Research Article A Current Transport Mechanism on the Surface of Pd-SiO 2 Mixture for Metal-Semiconductor-Metal GaAs Diodes

Size: px
Start display at page:

Download "Research Article A Current Transport Mechanism on the Surface of Pd-SiO 2 Mixture for Metal-Semiconductor-Metal GaAs Diodes"

Transcription

1 Advances in Materials Science and Engineering Volume 2013, Article ID , 4 pages Research Article A Current Transport Mechanism on the Surface of Pd-SiO 2 Mixture for Metal-Semiconductor-Metal GaAs Diodes Shih-Wei Tan and Shih-Wen Lai Department of Electrical Engineering, National Taiwan Ocean University, 2 Peining Road, Keelung 202, Taiwan Correspondence should be addressed to Shih-Wei Tan; tanshwei@mail.ntou.edu.tw Received 30 October 2012; Accepted 15 May 2013 Academic Editor: Markku Leskela Copyright 2013 S.-W. Tan and S.-W. Lai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper presents a current transport mechanism of Pd metal-semiconductor-metal (MSM) GaAs diodes with a Schottky contact material formed by intentionally mixing SiO 2 into a Pd metal. The Schottky emission process, where the thermionic emission both over the metal-semiconductor barrier and over the insulator-semiconductor barrier is considered on the carrier transport of a mixed contact of Pd and SiO 2 (MMO) MSM diodes, is analyzed. The image-force lowering is accounted for. In addition, with the applied voltage increased, the carrier recombination is thus considered. The simulation data are presented to explain the experimental results clearly. 1. Introduction Schottkycontactofmetalonsemiconductorisessentialto MESFETs, HEMTs, optical sensors, and gas sensors. Recently, hydrogen has been widely used in hydrogen-fueled vehicles, medical treatment, chemical industries, and semiconductor fabrication. However, hydrogen-containing gases are explosive. Therefore, developing of hydrogen sensors for realtime in situ detection is highly necessary. Previous studies have demonstrated numerous palladium and platinumbased hydrogen sensors [1 14]. Amongthese sensors, metalsemiconductor (MS) diodes have been addressed as one of the most promising devices [2 7]. Hydrogen sensors employing metal-oxide-semiconductor (MOS) diodes have also been extensively studied [8 10]. In addition, Chiu et al. [11 14] reported a new metal-semiconductor-metal (MSM) hydrogen sensor with two multifinger Schottky contacts. Unlike conventional MS and MOS diodes, a mixture of palladium and silicon dioxides (MMO) is deposited upon the semiconductor layer. Compared to commonly used MS andmossensors,themmomsmsensorsachieveexcellent performance of high sensitivity. However, the current-voltage (I-V) characteristics in this paper [14] represent the diode current of the sensor operated in N 2.Thereasonthatcauses the two-step I-V curve is interesting. 2. Device Structure and Fabrication The process started with mesa isolation. HCl was used to remove the native oxide on the 0.8 μm n-gaaslayer with cm 3 doping concentration after a device mesa. Two multifinger Schottky electrodes forming a metalsemiconductor-metal (MSM) diode were implemented by thermally depositing a 30 nm mixture of Pd and SiO 2 with a weight ratio of 3. The area of the multifinger electrode was A cm 2. Another MSM diode with a 30 nm Pd directly deposited upon the GaAs layer was also fabricated for comparison. Figure 1 showsthemsmdiodewithtwo multifinger Schottky contacts. 3. Results Discussion I-V characteristics of MSM diode with and without a mixture of Pd and SiO 2 are shown in Figure 2. Becausethequality of the epitaxial wafer and evaporative mixture is excellent and uniform, all curves are bidirectional and symmetrical. Unlike the lowest curve representing the current of Pd MSM diodes, the upper curve with the two-step I-V curve is the current of MMO MSM diodes. Obviously, the I-V curve is the same as the published paper [14]; therefore, to deposit a 30 nm mixture of Pd and SiO 2 upon the GaAs layer is repeatable.

