In the questions that follow, your arguments must be justified in full. (11.1) Toon aan dat daar punte (x 1, y 1 ) D en (x 2, y 2 ) D bestaan sodat (11.1) Show that there are points (x 1, y 1 ) D and (x 2, y 2 ) D such that f(x 1, y 1 ) 1 f(x, y)da f(x 2, y 2 ). A(D) D 11

(11.2) Bewys nou dat daar n punt (x 0, y 0 ) D bestaan sodat (11.2) Now prove that there exists a point (x 0, y 0 ) D such that f(x 0, y 0 ) = 1 f(x, y)da. A(D) D [2] 12

VRAAG 12 QUESTION 12 Beskou n kromme r(t) = x(t), y(t) in R 2 sodat r(0) = 1, 1. By elke punt P op die kromme, is die kromme loodreg tot die kontoerkromme van f(x, y) = x 4 + y 2 deur P. Bepaal r(t). Consider a curve r(t) = x(t), y(t) in R 2 such that r(0) = 1, 1. At every point P on this curve, it is perpendicular to the level curve of f(x, y) = x 4 +y 2 through P. Find r(t). [4] 13

Stellings Stelling 1 As g : [a, b] R kontinu is, en N is n getal tussen g(a) en g(b), dan bestaan daar n punt c [a, b] so dat f(c) = N. Stelling 2 Laat D R 2 n oop versameling wees. As f : D R kontinue eerste parsiële afgeleides het by (a, b) D, dan is f differensieerbaar by (a, b). Stelling 3 Laat D R 2 n oop versameling wees. As f : D R differensieerbaar is by (a, b) D, dan is daar n raakvlak aan die oppervlak z = f(x, y) by (a, b). Stelling 4 As D R 2 n geslote en begrensde versameling is, en f : D R is kontinu, dan is daar punte (a, b) en (c, d) in D so dat f(a, b) f(x, y) f(c, d) vir alle (x, y) D. Stelling 5 Laat F : R 2 R kontinue eerste orde parsiële afgeleides hê, en veronderstel dat F (a, b) = 0 en dat F x (a, b) 0. Dan bepaal die vergelyking F (x, y) = 0 x as n funksie van y in n omgewing van die punt (a, b). Dit wil sê, daar is n oop interval I met b I, n funksie g : I R en n getal δ > 0 so dat (i) Vir y I en (x, y) (a, b) < δ is F (x, y) = 0 as en slegs as x = g(y) (ii) (iii) g(b) = a g is differensieerbaar op I en dx dy = g (y) = Fy(x,y) F x (x,y), y I. Definisie 1 Laat C n kromme in R 2 wees. As P C en T is n raakvektor aan C by P, dan is n vektor N loodreg tot C by P as N loodreg tot die raakvektor T is. Definisie 2 n Versameling D R 2 is samehangend as vir enige twee punte P en Q in D daar n kontinue vektorfunksie r : [0, 1] D is so dat r(0) = P en r(1) = Q. 14

Theorems Theorem 1 If g : [a, b] R is continuous and N is a number between g(a) and g(b), then there is a point c [a, b] so that f(c) = N. Theorem 2 Let D R 2 be an open set. If f : D R has continuous first order partial derivatives at (a, b) D, then f is differentiable at (a, b). Theorem 3 Let D R 2 be an open set. If f : D R is differentiable at (a, b) D, then there is a tangent plane to the surface z = f(x, y) at (a, b). Theorem 4 If D R 2 is closed and bounded, and f : D R is continuous, then there are points (a, b) and (c, d) in D so that f(a, b) f(x, y) f(c, d) for all (x, y) D. Theorem 5 Let F : R 2 R have continuous first order partial derivatives, and suppose that F (a, b) = 0 and that F x (a, b) 0. Then the equation F (x, y) = 0 defines x as a function of y in a neighborhood of the point (a, b). That is, there is an open interval I with b I, a function g : I R and a number δ > 0 such that (i) For y I and (x, y) (a, b) < δ, F (x, y) = 0 if and only if x = g(y) (ii) (iii) g(b) = a g is a differentiable function on I and dx dy = g (y) = Fy(x,y) F x (x,y), y I Definition 1 Let C be a curve in R 2. If P C and T is a tangent vector to C at P, then a vector N is perpendicular to C if N is perpendicular to the tangent vector T. Definition 2 A subset D R 2 is connected if for every two points P and Q in D there exists a continuous vector valued function r : [0, 1] D such that r(0) = P and r(1) = Q. 15