Pulse Source and Measure Fundamentals

Size: px
Start display at page:

Download "Pulse Source and Measure Fundamentals"

Transcription

1 Pulse Source and Measure Fundamentals May 2015

2 Goals & Overview Goal: To understand the critical differences between an SMU and an PMU Overview: Review of SMU Theory of Operation Comparison of PMU Theory of Operation with SMU Theory of Operation Summary of Differences

3 Background Need to understand the differences between an SMU and the 4225-PMU To do this we need to understand how a SMU works 3 3

4 SMU Theory Of Operation (1) A SMU provides simultaneous precision sourcing and precision measurement of voltage and current. The design of an SMU is based upon a classic control system with set points, feedback, and plant. The set point is the desired output level and limits. The feedback is the real-time sensing of a signal. The plant is the actual signal output at the DUT. 4 4

5 5 5

6 SMU Theory of Operation (2): Operating Modes 4 Modes of Operation Meas I Meas I 1 3 Meas V Meas V Source I Source V

7 SMU Theory of Operation (3): Driven Guard SMU s generally have a driven guard A guard is a x1 buffer that makes sure that the guard terminal is at the same potential as the output terminal This is done to eliminate leakage paths and makes for quieter measurements. 7

8 SMU Theory of Operation (4): Current Source Mode In current source mode, the SMU is a high impedance current source with V-measure, I- measure, and V-limit capability 8

9 SMU Theory of Operation (5): Voltage Source Mode When acting as a voltage source, the SMU is a low impedance voltage source with I-measure, I- limit, and V-measure capability. 9 9

10 SMU Theory of Operation (6): 2-Wire Mode vs 4-Wire Mode An SMU can operate in 2-wire or 4-wire mode In 2-wire mode, it makes its measurement at the instrument terminals In 2-wire mode the SMU does not account for the drops due to the interconnect In 4-wire mode an additional connection is made at the DUT In 4-wire mode drops due to the cabling are eliminated 10 10

11 SMU Theory of Operation (7): Auto-Ranging When an SMU auto-ranges an approximate feedback loop control system is used. The approximate feedback loop holds the output signal constant while the SMU determines if it needs to change range

12 SMU Theory of Operation (8): Limit/Compliance The same approximate feedback control system is used during compliance determination When the SMU determines that it has hit a programmed limit it changes modes to maintain that limit If in voltage limit, the SMU switches to voltage source mode and sources the limit value If in current limit, the SMU switches to current source mode and sources the limit value 12

13 SMU Summary A SMU: Priority is accurate/precision sourcing and measurements. Timing is not as critical! Has 4 modes of operation Has programmable limits that occur in the analog domain Provides a guard signal Can operate in 2-wire (local sense) or 4-wire (remote sense) mode 13

14 K E I T H L E Y C O N F I D E N T I A L P R O P R I E T A R Y PMU Theory of Operation (1) A PMU can also source voltage The PMU is a pulser that has been modified to measure A PMU is time-oriented A PMU has only one real mode: Source V and Measure I and Measure V 14

15 The PMU is a VOLTAGE SOURCE! Pulse Section Measure Section 15

16 PMU Theory of Operation (3): 50 Ohm Internal Impedance PMU impedance is 50 ohms 50 ohms was chosen to match the Impedance of the coax transmission line which in turn reduces signal Vdut Reflections = Vint The PMU will set it s internal voltage to account for the 50 ohm impedance and the user s desired voltage The 50ohm internal impedance reduces the voltage available to the DUT The PMU does not have remote sense and cannot adjust for the 50 ohm drop in the analog domain To account for the drop, the PMU must first make a measurement and then make an adjustment Rdut (Rdut + Rint) 16

17 PMU Theory of Operation (4): Output Compensation Two ways for a PMU to adjust it s Output to account for losses: Output a pulse take a measurement evaluate the measurement adjust. This is called Load Line Effect Compensation (LLEC) Ask the user to tell it the approximate DUT impedance Calculate the appropriate internal voltage using a voltage divider equation. This is VERY different from a SMU in that a signal is first output, a measurement is taken, and adjustment is made. While the adjustments are being made, there is no signal being presented to the DUT. During this process, the DUT still only sees pulses of the programmed duration. Output Pulse Burst Get Good Measurement (ranging, etc) At Voltage? Y Put Data in Sheet, go to next sweep point N LLEC Looping Calculate new pulse level 17

18 PMU Theory of Operation (5): Auto-Ranging When a PMU autoranges, it follows a similar procedure to LLEC. That is, while the output is off, it evaluates the previous measurement to determine if it needs to change range. This is done because the PMU must give priority to timing. That is, it can only output a signal for as long as required by the user s timing parameters! This can cause some problems if the user sets an inappropriately short pulse width it may cause the PMU to take a reading on unsettled signal. And if the measurement is taken on an unsettled signal, the PMU may choose the wrong range during auto-ranging. Remember: A SMU has a source--range delay--user delay--measure sequence. That is, since it is a measurement priority instrument, readings are taken on (mostly) settled signals. 18