2 2 Advances in Materials Science and Engineering V +V Figure 1: Schematic diagram of the MSM diodes with two multifinger Schottky contacts. Mixture of Pd and SiO 2 Semiconductor I Pd Simulation results Figure 2: Current-voltage characteristics for Pd-mixture-GaAs and Pd-GaAs MSM diodes. Inset diagram is the schematic view of mixture of Pd and SiO 2 deposited upon the semiconductor layer. To consider the Schottky emission process and the imageforce lowering, the current of Pd MSM diodes (I Pd )canbe expressed as [15, 16] I Pd =A A T 2 e q{φ B q/4πε S E m }/kt, (1) where E m = (2qN D /εs )(V n +φ B + (kt/q) + V), A = 9.6 A/k-cm 2, A cm 2, T = 300K, q = C, k = J/K, φ B =0.83eV,N d = cm 3, ε S = 10.8, ε S =12.9, V n =0.05V,and V =0Vto 5 V are the maximal electric field, the Richardson constant, contact area, absolute temperature, unit electronic charge, Boltzmann constant, barrier height, doping concentration, permittivity of GaAs near the Pd, permittivity of GaAs, Fermi potential from conduction-band edge, and applied voltage, respectively. Figure 2 shows the simulation of I Pd as a dot symbol. The results of simulation and experiment match each other.however,thecontentofthepdandsio 2 in mixture is uniform, and the thermionic emission over the metalsemiconductor barrier and the insulator-semiconductor barrier is responsible for carrier transport. Therefore, the current of the MMO MSM diodes is discussed according to two components. The first is the designed in consideration of the thermionic emission over the metal-semiconductor barrier; the second is the designed in consideration of the thermionic emission over the insulator-semiconductor barrier. The inset of Figure 2 shows the schematic view of the mixture of Pd and SiO 2 deposited upon the semiconductor layer. To discuss the thermionic emission over the metalsemiconductor barrier, substituting for E m from (1), can be obtained [15, 16] as follows: =A A Pd T 2 e q{φ B [(q 3 N d /8π 2 (ε S )2 ε S )(φ B V n (kt/q) V)] 0.25 }/kt, where A Pd cm 2 is the effective Pd-contact area. φ B =0.81eVisnotthesameasI Pd because MMO MSM diodes (2)

3 Advances in Materials Science and Engineering 3 αv V 0.25 (a) (b) αv 0.5 V 0.5 Figure 3: Current of Pd-mixture-GaAs MSM diodes as a function of (a) V 0.25 with and (b) V 0.5 with for comparison. E Fm qφ B E C E F E i Figure 4: Band diagram under a larger applied voltage. E V αqv/ηkt Simulation results (a) (b) Figure 5: Current as a function of applied voltage for Pd-mixture-GaAs MSM diodes with (a) and (b) simulation result for comparison. do not fabricate simultaneously with Pd MSM diodes. Other parameters are the same as I Pd.Particularly,A Pd is given by (3/D A Pd = Pd ) 2/3 A, (3) (3/D Pd ) 2/3 2/3 +(1/D ox ) where D Pd =12.023g/cm 3 and D ox =2.648g/cm 3 are the density of Pd and the density of SiO 2,respectively.Figure 3(a) shows the I-V curve with V 0.25.AcurveoflnI against V 0.25 represents a straight line from V 0.25 =0Vto0.58V,meaning that is dominant from V =0Vto0.12V. In the discussion of thermionic emission over the insulator-semiconductor barrier on,weobtain[15] =A A ox T 2 e q{φ B qv/4πε i d}/kt, (4) where d =30nm,ε i = 3.7, and A ox cm 2 are the thickness of mixture, the permittivity of mixture, and the effective oxide-contact area. Other parameters are the same as.particularly,a Pd is given by (1/D A Pd = ox ) 2/3 A. (5) (3/D Pd ) 2/3 2/3 +(1/D ox )

