IGB03N120H2. HighSpeed 2-Technology. Power Semiconductors 1 Rev. 2.4 Oct. 07

Similar documents
TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

IKW40T120. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

IHW15T120. Soft Switching Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

TrenchStop Series. Low Loss DuoPack : IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

OptiMOS 2 Power-Transistor

InductionHeatingSeries ReverseconductingIGBTwithmonolithicbodydiode IHW20N120R3. Datasheet. IndustrialPowerControl

MOSFET. CoolMOS CP. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

MOSFET. CoolMOS C6. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

MOSFET. CoolMOS E6. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

n-channel Power MOSFET

n-channel Power MOSFET

Metal Oxide Semiconductor Field Effect Transistor. 600V CoolMOS E6 Power Transistor IPx60R600E6. Rev. 2.0, Final

Metall Oxide Semiconductor Field Effect Transistor. 650V CoolMOS TM E6 Power Transistor IPx65R600E6. Rev. 2.2,

MOSFET. CoolMOS C6. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

n-channel Power MOSFET

n-channel Power MOSFET

n-channel Power MOSFET

MOSFET. CoolMOS C6. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

IDW100E60. Fast Switching Emitter Controlled Diode. IFAG IPC TD VLS 1 Rev

IDW75E60. Fast Switching Emitter Controlled Diode. IFAG IPC TD VLS 1 Rev

Symbol Parameters Test Conditions Min Typ Max Unit R thjc. Per IGBT 0.09 K/W R thjcd

GP1M018A020CG GP1M018A020PG

MOSFET. CoolMOS C6. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

STGW40S120DF3, STGWA40S120DF3

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.6V. Symbol V GE I C I CM I LM I F I FM. t SC P D T L. R θ JA R θ JC

STGW25H120DF2, STGWA25H120DF2

IGBT Highspeed5FASTIGBTinTRENCHSTOP TM 5technologycopackedwithRAPID1 fastandsoftantiparalleldiode

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.57V TO-263 D 2 PAK C E E G E AOB5B65M1. Symbol V GE I C I CM I LM I F I FM. t SC P D T L.

GP2M005A050CG GP2M005A050PG

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.6V TO-220F C. Symbol V GE I C I CM I LM I F I FM. t SC P D T J, T STG T L.

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.57V. Symbol V GE I C I CM I LM I F I FM. t SC P D T J, T STG T L. R θ JA R θ JC

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.57V. Symbol V GE I C I CM I LM I F I FM. t SC P D T J, T STG T L. R θ JA R θ JC

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.7V TO-220F C G E. Symbol V GE I C I CM I LM I F I FM. t SC P D T J, T STG T L.

SKM200GAH123DKL 1200V 200A CHOPPER Module August 2011 PRELIMINARY RoHS Compliant

AOT15B65M1/AOB15B65M1

GP2M020A050H GP2M020A050F

TRENCHSTOP TM IGBT4 Low Power Chip IGC13T120T8L

STGW15H120DF2, STGWA15H120DF2

1200 V 600 A IGBT Module

STGW60H65DFB, STGWA60H65DFB STGWT60H65DFB

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.94V. Symbol V GE I C I CM I LM I F 30 I FM. t SC P D T L. R θ JA R θ JC

AOKS40B65H1/AOTS40B65H1

AUTOMOTIVE GRADE. A I DM Pulsed Drain Current -44 P A = 25 C Maximum Power Dissipation 3.8 P C = 25 C Maximum Power Dissipation 110

TRENCHSTOP TM IGBT3 Chip SIGC42T170R3GE

TRENCHSTOP TM IGBT4 Low Power Chip IGC99T120T8RL

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.95V. Symbol V GE I C I CM I LM. I F to 150 I FM P D T J, T STG T L

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

V CE I C (T C =100 C) V CE(sat) (T J =25 C) Symbol V GE I C I CM I LM 6.6 I F 2.6 I FM. t SC P D T J, T STG T L. R θ JA R θ JC