19 PMU Theory of Operation (6): Thresholds A PMU does not have compliance, it has thresholds Since a PMU is a time-priority instrument, The only way for it to determine if it has hit (or exceeded) a programmed threshold is after a pulse-measure burst is complete. This determination happens in the digital domain. Once it has determined that it has hit a threshold, it stops outputting pulses. The implications of this method is that the PMU can momentarily exceed the programmed threshold value because it will not know that it hit a threshold until after the pulse-measure sequence is complete! For a single pulse without LLEC it doesn t matter. When averaging, it could matter because there may be multiple pulses output before it can figure out that a threshold has been hit! 19

20 Other PMU / SMU Differences When a PMU outputs a DC signal, it is simply outputting a pulse whose amplitude and base are the same voltage. In fact, when in DC mode, the PMU will still use the timing parameters set in the timing dialog (unlike the SMU). Being time-oriented, a PMU can make measurements during very short pulses (10 s of ns). An SMU cannot its best pulse-measure time is around 100us. On the 4200, there are no KXCI commands for the PMU like there are for the SMU. 20

21 Summary PMU SMU Is a voltage source that simultaneously measures V and I Is a time accuracy priority instrument Output is off during auto-range range Determination Has thresholds and not compliance; cannot determine threshold state during measurement Has accurate timing Does not have remote sense Does not have guarding Does not have KXCI commands Can output and measure during short pulses (<< 1us) Is a 4 Mode Instrument Is a measurement accuracy/precision priority instrument Output is held on during auto-range range determination Can determine compliance status during measurement and can hold output to the compliance value Timing is limited by built in settling delays Has remote sense capability Has guarding Has KXCI commands Relatively slow pulse output with measure (fastest is around 100us)

SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING. Lee Stauffer. Keithley Instruments, Inc.

SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING. Lee Stauffer. Keithley Instruments, Inc. SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING Lee Stauffer Keithley Instruments, Inc. Introduction Source-Measure Units (SMUs) are more than the next generation of power

More information

Ultra-Fast I-V Module for the Model 4200-SCS

Ultra-Fast I-V Module for the Model 4200-SCS Provides voltage outputs with programmable timing from 60ns to DC in 10ns steps Measure I and V simultaneously, at acquisition rates of up to 200 megasamples/second (MS/s) Choose from two voltage source

More information

APPLICATION NOTE. Wide Range of Resistance Measurement Solutions from μω to PΩ

APPLICATION NOTE. Wide Range of Resistance Measurement Solutions from μω to PΩ APPLICATION NOTE Wide Range of Resistance Measurement Solutions from μω to PΩ Introduction Resistance measurement is one of the fundamental characterizations of materials, electronic devices, and circuits.

More information

2520 Pulsed Laser Diode Test System

2520 Pulsed Laser Diode Test System Complete pulse test of laser diode bars and chips with dual photocurrent measurement channels 0 Pulsed Laser Diode Test System Simplifies laser diode L-I-V testing prior to packaging or active temperature

More information

Verigy V93000 HSM DDR3 64 sites Memory Test System

Verigy V93000 HSM DDR3 64 sites Memory Test System Verigy V93000 HSM DDR3 64 sites Memory Test System Technical Specifications CONTENTS 1. System overview 2 2. Timing 4 2.1 Fast timing 4 2.2 STD Timing 6 3. Digital channels 7 3.1 FAST Driver 7 3.2 STD

More information

Non-Volatile Memory Characterization and Measurement Techniques

Non-Volatile Memory Characterization and Measurement Techniques Non-Volatile Memory Characterization and Measurement Techniques Alex Pronin Keithley Instruments, Inc. 1 2012-5-21 Why do more characterization? NVM: Floating gate Flash memory Very successful; lead to

More information

Application Note Series

Application Note Series Number 3092 Application Note Series Electrical Characterization of Carbon Nanotube Transistors (CNT FETs) with the Model 4200-SCS Semiconductor Characterization System Introduction Carbon nanotubes (CNTs)

More information

GATE & DRAIN Probe heads specifications

GATE & DRAIN Probe heads specifications GATE & DRAIN Probe heads specifications Page 1 /18 October 11, Ref 01102011 Table of contents 1 Main Characteristic of the Pulse IV System 3 1.1 General Description 3 1.2 Main features 4 1.3 Pulse Timing

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

Keysight Technologies Resistance Measurements Using the B2900A Series of SMUs

Keysight Technologies Resistance Measurements Using the B2900A Series of SMUs Keysight Technologies Resistance urements Using the B2900A Series of SMUs Application Note Keysight B2901A Precision SMU, 1ch, 100 fa resolution, 210, 3A DC/10.5 A pulse Keysight B2902A Precision SMU,

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Speed and Timing Considerations 1 Factors Affecting Measurement Time Internal to 4200: Settings in the Timing Window:

More information

Design Implementation Description for the Digital Frequency Oscillator

Design Implementation Description for the Digital Frequency Oscillator Appendix A Design Implementation Description for the Frequency Oscillator A.1 Input Front End The input data front end accepts either analog single ended or differential inputs (figure A-1). The input

More information

Fast and Accurate RF component characterization enabled by FPGA technology

Fast and Accurate RF component characterization enabled by FPGA technology Fast and Accurate RF component characterization enabled by FPGA technology Guillaume Pailloncy Senior Systems Engineer Agenda RF Application Challenges What are FPGAs and why are they useful? FPGA-based

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Safety Precautions Working with Electricity Before starting, check cables for cracks or wear. Get new cables if

More information

SERVOSTAR S- and CD-series Sine Encoder Feedback

SERVOSTAR S- and CD-series Sine Encoder Feedback SERVOSTAR S- and CD-series Sine Encoder Feedback The SERVOSTAR S and SERVOSTAR CD family of drives offers the ability to accept signals from various feedback devices. Sine Encoders provide analog-encoded

More information

Ultra-Fast NBTI/PBTI Package for the Model 4200-SCS

Ultra-Fast NBTI/PBTI Package for the Model 4200-SCS Best-in-class test speed allows faster, more complete device characterization Begin measuring BTI degradation as soon as 30ns after stress is removed Measure transistor V T in less than 1µs using I D V

More information

FIXING/AVOIDING PROBLEMS IN PULSE TESTING OF HIGH POWER LASER DIODES. Paul Meyer Keithley Instruments

FIXING/AVOIDING PROBLEMS IN PULSE TESTING OF HIGH POWER LASER DIODES. Paul Meyer Keithley Instruments FIXING/AVOIDING PROBLEMS IN PULSE TESTING OF HIGH POWER LASER DIODES Paul Meyer Keithley Instruments Commonly used methods for testing laser diodes are slow and can cause good parts to be thrown out or

More information

Battery Simulator Battery/Charger Simulators

Battery Simulator Battery/Charger Simulators Test Equipment Depot - 800.517.8431-99 Washington Street Melrose, MA 02176 - TestEquipmentDepot.com 2302, 2302-PJ, Ultrafast response to transient load currents Choice of single- or dualchannel supplies

More information

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS 8 TO 35 V OPERATION 5.1 V REFERENCE TRIMMED TO ± 1 % 100 Hz TO 500 KHz OSCILLATOR RANGE SEPARATE OSCILLATOR SYNC TERMINAL ADJUSTABLE DEADTIME CONTROL INTERNAL

More information

2302 Battery Simulator 2306, 2306-PJ Battery/Charger Simulators

2302 Battery Simulator 2306, 2306-PJ Battery/Charger Simulators Ultrafast response to transient load currents Choice of single- or dualchannel supplies Optimized for development and testing of battery-powered devices Variable output resistance for simulating battery

More information

Keysight Technologies Precise Low Resistance Measurements Using the B2961A and 34420A

Keysight Technologies Precise Low Resistance Measurements Using the B2961A and 34420A Keysight Technologies Precise Low Resistance Measurements Using the B2961A and 34420A B2961A/B2962A 6.5 Digit Low Noise Power Source Application Note Introduction Resistance measurement is one of the most

More information

Advances in Antenna Measurement Instrumentation and Systems

Advances in Antenna Measurement Instrumentation and Systems Advances in Antenna Measurement Instrumentation and Systems Steven R. Nichols, Roger Dygert, David Wayne MI Technologies Suwanee, Georgia, USA Abstract Since the early days of antenna pattern recorders,

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Low Current and High Resistance Measurement Techniques 1 Low Current and High Resistance Measurements Sources of

More information

4413 UPDATING PROGRAMMABLE DISCRIMINATOR 4415A NON-UPDATING PROGRAMMABLE DISCRIMINATOR

4413 UPDATING PROGRAMMABLE DISCRIMINATOR 4415A NON-UPDATING PROGRAMMABLE DISCRIMINATOR TECHNICAL DATA 4413 UPDATING PROGRAMMABLE DISCRIMINATOR 4415A NON-UPDATING PROGRAMMABLE DISCRIMINATOR CAMAC Packaging 16 Inputs Per Module ECLine Compatible Adjustable Output Widths Remote or Local Threshold

More information

90 Day TCAL ±5 C. = channel 2 reading channel 2 accuracy channel 2 reading

90 Day TCAL ±5 C. = channel 2 reading channel 2 accuracy channel 2 reading Keithley Instruments 28775 Aurora Road Cleveland, Ohio 44139 1-800-935-5595 http://www.tek.com/keithley Model 2182A Nanovoltmeter Instrument Specifications SPECIFICATION CONDITIONS This document contains