4 4 Advances in Materials Science and Engineering Figure 3(b) shows the I-V curve with V 0.5.Acurveof ln is proportional to V 0.5 from V 0.5 = 1.2 V to 1.9 V, meaning that is dominant from V = 1.4 V to 3.6 V. Furthermore, when a larger voltage is applied (>4 V), the bands bend even more downward so that the intrinsic level E i at the surface crosses over the Fermi level E F. Figure 4 shows the band diagram under a larger applied voltage. At this point, the number of holes (minority carriers) at the surface is larger than the number of the electrons (majority carrier), and thermionic emission of electrons is recombined by holes. The current ( )isproportionaltoqv/ηkt. can be expressed as [15] =S e qv/ηkt, (6) where S = Aisthesaturationcurrentof recombination and η = 8.1istheidealityfactor.Figure 5(a) shows the plot of ln against V, representing a straight line when the applied voltage is greater than 4 V. Figure 5(b) shows the summation of,,and as a dot symbol. The results of simulation and experiment match each other. 4. Conclusions This study examined the current transport mechanism for Pd MSM GaAs diodes with a new Schottky contact material formed by intentionally mixing SiO 2 into a Pd metal. A mechanism concept has successfully explained the influence of the mixed SiO 2 on the current for MMO MSM diodes under the applied voltage. The effectively simulated data for the Schottky emission process, image-force lowering, and carrier recombination clearly explain the experimental results. Acknowledgment ThisworkisfinanciallysupportedbytheNationalTaiwan Ocean University of the Republic of China under the contract nos. NTOU and 101B [6] A. Salehi, A. Nikfarjam, and D. J. Kalantari, Pd/porous-GaAs Schottky contact for hydrogen sensing application, Sensors and Actuators B,vol.113,no.1,pp ,2006. [7] C.Hung,T.Tsai,H.Chen,Y.Tsai,T.Chen,andW.Liu, Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET), Sensors and Actuators B, vol. 132, no. 2, pp , [8] C.W.Hung,K.W.Lin,R.C.Liuetal., Onthehydrogensensing properties of a Pd/GaAs transistor-type gas sensor in a nitrogen ambiance, Sensors and Actuators B, vol. 125, no. 1, pp , [9]T.H.Tsai,H.I.Chen,K.W.Linetal., Hydrogensensing characteristics of a Pd/AlGaN/GaN schottky diode, Applied Physics Express,vol.1,no.4,pp ,2008. [10] C. H. Huang, J. H. Tsai, T. M. Tsai et al., Hydrogen sensor with Pd nanoparticles upon an interfacial layer with oxygen, Applied Physics Express,vol.3,no.7,ArticleID075001,2010. [11] S. Y. Chiu, H. W. Huang, T. H. Huang et al., High-sensitivity metal-semiconductor-metal hydrogen sensors with a mixture of Pd and SiO 2 forming three-dimensional dipoles, IEEE Electron Device Letters,vol.29,no.12,pp ,2008. [12] S.Y.Chiu,H.W.Huang,K.C.Liangetal., GaNsensorswith metal-oxide mixture for sensing hydrogen-containing gases of ultralow concentration, Electronics Letters, vol. 45, no. 4, pp , [13] S. Y. Chiu, K. C. Liang, T. H. Huang et al., GaN Sensors with metal-oxide mixture for sensing hydrogen-containing gases of ultralow concentration, Japanese Applied Physics, vol. 48, no. 4, Article ID , [14] S. Chiu, J. Tsai, H. Huang et al., Integrated hydrogen-sensing amplifier with Schottky-type diode and InGaP-GaAs heterojunction bipolar transistor, IEEE Electron Device Letters, vol. 30, no. 9, pp , [15] S.M.SzeandK.K.Ng,Physics of Semiconductor Devices, 3rd ed,johnwiley&sons,newjersey,nj,usa,2007. [16] V. L. Rideout and C. R. Crowell, Effects of image force and tunneling on current transport in metal-semiconductor (Schottky barrier) contacts, Solid State Electronics, vol.13,no. 7, pp , References [1] T. Usagawa and Y. Kikuchi, Air-annealing effects for Pt/Ti Gate Si-metal-oxide-semiconductor field-effect transistors hydrogen gas sensor, Applied Physics Express, vol. 3, no. 4, ArticleID , [2] M. Eriksson and L. Ekedahl, Hydrogen adsorption states at the Pd/SiO 2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensor, Applied Physics,vol.83,no.8,pp ,1998. [3] I. Lundström, S. Shivaraman, C. Svensson, andl. Lundkvist, A hydrogen-sensitive MOS field-effect transistor, Applied Physics Letters,vol.26,no.2,pp.55 57,1975. [4] D. E. Aspnes and A. Heller, Barrier height and leakage reduction in n-gaas-platinum group metal Schottky barriers upon exposure to hydrogen, Vacuum Science and Technology B,vol.1,no.3,pp ,1983. [5] H. Y. Nie and Y. Nannichi, Pd-on-GaAs Schottky contact. Its barrier height and response to hydrogen, Japanese Applied Physics,vol.30,no.5,pp ,1991.