IR MOSFET StrongIRFET IRF60R217

V CE I C (T C =100 C) V CE(sat) (T J =25 C) 1.95V. Symbol V GE I C I CM I LM I F I FM P D T L. R θ JA R θ JC

Type Marking Pin Configuration Package BFP520F APs 1=B 2=E 3=C 4=E - - TSFP-4

BCR Type Marking Pin Configuration Package BCR133 BCR133S BCR133W Pb-containing package may be available upon special request C 3

Base Part Number Package Type Standard Pack Orderable Part Number

IR MOSFET StrongIRFET IRL40SC228

TRENCHSTOP TM IGBT3 Chip SIGC20T120LE

STGW60V60DF STGWT60V60DF

1200V 50A IGBT Module

Low Drop Voltage Regulator TLE 4274

Orderable Part Number IRFP4768PbF TO-247AC Tube 25 IRFP4768PbF

AUTOMOTIVE GRADE. Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300

V CE I C (T C =100 C) V CE(sat) (T C =25 C) 2.0V. Symbol

STGW28IH125DF STGWT28IH125DF

AUTOMOTIVE GRADE. Thermal Resistance Symbol Parameter Typ. Max. Units R JC Junction-to-Case 1.9 R JA Junction-to-Ambient ( PCB Mount) 50 C/W

Half Bridge IGBT MTP (Warp Speed IGBT), 114 A

AUTOMOTIVE GRADE. Tube 50 AUIRFS4115-7P Tape and Reel Left 800 AUIRFS4115-7TRL

BCR129 BCR129S BCR129W

AUTOMOTIVE GRADE. Tube 50 AUIRFS3004-7P Tape and Reel Left 800 AUIRFS3004-7PTRL

Symbol Parameters Test Conditions Min Typ Max Unit T J max) Max. Junction Temperature 150 C T J op. Operating Temperature C T stg

EMIPAK-2B PressFit Power Module 3-Levels Half-Bridge Inverter Stage, 150 A

Insulated Gate Bipolar Transistor (Trench IGBT), 650 V, 120 A

MTP IGBT Power Module Primary Dual Forward

ACEPACK 2 sixpack topology, 1200 V, 75 A trench gate field-stop IGBT M series, soft diode and NTC

Trench gate field-stop, 1200 V, 25 A, low-loss M series IGBT in a TO-247 package

V CE I C (T C =100 C) V CE(sat) (T C =25 C) 1.85V. Symbol V GE. ±20 V 500ns 24 V V SPIKE I C I CM I LM I F 10 I FM. t SC P D T J, T STG T L

Symbol Parameters Test Conditions Min Typ Max Unit T J max. Max. Junction Temperature 150 C T J op. Operating Temperature C T stg

MG12300D-BN2MM Series 300A Dual IGBT

AUIRF1324S-7P AUTOMOTIVE GRADE

EMIPAK 2B PressFit Power Module 3-Levels Half Bridge Inverter Stage, 75 A

BAS70.../BAS170W BAS170W BAS70-02L BAS70-02W BAS70 BAS70-04W BAS70-04S BAS70-05W BAS70-06 BAS70-06W BAS70-07 BAS70-07W

Insulated Gate Bipolar Transistor (Ultrafast Speed IGBT), 100 A

MBQ60T65PES High Speed Fieldstop Trench IGBT Second Generation

V CES = 1200V I C = Tc = 80 C. T c = 25 C 1050 T c = 80 C 875

Molding Type Module IGBT, 2 in 1 Package, 1200 V, 100 A

IGBT SIP Module (Short Circuit Rated Ultrafast IGBT)

Item Symbol Condition Value Units V C = 25 C 1200 V V C = 25 C ±20

RGS00TS65D 650V 50A Field Stop Trench IGBT

AUIRLS3034-7P AUTOMOTIVE GRADE. HEXFET Power MOSFET

30V N-Channel Trench MOSFET

40V N-Channel Trench MOSFET

Orderable Part Number Form Quantity IRFHM8334PbF PQFN 3.3 mm x 3.3 mm Tape and Reel 4000 IRFHM8334TRPbF