More information

BATCHMATE 1500 Batch Control Computer Technical Bulletin

BATCHMATE 1500 Batch Control Computer Technical Bulletin TS-5(C) BATCHMATE 5 Batch Control Computer Technical Bulletin DESCRIPTION The BATCHMATE features an 8 digit.55-in. alphanumeric LED display. The pulse input model will accept up to 2, pulses per second

More information

AN increasing number of video and communication applications

AN increasing number of video and communication applications 1470 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 9, SEPTEMBER 1997 A Low-Power, High-Speed, Current-Feedback Op-Amp with a Novel Class AB High Current Output Stage Jim Bales Abstract A complementary

More information

AN Analog Power USA Applications Department

AN Analog Power USA Applications Department Using MOSFETs for Synchronous Rectification The use of MOSFETs to replace diodes to reduce the voltage drop and hence increase efficiency in DC DC conversion circuits is a concept that is widely used due

More information

ELECTRONICS FOR PULSE PICKERS

ELECTRONICS FOR PULSE PICKERS Rev. 3.07 / 2014 04 10 ELECTRONICS FOR PULSE PICKERS TABLE OF CONTENTS Description... 2 High voltage switches... 3 Appearance / dimensions... 3 Power ratings... 3 Interfaces... 4 Specifications... 6 How

More information

Appnote - Realtime Spectrum Analyzer vs Spectrum Analyzer

Appnote - Realtime Spectrum Analyzer vs Spectrum Analyzer Appnote - Realtime Spectrum Analyzer vs Spectrum Analyzer Today the RF industry has to face more and more the open question, how to transport the data from my test device (DUT) to different receiver spots

More information

IXLD02SI Differential 2A Ultra Fast Laser Diode Driver

IXLD02SI Differential 2A Ultra Fast Laser Diode Driver Differential 2A Ultra Fast Laser Diode Driver Features Ultra Fast Pulsed Current Source High Output Currents >2A Peak 17MHz Max Operating Frequency

More information

2601 System SourceMeter 2602 Multi-Channel I-V Test Solutions

2601 System SourceMeter 2602 Multi-Channel I-V Test Solutions 601 System SourceMeter 60 Multi-Channel I-V Test Solutions SPECIFICATION CONDITIONS This document contains specifications and supplemental information for the Models 601 and 60. Specifications are the

More information

Model 25D Manual. Introduction: Technical Overview:

Model 25D Manual. Introduction: Technical Overview: Model 25D Manual Introduction: The Model 25D drive electronics is a high voltage push-pull power amplifier capable of output voltage swings in the order of 175v P-P, push-pull. The Model 25D provides output

More information

Pulsed Measurement Capability of Copper Mountain Technologies VNAs

Pulsed Measurement Capability of Copper Mountain Technologies VNAs Introduction Pulsed S-parameter measurements are important when testing a DUT at a higher power than it can handle without damage in the steady state, or when the normal operating mode of the DUT involves

More information

Burst Mode Technology

Burst Mode Technology Burst Mode Technology A Tutorial Paolo Solina Frank Effenberger Acknowledgements Jerry Radcliffe Walt Soto Kenji Nakanishi Meir Bartur Overview Burst Mode Transmitters Rise and fall times Automatic power

More information

Agilent Technologies 8114A 100 V/2 A Programmable Pulse Generator

Agilent Technologies 8114A 100 V/2 A Programmable Pulse Generator Agilent Technologies 8114A 10/2 A Programmable Pulse Generator Technical Specifications Faster Characterization and Test, without Compromise Key Features: 10pp (2 A) into open (or from 1KW into 50W), 7ns

More information

Fallstricke präziser DC- Messungen

Fallstricke präziser DC- Messungen Fallstricke präziser DC- Messungen Sascha Egger, Applications Engineer Group Leader National Instruments Switzerland GmbH Agenda Overview of Precision Test Systems Techniques for: Low-voltage measurements

More information

2520 Pulsed Laser Diode Test System

2520 Pulsed Laser Diode Test System Simplifies laser diode LIV testing prior to packaging or active temperature control Integrated solution for in-process LIV production testing of laser diodes at the chip or bar level Sweep can be programmed

More information

CHOOSING THE RIGHT TYPE OF ACCELEROMETER

CHOOSING THE RIGHT TYPE OF ACCELEROMETER As with most engineering activities, choosing the right tool may have serious implications on the measurement results. The information below may help the readers make the proper accelerometer selection.