5 Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Research Article LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power Line for AMOLED Displays

Research Article LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power Line for AMOLED Displays Advances in Materials Science and Engineering Volume 1, Article ID 75, 5 pages doi:1.1155/1/75 Research Article LTPS-TFT Pixel Circuit Compensating for TFT Threshold Voltage Shift and IR-Drop on the Power

More information

Open Access. C.H. Ho 1, F.T. Chien 2, C.N. Liao 1 and Y.T. Tsai*,1

Open Access. C.H. Ho 1, F.T. Chien 2, C.N. Liao 1 and Y.T. Tsai*,1 56 The Open Electrical and Electronic Engineering Journal, 2008, 2, 56-61 Open Access Optimum Design for Eliminating Back Gate Bias Effect of Silicon-oninsulator Lateral Double Diffused Metal-oxide-semiconductor

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness

Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness MIT International Journal of Electronics and Communication Engineering, Vol. 4, No. 2, August 2014, pp. 81 85 81 Design Simulation and Analysis of NMOS Characteristics for Varying Oxide Thickness Alpana

More information

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi Prof. Jasprit Singh Fall 2001 EECS 320 Homework 10 This homework is due on December 6 Problem 1: An n-type In 0:53 Ga 0:47 As epitaxial layer doped at 10 16 cm ;3 is to be used as a channel in a FET. A

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Organic Electronics. Information: Information: 0331a/ 0442/

Organic Electronics. Information: Information:  0331a/ 0442/ Organic Electronics (Course Number 300442 ) Spring 2006 Organic Field Effect Transistors Instructor: Dr. Dietmar Knipp Information: Information: http://www.faculty.iubremen.de/course/c30 http://www.faculty.iubremen.de/course/c30

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination Current Transport: Diffusion, Thermionic Emission & Tunneling For Diffusion current, the depletion layer is

More information

Introduction to Electronic Devices

Introduction to Electronic Devices Introduction to Electronic Devices (Course Number 300331) Fall 2006 Field Effect Transistors (FETs) Dr. Dietmar Knipp Assistant Professor of Electrical Engineering Information: http://www.faculty.iubremen.de/dknipp/

More information

Vertical Surround-Gate Field-Effect Transistor

Vertical Surround-Gate Field-Effect Transistor Chapter 6 Vertical Surround-Gate Field-Effect Transistor The first step towards a technical realization of a nanowire logic element is the design and manufacturing of a nanowire transistor. In this respect,

More information

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.16, NO.2, APRIL, 2016 ISSN(Print) 1598-1657 http://dx.doi.org/10.5573/jsts.2016.16.2.221 ISSN(Online) 2233-4866 Normally-Off Operation of AlGaN/GaN

More information

Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices

Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices Universities Research Journal 2011, Vol. 4, No. 4 Investigation of Photovoltaic Properties of In:ZnO/SiO 2 /p- Si Thin Film Devices Kay Thi Soe 1, Moht Moht Than 2 and Win Win Thar 3 Abstract This study

More information

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS

CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS CHAPTER 9 CURRENT VOLTAGE CHARACTERISTICS 9.1 INTRODUCTION The phthalocyanines are a class of organic materials which are generally thermally stable and may be deposited as thin films by vacuum evaporation

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Introduction of Device Technology Digital wireless communication system has become more and more popular in recent years due to its capability for both voice and data communication.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements Erik C. Garnett 1, Yu-Chih Tseng 4, Devesh Khanal 2,3, Junqiao Wu 2,3, Jeffrey

More information

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor Supporting Information Vertical Graphene-Base Hot-Electron Transistor Caifu Zeng, Emil B. Song, Minsheng Wang, Sejoon Lee, Carlos M. Torres Jr., Jianshi Tang, Bruce H. Weiller, and Kang L. Wang Department

More information

Semiconductor Devices

Semiconductor Devices Semiconductor Devices Modelling and Technology Source Electrons Gate Holes Drain Insulator Nandita DasGupta Amitava DasGupta SEMICONDUCTOR DEVICES Modelling and Technology NANDITA DASGUPTA Professor Department

More information

Alternatives to standard MOSFETs. What problems are we really trying to solve?