Full Bridge IGBT MTP (Warp Speed IGBT), 50 A

STGFW20H65FB, STGW20H65FB, STGWT20H65FB

FGH40T100SMD 1000 V, 40 A Field Stop Trench IGBT

Features. Description. Table 1. Device summary. Order code Marking Package Packaging. STGW60V60F GW60V60F TO-247 Tube

EMIPAK 2B PressFit Power Module 3-Levels Half Bridge Inverter Stage, 150 A

"Low Side Chopper" IGBT MTP (Ultrafast Speed IGBT), 100 A

IGBT STARPOWER SEMICONDUCTOR TM. Molding Type Module. 1200V/225A 6 in one-package. General Description. Features. Typical Applications

IR MOSFET StrongIRFET IRFP7718PbF

V CE I C (T C =100 C) V CE(sat) (T C =25 C) 1.6V. Symbol. Symbol V GE I C I CM I LM 30 I F 15 I FM. t SC P D T J, T STG T L.

"Half-Bridge" IGBT INT-A-PAK (Ultrafast Speed IGBT), 200 A

Transcription:

HighSpeed 2-Technology Designed for frequency inverters for washing machines, fans, pumps and vacuum cleaners 2 nd generation HighSpeed-Technology for 1200V applications offers: - loss reduction in resonant circuits - temperature stable behavior - parallel switching capability - tight parameter distribution - E off optimized for =3A G C E Qualified according to JEDEC 2 for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ PG-TO263-3-2 Type V CE E off T j Marking Package IGB03N120H2 1200V 3A 0.15mJ 150 C G03H1202 PG-TO263-3-2 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V CE 1200 V Triangular collector current T C = 25 C, f = 140kHz T C = 100 C, f = 140kHz 9.6 3.9 Pulsed collector current, t p limited by T jmax puls 9.9 Turn off safe operating area - 9.9 V CE 1200V, T j 150 C Gate-emitter voltage V GE ±20 V Power dissipation T C = 25 C P tot 62.5 W Operating junction and storage temperature T j, T stg -40...+150 Soldering temperature (reflow soldering, MSL1) - 245 A C 2 J-STD-020 and JESD-022 Power Semiconductors 1 Rev. 2.4 Oct. 07

Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, junction case R thjc 2.0 Thermal resistance, R thja 40 junction ambient 1) K/W Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. Static Characteristic Collector-emitter breakdown voltage V (BR)CES V GE =0V, =300µA 1200 - - Collector-emitter saturation voltage V CE(sat) V GE = 15V, =3A T j =25 C - 2.2 2.8 T j =150 C - 2.5 - V GE = 10V, =3A, T j =25 C - 2.4 - Gate-emitter threshold voltage V GE(th) =90µA,V CE =V GE 2.1 3 3.9 Zero gate voltage collector current ES V CE =1200V,V GE =0V T j =25 C T j =150 C Gate-emitter leakage current I GES V CE =0V,V GE =20V - - 100 na Transconductance g fs V CE =20V, =3A - 2 - S Dynamic Characteristic Input capacitance C iss V CE =25V, - 205 - Output capacitance C oss V GE =0V, - 24 - Reverse transfer capacitance f=1mhz - 7 - C rss Gate charge Q Gate V CC =960V, =3A V GE =15V Internal emitter inductance measured 5mm (0.197 in.) from case - - - - 20 80 Unit V µa pf - 22 - nc L E - 7 - nh 1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2 (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. Power Semiconductors 2 Rev. 2.4 Oct. 07

Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions Value min. typ. max. IGBT Characteristic Turn-on delay time t d(on) T j =25 C, - 9.2 - Rise time t r V CC =800V, =3A, - 5.2 - Turn-off delay time t d(off) V GE =15V/0V, - 281 - Fall time t f R G =82Ω, - 29 - L 2) σ =180nH, Turn-on energy E on - 0.14 - C 2) σ =40pF Turn-off energy E off Energy losses include - 0.15 - Total switching energy E ts tail and diode 4) - 0.29 - reverse recovery. Unit ns mj Switching Characteristic, Inductive Load, at T j =150 C Parameter Symbol Conditions Value min. typ. max. IGBT Characteristic Turn-on delay time t d(on) T j =150 C - 9.4 - Rise time t r V CC =800V, - 6.7 - Turn-off delay time t d(off) =3A, - 340 - Fall time t f V GE =15V/0V, - 63 - Turn-on energy E R G =82Ω, on - 0.22 - L 2) σ =180nH, Turn-off energy E off - 0.26 - C 2) σ =40pF Total switching energy E ts Energy losses include - 0.48 - tail and diode 3) reverse recovery. Unit ns mj Switching Energy ZVT, Inductive Load Parameter Symbol Conditions IGBT Characteristic Turn-off energy E off V CC =800V, =3A, V GE =15V/0V, R G =82Ω, C 2) r =4nF T j =25 C T j =150 C Value min. typ. max. - 0.05 - - 0.09 - Unit mj 2) Leakage inductance L σ and stray capacity C σ due to dynamic test circuit in figure E 4) Commutation diode from device IKP03N120H2 Power Semiconductors 3 Rev. 2.4 Oct. 07

1 I c 1 t p =1µs 1 5µs IC, COLLECTOR CURRENT 8A 6A 4A I c T C =80 C T C =110 C IC, COLLECTOR CURRENT 1A 0,1A 10µs 50µs 100µs 500µs DC 10Hz 100Hz 1kHz 10kHz 100kHz,01A 1V 10V 100V 1000V f, SWITCHING FREQUENCY V CE, COLLECTOR-EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency (T j 150 C, D = 0.5, V CE = 800V, V GE = +15V/0V, R G = 82Ω) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 150 C) 60W 1 50W 1 Ptot, POWER DISSIPATION 40W 30W 20W 10W IC, COLLECTOR CURRENT 8A 6A 4A 0W 25 C 50 C 75 C 100 C 125 C 25 C 50 C 75 C 100 C 125 C 150 C T C, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (T j 150 C) T C, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (V GE 15V, T j 150 C) Power Semiconductors 4 Rev. 2.4 Oct. 07

1 1 9A 8A 8A IC, COLLECTOR CURRENT 6A 4A V GE =15V 12V 10V 8V 6V IC, COLLECTOR CURRENT 7A 6A 5A 4A 3A V GE =15V 12V 10V 8V 6V 1A 0V 1V 2V 3V 4V 5V 0V 1V 2V 3V 4V 5V V CE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (T j = 25 C) V CE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (T j = 150 C) IC, COLLECTOR CURRENT 1 1 8A 6A 4A T j =+150 C T j =+25 C 3V 5V 7V 9V VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 3V 2V 1V =6A =3A =1.5A 0V -50 C 0 C 50 C 100 C 150 C V GE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (V CE = 20V) T j, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (V GE = 15V) Power Semiconductors 5 Rev. 2.4 Oct. 07

1000ns 1000ns t d(off) t d(off) t, SWITCHING TIMES 100ns 10ns t f t d(on) t, SWITCHING TIMES 100ns 10ns t f t d(on) t r t r 1ns 4A 1ns 0Ω 50Ω 100Ω 150Ω, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, T j = 150 C, V CE = 800V, V GE = +15V/0V, R G = 82Ω, dynamic test circuit in Fig.E) R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, T j = 150 C, V CE = 800V, V GE = +15V/0V, = 3A, dynamic test circuit in Fig.E) 1000ns 5V t, SWITCHING TIMES 100ns 10ns t f t d(off) t d(on) t r 1ns 25 C 50 C 75 C 100 C 125 C 150 C VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 4V 3V 2V 1V max. typ. min. 0V -50 C 0 C 50 C 100 C 150 C T j, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 800V, V GE = +15V/0V, = 3A, R G = 82Ω, dynamic test circuit in Fig.E) T j, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature ( = 0.09mA) Power Semiconductors 6 Rev. 2.4 Oct. 07