More information

Circuit Applications of Multiplying CMOS D to A Converters

Circuit Applications of Multiplying CMOS D to A Converters Circuit Applications of Multiplying CMOS D to A Converters The 4-quadrant multiplying CMOS D to A converter (DAC) is among the most useful components available to the circuit designer Because CMOS DACs

More information

Radiation Test Report Paul Scherer Institute Proton Irradiation Facility

Radiation Test Report Paul Scherer Institute Proton Irradiation Facility the Large Hadron Collider project CERN CH-2 Geneva 23 Switzerland CERN Div./Group RadWG EDMS Document No. xxxxx Radiation Test Report Paul Scherer Institute Proton Irradiation Facility Responsibility Tested

More information

CL55C CLICK ANALYSER The cost competitive, PC-driven, automatic, multi-channel discontinuous interference analyser

CL55C CLICK ANALYSER The cost competitive, PC-driven, automatic, multi-channel discontinuous interference analyser CL55C CLICK ANALYSER The cost competitive, PC-driven, automatic, multi-channel discontinuous interference analyser According to CISPR 14-1, Designed in compliance with CISPR 16-1, Advanced software for

More information

Contents. CALIBRATION PROCEDURE NI PXIe-6555/6556. ni.com/manuals

Contents. CALIBRATION PROCEDURE NI PXIe-6555/6556. ni.com/manuals CALIBRATION PROCEDURE NI PXIe-6555/6556 Français Deutsch ni.com/manuals This document contains the verification and adjustment procedures for the NI PXIe-6555 (NI 6555) and NI PXIe-6556 (NI 6556) 200 MHz

More information

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology

Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems. A Design Methodology Low Jitter, Low Emission Timing Solutions For High Speed Digital Systems A Design Methodology The Challenges of High Speed Digital Clock Design In high speed applications, the faster the signal moves through

More information

MODELS WW5061/2. 50MS/s Single/Dual Channel Arbitrary Waveform Generators

MODELS WW5061/2. 50MS/s Single/Dual Channel Arbitrary Waveform Generators Single / Dual Channel 50MS/s waveform generator Sine waves to 25MHz, Square to 15MHz SINE OUT to 50MHz, 1Vp-p 11 Built-in popular standard waveforms 14 Bit amplitude resolution 11 digits frequency resolution

More information

Model 305 Synchronous Countdown System

Model 305 Synchronous Countdown System Model 305 Synchronous Countdown System Introduction: The Model 305 pre-settable countdown electronics is a high-speed synchronous divider that generates an electronic trigger pulse, locked in time with

More information

Data Sheet. Agilent M9185A PXI Isolated D/A Converter. DISCOVER the Alternatives... Agilent MODULAR Products. 8/16-Channel 16-bit, ±16 V

Data Sheet. Agilent M9185A PXI Isolated D/A Converter. DISCOVER the Alternatives... Agilent MODULAR Products. 8/16-Channel 16-bit, ±16 V Agilent M9185A PXI Isolated D/A Converter Data Sheet 8/16-Channel 16-bit, ±16 V DISCOVER the Alternatives...... Agilent MODULAR Products Overview Introduction The Agilent M9185A is a digital/analog converter

More information

Model 2651A Specifications

Model 2651A Specifications Keithley Instruments 28775 Aurora Road Cleveland, Ohio 44139 1-800-935-55 http://www.tek.com/keithley Model 2651A Specifications High Power System SourceMeter Instrument Specifications SPECIFICATION CONDITIONS

More information

What Is An SMU? SEP 2016

What Is An SMU? SEP 2016 What Is An SMU? SEP 2016 Agenda SMU Introduction Theory of Operation (Constant Current/Voltage Sourcing + Measure) Cabling : Triax vs Coax Advantages in Resistance Applications (vs. DMMs) Advantages in

More information

WORLD LEADING PRODUCTS FOR LASER SCIENTISTS AND ENGINEERS

WORLD LEADING PRODUCTS FOR LASER SCIENTISTS AND ENGINEERS 60 Amp High Power Laser Diode Driver, CW and QCW Modes 60 Amp (CW), 12 Volt High Power Laser Diode Driver Compact: 105 x 81 x 200mm RS-232 or USB, LabView Drivers Integrated QCW Pulse Generator: Pulse

More information

TRIUMF Kicker R&D and Other Possibilities

TRIUMF Kicker R&D and Other Possibilities TRIUMF Kicker R&D and Other Possibilities Tom Mattison University of British Columbia Cornell Damping Ring Workshop September 28, 2006 TRIUMF Kicker R&D TRIUMF in Vancouver has a kicker group that has

More information

Balanced Constant Current Excitation for RTD Sensor Measurements

Balanced Constant Current Excitation for RTD Sensor Measurements Balanced Constant Current Excitation for RTD Sensor Measurements Douglas R. Firth Alan R. Szary Precision Filters, Inc. Ithaca, New York (607) 277-3550 1 Balanced Constant Current Excitation for RTD Sensor

More information

Model Hz to 10MHz Precision Phasemeter. Operating Manual

Model Hz to 10MHz Precision Phasemeter. Operating Manual Model 6610 1Hz to 10MHz Precision Phasemeter Operating Manual Service and Warranty Krohn-Hite Instruments are designed and manufactured in accordance with sound engineering practices and should give long

More information

Kongsberg Mesotech Ltd.