Alternatives to standard MOSFETs. What problems are we really trying to solve? Alternatives to standard MOSFETs A number of alternative FET schemes have been proposed, with an eye toward scaling up to the 10 nm node. Modifications to the standard MOSFET include: Silicon-in-insulator

More information

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1 Topics What is semiconductor Basic semiconductor devices Basics of IC processing CMOS technologies 2006/9/27 2 1 What is Semiconductor

More information

Optical Fiber Communication Lecture 11 Detectors

Optical Fiber Communication Lecture 11 Detectors Optical Fiber Communication Lecture 11 Detectors Warriors of the Net Detector Technologies MSM (Metal Semiconductor Metal) PIN Layer Structure Semiinsulating GaAs Contact InGaAsP p 5x10 18 Absorption InGaAs

More information

Research Article Multifunctional Logic Gate by Means of Nanodot Array with Different Arrangements

Research Article Multifunctional Logic Gate by Means of Nanodot Array with Different Arrangements Nanomaterials Volume 2013, Article ID 702094, 7 pages http://dx.doi.org/10.1155/2013/702094 Research Article Multifunctional Logic Gate by Means of Nanodot Array with Different Arrangements Yasuo Takahashi,

More information

GaN power electronics

GaN power electronics GaN power electronics The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Lu, Bin, Daniel Piedra, and

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices

Digital Integrated Circuits A Design Perspective. The Devices. Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices The Diode The diodes are rarely explicitly used in modern integrated circuits However, a MOS transistor contains at least two reverse biased

More information

Gallium nitride (GaN)

Gallium nitride (GaN) 80 Technology focus: GaN power electronics Vertical, CMOS and dual-gate approaches to gallium nitride power electronics US research company HRL Laboratories has published a number of papers concerning

More information

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2

Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS2/h- BN/graphene heterostructures. a, c d Supplementary Figure 2 Supplementary Figure 1 Schematic illustration of fabrication procedure of MoS 2 /hon a 300- BN/graphene heterostructures. a, CVD-grown b, Graphene was patterned into graphene strips by oxygen monolayer

More information

3D SOI elements for System-on-Chip applications

3D SOI elements for System-on-Chip applications Advanced Materials Research Online: 2011-07-04 ISSN: 1662-8985, Vol. 276, pp 137-144 doi:10.4028/www.scientific.net/amr.276.137 2011 Trans Tech Publications, Switzerland 3D SOI elements for System-on-Chip

More information

Proposal of Novel Collector Structure for Thin-wafer IGBTs

Proposal of Novel Collector Structure for Thin-wafer IGBTs 12 Special Issue Recent R&D Activities of Power Devices for Hybrid ElectricVehicles Research Report Proposal of Novel Collector Structure for Thin-wafer IGBTs Takahide Sugiyama, Hiroyuki Ueda, Masayasu

More information

Research Article Responsivity Enhanced NMOSFET Photodetector Fabricated by Standard CMOS Technology

Research Article Responsivity Enhanced NMOSFET Photodetector Fabricated by Standard CMOS Technology Advances in Condensed Matter Physics Volume 2015, Article ID 639769, 5 pages http://dx.doi.org/10.1155/2015/639769 Research Article Responsivity Enhanced NMOSFET Photodetector Fabricated by Standard CMOS

More information

Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall. Effect Measurements. (Supporting Information)

Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall. Effect Measurements. (Supporting Information) Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall Effect Measurements (Supporting Information) Kaixiang Chen 1, Xiaolong Zhao 2, Abdelmadjid Mesli 3, Yongning He 2*

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34

CONTENTS. 2.2 Schrodinger's Wave Equation 31. PART I Semiconductor Material Properties. 2.3 Applications of Schrodinger's Wave Equation 34 CONTENTS Preface x Prologue Semiconductors and the Integrated Circuit xvii PART I Semiconductor Material Properties CHAPTER 1 The Crystal Structure of Solids 1 1.0 Preview 1 1.1 Semiconductor Materials

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/01/2007 MOSFETs Lecture 5 Announcements HW7 set is due now HW8 is assigned, but will not be collected/graded. MOSFET Technology Scaling Technology

More information

6.012 Microelectronic Devices and Circuits

6.012 Microelectronic Devices and Circuits Page 1 of 13 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Microelectronic Devices and Circuits Final Eam Closed Book: Formula sheet provided;

More information

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices Anri Nakajima Research Center for Nanodevices and Systems, Hiroshima University 1-4-2 Kagamiyama, Higashi-Hiroshima,

More information

ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET

ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET Shailly Garg 1, Prashant Mani Yadav 2 1 Student, SRM University 2 Assistant Professor, Department of Electronics and Communication,

More information

Low-field behaviour of source-gated transistors

Low-field behaviour of source-gated transistors Low-field behaviour of source-gated transistors J. M. Shannon, R. A. Sporea*, Member, IEEE, S. Georgakopoulos, M. Shkunov, Member, IEEE, and S. R. P. Silva Manuscript received February 5, 2013. The work