1.0mJ 1 ) E on and E ts include losses due to diode recovery. E ts 1 0.7mJ 1 ) E on and E ts include losses due to diode recovery. E ts 1 E, SWITCHING ENERGY LOSSES 0.5mJ E off E on 1 E, SWITCHING ENERGY LOSSES 0.6mJ 0.5mJ 0.4mJ 0.3mJ 0.2mJ E off E on 1 0.0mJ 4A 0Ω 50Ω 100Ω 150Ω 200Ω 250Ω, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, T j = 150 C, V CE = 800V, V GE = +15V/0V, R G = 82Ω, dynamic test circuit in Fig.E ) R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T j = 150 C, V CE = 800V, V GE = +15V/0V, = 3A, dynamic test circuit in Fig.E ) E, SWITCHING ENERGY LOSSES 0.5mJ 0.4mJ 0.3mJ 0.2mJ 0.1mJ 1 ) E on and E ts include losses due to diode recovery. E ts 1 E off E on 1 25 C 80 C 125 C 150 C Eoff, TURN OFF SWITCHING ENERGY LOSS 0.16mJ 0.12mJ 0.08mJ 0.04mJ =1A, T J =150 C =3A, T J =150 C =1A, T J =25 C =3A, T J =25 C 0.00mJ 0V/us 1000V/us 2000V/us 3000V/us T j, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 800V, V GE = +15V/0V, = 3A, R G = 82Ω, dynamic test circuit in Fig.E ) dv/dt, VOLTAGE SLOPE Figure 16. Typical turn off switching energy loss for soft switching (dynamic test circuit in Fig. E) Power Semiconductors 7 Rev. 2.4 Oct. 07

20V 10 0 K/W D=0.5 VGE, GATE-EMITTER VOLTAGE 0.2 0.1 0.05 10-1 K/W 0.02 0.01 10-2 K/W R,(K/W) τ, (s) 1.082517 0.000795 0.328671 0.000179 0.588811 0.004631 R 1 R 2 VGE, GATE-EMITTER VOLTAGE 15V 10V 5V U CE =240V U CE =960V single pulse C 1=τ 1/R 1 C 2=τ 2/R 2 1µs 10µs 100µs 1ms 10ms 100ms 0V 0nC 10nC 20nC 30nC Q GE, GATE CHARGE Figure 17. Typical gate charge ( = 3A) Q GE, GATE CHARGE Figure 17. Typical gate charge ( = 3A) 1nF 1000V 3A C, CAPACITANCE 100pF 10pF 0V 10V 20V 30V C iss C oss C rss VCE, COLLECTOR-EMITTER VOLTAGE 800V 600V 400V 200V 0V 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1A ICE COLLECTOR CURRENT V CE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz) t p, PULSE WIDTH Figure 20. Typical turn off behavior, hard switching (V GE =15/0V, R G =82Ω, T j = 150 C, Dynamic test circuit in Figure E) Power Semiconductors 8 Rev. 2.4 Oct. 07

800V 3A VGE, GATE-EMITTER VOLTAGE 600V 400V 200V 1A ICE COLLECTOR CURRENT 0V 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 t p, PULSE WIDTH Figure 21. Typical turn off behavior, soft switching (V GE =15/0V, R G =82Ω, T j = 150 C, Dynamic test circuit in Figure E) Power Semiconductors 9 Rev. 2.4 Oct. 07

PG-TO263-3-2 Power Semiconductors 10 Rev. 2.4 Oct. 07

i,v di F /dt t =t + t rr S F Q =Q + Q rr S F t rr I F t S t F Q S Q F 10% I rrm t I rrm di 90% I rrm rr /dt V R Figure C. Definition of diodes switching characteristics T(t) j τ 1 r1 τ 2 r2 τ r n n p(t) r r 1 2 n r Figure A. Definition of switching times T C Figure D. Thermal equivalent circuit ½ L σ öö DUT (Diode) L C σ C r V DC R G DUT (IGBT) ½ L σ Figure E. Dynamic test circuit Leakage inductance L σ = 180nH, Stray capacitor C σ = 40pF, Relief capacitor C r = 4nF (only for ZVT switching) Figure B. Definition of switching losses Power Semiconductors 11 Rev. 2.4 Oct. 07

Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies AG 11/6/07. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ( Beschaffenheitsgarantie ). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 12 Rev. 2.4 Oct. 07