Kongsberg Mesotech Ltd. Kongsberg Mesotech Ltd. Doc. No. : 974-00007904 Title : Digital Telemetry Notes elease : Version 1.4 Date : 2010-04-30 1. PUPOSE This document briefly describes the digital telemetry standards, formats

More information

Time Domain Reflectometer Example

Time Domain Reflectometer Example Time Domain Reflectometer Example This section presents differential and single-ended versions of a Time Domain Reflectometer (TDR). The setup demonstrates the process of analyzing both imdepance and delay.

More information

TBM - Tone Burst Measurement (CEA 2010)

TBM - Tone Burst Measurement (CEA 2010) TBM - Tone Burst Measurement (CEA 21) Software of the R&D and QC SYSTEM ( Document Revision 1.7) FEATURES CEA21 compliant measurement Variable burst cycles Flexible filtering for peak measurement Monitor

More information

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies Next Generation Curve Tracing & Measurement Tips for Power Device Kim Jeong Tae RF/uW Application Engineer Keysight Technologies Agenda Page 2 Conventional Analog Curve Tracer & Measurement Challenges

More information

Agilent AN 1310 Mobile Communications Device Testing

Agilent AN 1310 Mobile Communications Device Testing Agilent AN 1310 Mobile Communications Device Testing Application Note Considerations when selecting a System Power Supply for Mobile Communications Device Testing Abstract Pulsed battery drain currents,

More information

Agilent N1911A/N1912A P-Series Power Meters and N1921A/N1922A Wideband Power Sensors. Data sheet

Agilent N1911A/N1912A P-Series Power Meters and N1921A/N1922A Wideband Power Sensors. Data sheet Agilent N1911A/N191A P-Series Power Meters and N191A/N19A Wideband Power Sensors Data sheet Specification Definitions There are two types of product specifications: Warranted specifications are specifications

More information

Amptek sets the New State-of-the-Art... Again! with Cooled FET

Amptek sets the New State-of-the-Art... Again! with Cooled FET Amptek sets the New State-of-the-Art... Again! with Cooled FET RUN SILENT...RUN FAST...RUN COOL! Performance Noise: 670 ev FWHM (Si) ~76 electrons RMS Noise Slope: 11.5 ev/pf High Ciss FET Fast Rise Time:

More information

Notes on OR Data Math Function

Notes on OR Data Math Function A Notes on OR Data Math Function The ORDATA math function can accept as input either unequalized or already equalized data, and produce: RF (input): just a copy of the input waveform. Equalized: If the

More information

250 MHz CMOS Rail-to-Rail IO OpAmp: Structural Design Approach. Texas Instruments Inc.- Tucson (former Burr-Brown Inc.)

250 MHz CMOS Rail-to-Rail IO OpAmp: Structural Design Approach. Texas Instruments Inc.- Tucson (former Burr-Brown Inc.) 250 MHz CMOS Rail-to-Rail IO OpAmp: Structural Design Approach Vadim Ivanov Shilong Zhang Texas Instruments Inc.- Tucson (former Burr-Brown Inc.) Overview Basics of the structural design approach Amplifiers

More information

Optimizing Automatic Parametric Test (APT) in Mixed Signal / Mems foundry

Optimizing Automatic Parametric Test (APT) in Mixed Signal / Mems foundry Optimizing Automatic Parametric Test (APT) in Mixed Signal / Mems foundry Authors: Steffen Richter, Group Mgr PCM-Member Technical Staff, Xfab Silicon Foundries Alex Pronin, Ph.D, Lead Applications Engineer,

More information

Part VI: Requirements for ISDN Terminal Equipment

Part VI: Requirements for ISDN Terminal Equipment Issue 9 November 2004 Spectrum Management and Telecommunications Policy Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and Hearing

More information

Hello, and welcome to the Texas Instruments Precision overview of AC specifications for Precision DACs. In this presentation we will briefly cover

Hello, and welcome to the Texas Instruments Precision overview of AC specifications for Precision DACs. In this presentation we will briefly cover Hello, and welcome to the Texas Instruments Precision overview of AC specifications for Precision DACs. In this presentation we will briefly cover the three most important AC specifications of DACs: settling

More information

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr.

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr. INTEGRATED CIRCUITS Author: Lester J. Hadley, Jr. 1988 Dec Author: Lester J. Hadley, Jr. ABSTRACT The purpose of this paper is to demonstrate the use of integrated switched-mode controllers, generally

More information

Measurements 2: Network Analysis

Measurements 2: Network Analysis Measurements 2: Network Analysis Fritz Caspers CAS, Aarhus, June 2010 Contents Scalar network analysis Vector network analysis Early concepts Modern instrumentation Calibration methods Time domain (synthetic

More information

Multiple Instrument Station Module

Multiple Instrument Station Module Multiple Instrument Station Module Digital Storage Oscilloscope Vertical Channels Sampling rate Bandwidth Coupling Input impedance Vertical sensitivity Vertical resolution Max. input voltage Horizontal