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials

Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Semiconductor Materials for Power Electronics (SEMPEL) GaN power electronics materials Kjeld Pedersen Department of Physics and Nanotechnology, AAU SEMPEL Semiconductor Materials for Power Electronics

More information

Physics of Waveguide Photodetectors with Integrated Amplification

Physics of Waveguide Photodetectors with Integrated Amplification Physics of Waveguide Photodetectors with Integrated Amplification J. Piprek, D. Lasaosa, D. Pasquariello, and J. E. Bowers Electrical and Computer Engineering Department University of California, Santa

More information

Chapter 2 : Semiconductor Materials & Devices (II) Feb

Chapter 2 : Semiconductor Materials & Devices (II) Feb Chapter 2 : Semiconductor Materials & Devices (II) 1 Reference 1. SemiconductorManufacturing Technology: Michael Quirk and Julian Serda (2001) 3. Microelectronic Circuits (5/e): Sedra & Smith (2004) 4.

More information

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015 Q.2 a. By using Norton s theorem, find the current in the load resistor R L for the circuit shown in Fig.1. (8) Fig.1 IETE 1 b. Explain Z parameters and also draw an equivalent circuit of the Z parameter

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

FABRICATION AND CHARACTERIZATION OF Cu/4H-SiC SCHOTTKY DIODES

FABRICATION AND CHARACTERIZATION OF Cu/4H-SiC SCHOTTKY DIODES Clemson University TigerPrints All Theses Theses 8-2007 FABRICATION AND CHARACTERIZATION OF Cu/4H-SiC SCHOTTKY DIODES Ruth Solomon Clemson University, rrsolom@gmail.com Follow this and additional works

More information

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 2: Basic MOS Physics. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 2: Basic MOS Physics Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last Lecture Semiconductor

More information

Tunneling Field Effect Transistors for Low Power ULSI

Tunneling Field Effect Transistors for Low Power ULSI Tunneling Field Effect Transistors for Low Power ULSI Byung-Gook Park Inter-university Semiconductor Research Center and School of Electrical and Computer Engineering Seoul National University Outline

More information

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array 69 64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array Roland Jäger and Christian Jung We have designed and fabricated

More information

3-7 Nano-Gate Transistor World s Fastest InP-HEMT

3-7 Nano-Gate Transistor World s Fastest InP-HEMT 3-7 Nano-Gate Transistor World s Fastest InP-HEMT SHINOHARA Keisuke and MATSUI Toshiaki InP-based InGaAs/InAlAs high electron mobility transistors (HEMTs) which can operate in the sub-millimeter-wave frequency

More information

Laboratory #5 BJT Basics and MOSFET Basics

Laboratory #5 BJT Basics and MOSFET Basics Laboratory #5 BJT Basics and MOSFET Basics I. Objectives 1. Understand the physical structure of BJTs and MOSFETs. 2. Learn to measure I-V characteristics of BJTs and MOSFETs. II. Components and Instruments

More information

CHAPTER 2 HEMT DEVICES AND BACKGROUND

CHAPTER 2 HEMT DEVICES AND BACKGROUND CHAPTER 2 HEMT DEVICES AND BACKGROUND 2.1 Overview While the most widespread application of GaN-based devices is in the fabrication of blue and UV LEDs, the fabrication of microwave power devices has attracted

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

Performance Evaluation of MISISFET- TCAD Simulation

Performance Evaluation of MISISFET- TCAD Simulation Performance Evaluation of MISISFET- TCAD Simulation Tarun Chaudhary Gargi Khanna Rajeevan Chandel ABSTRACT A novel device n-misisfet with a dielectric stack instead of the single insulator of n-mosfet

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing 1 Objectives Identify at least two semiconductor materials from the periodic table of elements List n-type and p-type dopants Describe a diode and

More information

EE 330 Lecture 19. Bipolar Devices

EE 330 Lecture 19. Bipolar Devices 330 Lecture 19 ipolar Devices Review from last lecture n-well n-well n- p- Review from last lecture Metal Mask A-A Section - Section Review from last lecture D A A D Review from last lecture Should now

More information

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen

Supporting Information. Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Supporting Information Air-stable surface charge transfer doping of MoS 2 by benzyl viologen Daisuke Kiriya,,ǁ, Mahmut Tosun,,ǁ, Peida Zhao,,ǁ, Jeong Seuk Kang, and Ali Javey,,ǁ,* Electrical Engineering