More information

Amplifiers in systems

Amplifiers in systems Amplifiers in systems Amplification single gain stage rarely sufficient add gain to avoid external noise eg to transfer signals from detector practical designs depend on detailed requirements constraints

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Optically Coupled 20 ma Current Loop Receiver. Technical Data HCPL-4200

Optically Coupled 20 ma Current Loop Receiver. Technical Data HCPL-4200 H Optically Coupled 2 ma Loop Receiver Technical Data OPTOCOUPLERS HCPL-42 Features Data Output Compatible with LSTTL, TTL and CMOS 2 K Baud Data Rate at 14 Metres Line Length Guaranteed Performance over

More information

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE

ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE ADVANCED WAVEFORM GENERATION TECHNIQUES FOR ATE Christopher D. Ziomek Emily S. Jones ZTEC Instruments, Inc. 7715 Tiburon Street NE Albuquerque, NM 87109 Abstract Comprehensive waveform generation is an

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 16: CDRs Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Project descriptions are posted on the website Preliminary

More information

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016

Analog I/O. ECE 153B Sensor & Peripheral Interface Design Winter 2016 Analog I/O ECE 153B Sensor & Peripheral Interface Design Introduction Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog

More information

Anthony Chu. Basic Accelerometer types There are two classes of accelerometer in general: AC-response DC-response

Anthony Chu. Basic Accelerometer types There are two classes of accelerometer in general: AC-response DC-response Engineer s Circle Choosing the Right Type of Accelerometers Anthony Chu As with most engineering activities, choosing the right tool may have serious implications on the measurement results. The information

More information

The BYKIK pulser and its associated hardware will be mounted inside building 5 at SLAC. Prevailing ambient conditions are:

The BYKIK pulser and its associated hardware will be mounted inside building 5 at SLAC. Prevailing ambient conditions are: 1.0 Introduction The LCLS project requires one vertical kicker magnet (BYKIK) to be installed in the LTU beamline, 260 meters upbeam of the undulator. The magnet will function to abort undesired beam from

More information

Solving Connection Challenges in On-Wafer Power Semiconductor Device Test. Application Note Series. Introduction

Solving Connection Challenges in On-Wafer Power Semiconductor Device Test. Application Note Series. Introduction Number 3276 pplication Note Series Solving Connection Challenges in On-Wafer Power Semiconductor Device Test Introduction Measuring DC and capacitance parameters for high power semiconductor devices requires

More information

Where Safety Matters, Use The Latest Technology

Where Safety Matters, Use The Latest Technology Electromagnetic Safety Equipment Where Safety Matters, Use The Latest Technology 146 Electromagnetic radiation is becoming more of a safety concern to individuals as well as workers. Dedicated RF safety

More information

LM146/LM346 Programmable Quad Operational Amplifiers

LM146/LM346 Programmable Quad Operational Amplifiers LM146/LM346 Programmable Quad Operational Amplifiers General Description The LM146 series of quad op amps consists of four independent, high gain, internally compensated, low power, programmable amplifiers.

More information

HIGH TEMPERATURE AUTOMATIC CHARACTERIZATION SYSTEM FOR SEMICONDUCTOR DEVICES

HIGH TEMPERATURE AUTOMATIC CHARACTERIZATION SYSTEM FOR SEMICONDUCTOR DEVICES Annals of the Academy of Romanian Scientists Series on Science and Technology of Information ISSN 2066-8562 Volume 4, Number 2/2011 51 HIGH TEMPERATURE AUTOMATIC CHARACTERIZATION SYSTEM FOR SEMICONDUCTOR

More information

Obtaining Flat Test Port Power with the Agilent 8360 s User Flatness Correction Feature. Product Note

Obtaining Flat Test Port Power with the Agilent 8360 s User Flatness Correction Feature. Product Note Obtaining Flat Test Port Power with the Agilent 8360 s User Flatness Correction Feature Product Note 8360-2 Introduction The 8360 series synthesized sweepers provide extremely flat power at your test port,

More information

Hardware Inputs. Hardware Outputs. PC Connection. Software

Hardware Inputs. Hardware Outputs. PC Connection. Software Hardware Inputs Analog channels - 4,8,16,32 or 64 synchronized Resolution - 24-bit, ADC Voltage ranges - ±10, ±1 or ±0.1 VPK Filtering - Anti-aliasing analog filtering 160 db/oct digital filtering Coupling

More information

PN9000 PULSED CARRIER MEASUREMENTS

PN9000 PULSED CARRIER MEASUREMENTS The specialist of Phase noise Measurements PN9000 PULSED CARRIER MEASUREMENTS Carrier frequency: 2.7 GHz - PRF: 5 khz Duty cycle: 1% Page 1 / 12 Introduction When measuring a pulse modulated signal the

More information

Models 296 and 295 combine sophisticated

Models 296 and 295 combine sophisticated Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Models 296 and 295 50 MS/s Synthesized Multichannel Arbitrary Waveform Generators Up to 4 Independent Channels 10 Standard