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/6/2007 MOSFETs Lecture 6 BJTs- Lecture 1 Reading Assignment: Chapter 10 More Scalable Device Structures Vertical Scaling is important. For example,

More information

Wide Band-Gap Power Device

Wide Band-Gap Power Device Wide Band-Gap Power Device 1 Contents Revisit silicon power MOSFETs Silicon limitation Silicon solution Wide Band-Gap material Characteristic of SiC Power Device Characteristic of GaN Power Device 2 1

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

General look back at MESFET processing. General principles of heterostructure use in FETs

General look back at MESFET processing. General principles of heterostructure use in FETs SMA5111 - Compound Semiconductors Lecture 11 - Heterojunction FETs - General HJFETs, HFETs Last items from Lec. 10 Depletion mode vs enhancement mode logic Complementary FET logic (none exists, or is likely

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design A ew SiGe Base Lateral PM Schottky Collector Bipolar Transistor on SOI for on Saturating VLSI Logic Design Abstract A novel bipolar transistor structure, namely, SiGe base lateral PM Schottky collector

More information

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801 Comparative study of self-aligned and nonself-aligned SiGe p-metal oxide semiconductor modulation-doped field effect transistors with nanometer gate lengths Wu Lu Department of Electrical and Computer

More information

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors-

Lesson 5. Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Lesson 5 Electronics: Semiconductors Doping p-n Junction Diode Half Wave and Full Wave Rectification Introduction to Transistors- Types and Connections Semiconductors Semiconductors If there are many free

More information

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT)

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT) Nov. 26, 2004 Outline I. Introduction: Why needs high-frequency devices? Why uses compound semiconductors? How to enable

More information

ADVANCED POWER RECTIFIER CONCEPTS

ADVANCED POWER RECTIFIER CONCEPTS ADVANCED POWER RECTIFIER CONCEPTS B. Jayant Baliga ADVANCED POWER RECTIFIER CONCEPTS B. Jayant Baliga Power Semiconductor Research Center North Carolina State University Raleigh, NC 27695-7924, USA bjbaliga@unity.ncsu.edu

More information

A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT

A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT A Gate Sinking Threshold Voltage Adjustment Technique for High Voltage GaN HEMT by WeiJia Zhang A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar)

Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) Y9.FS1.1: SiC Power Devices for SST Applications Project Leader: Faculty: Dr. Jayant Baliga Dr. Alex Huang Students: Yifan Jiang (Research Assistant) Siyang Liu (Visiting Scholar) 1. Project Goals (a)

More information

Lecture 18: Photodetectors

Lecture 18: Photodetectors Lecture 18: Photodetectors Contents 1 Introduction 1 2 Photodetector principle 2 3 Photoconductor 4 4 Photodiodes 6 4.1 Heterojunction photodiode.................... 8 4.2 Metal-semiconductor photodiode................

More information

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications Antennas and Propagation, Article ID 19579, pages http://dx.doi.org/1.1155/21/19579 Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications Chung-Hsiu Chiu, 1 Chun-Cheng

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process

EE 330 Lecture 16. Comparison of MOS Processes Bipolar Process 330 Lecture 16 omparison of MOS Processes ipolar Process Review from last lecture P-Select Mask p-diffusion p-diffusion A-A Section Note the gate is self aligned!! - Section Review from last lecture n-select

More information

Simulation of MOSFETs, BJTs and JFETs. At and Near the Pinch-off Region. Xuan Yang

Simulation of MOSFETs, BJTs and JFETs. At and Near the Pinch-off Region. Xuan Yang Simulation of MOSFETs, BJTs and JFETs At and Near the Pinch-off Region by Xuan Yang A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved November 2011

More information

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Microwave Science and Technology Volume 213, Article ID 8929, 4 pages http://dx.doi.org/1.11/213/8929 Research Article A Parallel-Strip Balun for Wideband Frequency Doubler Leung Chiu and Quan Xue Department

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage:

semiconductor p-n junction Potential difference across the depletion region is called the built-in potential barrier, or built-in voltage: Chapter four The Equilibrium pn Junction The Electric field will create a force that will stop the diffusion of carriers reaches thermal equilibrium condition Potential difference across the depletion

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

Three Terminal Devices

Three Terminal Devices Three Terminal Devices - field effect transistor (FET) - bipolar junction transistor (BJT) - foundation on which modern electronics is built - active devices - devices described completely by considering

More information

AlGaN/GaN High-Electron-Mobility Transistor Using a Trench Structure for High-Voltage Switching Applications