More information

Section 1. Fundamentals of DDS Technology

Section 1. Fundamentals of DDS Technology Section 1. Fundamentals of DDS Technology Overview Direct digital synthesis (DDS) is a technique for using digital data processing blocks as a means to generate a frequency- and phase-tunable output signal

More information

High Speed, Low Power Dual Op Amp AD827

High Speed, Low Power Dual Op Amp AD827 a FEATURES HIGH SPEED 50 MHz Unity Gain Stable Operation 300 V/ s Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads EXCELLENT VIDEO PERFORMANCE 0.04% Differential Gain @ 4.4 MHz 0.19 Differential

More information

R&S SMB100N SIGNAL GENERATOR

R&S SMB100N SIGNAL GENERATOR R&S SMB100N SIGNAL GENERATOR PERFORMANCE SPECIFICATIONS VERSION 02.00, SEPTEMBER 2009 CONTENTS Specifications...3 Definitions... 3 RF performance... 4 Frequency... 4 Frequency sweep... 4 Reference frequency...

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

INSULATION / VOLTAGE WITHSTAND TEST INSTRUMENT SERIES

INSULATION / VOLTAGE WITHSTAND TEST INSTRUMENT SERIES 2001 INSULATION / VOLTAGE WITHSTAND TEST INSTRUMENT SERIES Safety Standards Measuring Instruments 3153 3159 3158 3154 ISO14001 JQA-E-90091 http://www.hioki.co.jp/ HIOKI company overview, new products,

More information

KH300 Wideband, High-Speed Operational Amplifier

KH300 Wideband, High-Speed Operational Amplifier Wideband, High-Speed Operational Amplifier Features -3dB bandwidth of 85MHz 00V/µsec slew rate 4ns rise and fall time 100mA output current Low distortion, linear phase Applications Digital communications

More information

PR-E 3 -SMA. Super Low Noise Preamplifier. - Datasheet -

PR-E 3 -SMA. Super Low Noise Preamplifier. - Datasheet - PR-E 3 -SMA Super Low Noise Preamplifier - Datasheet - Features: Low Voltage Noise (0.6nV/ Hz, @ 1MHz single channel mode) Low Current Noise (12fA/ Hz @ 10kHz) f = 0.5kHz to 4MHz, A = 250V/V (customizable)

More information

Low Power. Video Op Amp with Disable AD810 REV. A. Closed-Loop Gain and Phase vs. Frequency, G = +2, R L = 150, R F = 715 Ω

Low Power. Video Op Amp with Disable AD810 REV. A. Closed-Loop Gain and Phase vs. Frequency, G = +2, R L = 150, R F = 715 Ω CLOSED-LOOP db SHIFT Degrees DIFFERENTIAL % DIFFERENTIAL Degrees a FEATURES High Speed MHz Bandwidth ( db, G = +) MHz Bandwidth ( db, G = +) V/ s Slew Rate ns Settling Time to.% ( = V Step) Ideal for Video

More information

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec INTEGRATED CIRCUITS 1988 Dec DAC products are designed to convert a digital code to an analog signal. Since a common source of digital signals is the data bus of a microprocessor, DAC circuits that are

More information

SourceMeter Line. Series KEITHLEY (U.S. only) SMU INSTRUMENTS

SourceMeter Line. Series KEITHLEY (U.S. only)  SMU INSTRUMENTS Five instruments in one (IV Source, IVR Measure) Seven models: 20 100W DC, 1000W pulsed, 1100V to 1µV, 10A to 10pA Source and sink (4-quadrant) operation 0.012% basic measure accuracy with 6½-digit resolution

More information

User s Manual for Integrator Short Pulse ISP16 10JUN2016

User s Manual for Integrator Short Pulse ISP16 10JUN2016 User s Manual for Integrator Short Pulse ISP16 10JUN2016 Specifications Exceeding any of the Maximum Ratings and/or failing to follow any of the Warnings and/or Operating Instructions may result in damage

More information

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design

Dr Ian R. Manchester Dr Ian R. Manchester Amme 3500 : Root Locus Design Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Part VI: Requirements for Integrated Services Digital Network Terminal Equipment

Part VI: Requirements for Integrated Services Digital Network Terminal Equipment Issue 9, Amendment 1 September 2012 Spectrum Management and Telecommunications Compliance Specification for Terminal Equipment, Terminal Systems, Network Protection Devices, Connection Arrangements and

More information

SourceMeter Line. Series Tightly coupled precision sourcing and measurement KEITHLEY (U.S. only) SOURCE AND MEASURE

SourceMeter Line. Series Tightly coupled precision sourcing and measurement KEITHLEY (U.S. only)  SOURCE AND MEASURE Line Tightly coupled precision sourcing and measurement Family of products offers wide dynamic range: 10pA to 10A, 1µV to 1100V, 20W to 1000W 4-quadrant operation 0.012% basic accuracy with 5 1 2-digit

More information