AlGaN/GaN High-Electron-Mobility Transistor Using a Trench Structure for High-Voltage Switching Applications Applied Physics Research; Vol. 4, No. 4; 212 ISSN 19169639 EISSN 19169647 Published by Canadian Center of Science and Education AlGaN/GaN HighElectronMobility Transistor Using a Trench Structure for HighVoltage

More information

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of

Supporting Information. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Supporting Information Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices Ping Hu, Mengyu Yan, Xuanpeng Wang, Chunhua Han,*

More information

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood

Lecture 2 p-n junction Diode characteristics. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 2 p-n junction Diode characteristics By Asst. Prof Dr. Jassim K. Hmood THE p-n JUNCTION DIODE The pn junction diode is formed by fabrication of a p-type semiconductor region in intimate

More information

Coherent Receivers Principles Downconversion

Coherent Receivers Principles Downconversion Coherent Receivers Principles Downconversion Heterodyne receivers mix signals of different frequency; if two such signals are added together, they beat against each other. The resulting signal contains

More information

Quantum Condensed Matter Physics Lecture 16

Quantum Condensed Matter Physics Lecture 16 Quantum Condensed Matter Physics Lecture 16 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 16.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

SILICON NANOWIRE HYBRID PHOTOVOLTAICS

SILICON NANOWIRE HYBRID PHOTOVOLTAICS SILICON NANOWIRE HYBRID PHOTOVOLTAICS Erik C. Garnett, Craig Peters, Mark Brongersma, Yi Cui and Mike McGehee Stanford Univeristy, Department of Materials Science, Stanford, CA, USA ABSTRACT Silicon nanowire

More information

Conference Paper Cantilever Beam Metal-Contact MEMS Switch

Conference Paper Cantilever Beam Metal-Contact MEMS Switch Conference Papers in Engineering Volume 2013, Article ID 265709, 4 pages http://dx.doi.org/10.1155/2013/265709 Conference Paper Cantilever Beam Metal-Contact MEMS Switch Adel Saad Emhemmed and Abdulmagid

More information

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions

4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions ELECTRONICS 4H-SiC V-Groove Trench MOSFETs with the Buried p + Regions Yu SAITOH*, Toru HIYOSHI, Keiji WADA, Takeyoshi MASUDA, Takashi TSUNO and Yasuki MIKAMURA ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

InGaP/InGaAs Doped-Channel Direct-Coupled Field-Effect Transistors Logic with Low Supply Voltage

InGaP/InGaAs Doped-Channel Direct-Coupled Field-Effect Transistors Logic with Low Supply Voltage InGaP/InGaAs Doped-Channel Direct-Coupled Field-Effect Transistors Logic with Low Supply Voltage Jung-Hui Tsai, Wen-Shiung Lour,Tzu-YenWeng +, Chien-Ming Li + Department of Electronic Engineering, National

More information

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs Microwave Science and Technology Volume 0, Article ID 98098, 9 pages doi:0.55/0/98098 Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs Suhair

More information

Analog Synaptic Behavior of a Silicon Nitride Memristor

Analog Synaptic Behavior of a Silicon Nitride Memristor Supporting Information Analog Synaptic Behavior of a Silicon Nitride Memristor Sungjun Kim, *, Hyungjin Kim, Sungmin Hwang, Min-Hwi Kim, Yao-Feng Chang,, and Byung-Gook Park *, Inter-university Semiconductor

More information

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) 3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) Pei W. Ding, Kristel Fobelets Department of Electrical Engineering, Imperial College London, U.K. J. E. Velazquez-Perez

More information

A Novel Technique for Suppression of Corner Effect in Square Gate All Around Mosfet

A Novel Technique for Suppression of Corner Effect in Square Gate All Around Mosfet Electrical and Electronic Engineering 01, (5): 336-341 DOI: 10.593/j.eee.01005.14 A Novel Technique for Suppression of Corner Effect in Square Gate All Around Mosfet Santanu Sharma *, Kabita Chaudhury

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

IV curves of different pixel cells

IV curves of different pixel cells IV curves of different pixel cells 6 5 100 µm pitch, 10µm gap 100 µm pitch, 50µm gap current [pa] 4 3 2 1 interface generation current volume generation current 0 0 50 100 150 200 250 bias voltage [V]

More information

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure

Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Enhancement Mode Single-gate and Double-gate Multi-channel GaN HEMT with Vertical Polarity Inversion Heterostructure Feng, P.; Teo,

More information