Size: px
Start display at page:

Download ""

Transcription

1 Department Of ECE III Year / V Semester EC 6512 COMMUNICATION SYSTEM LABORATORY LAB MANUAL

2 SYLLABUS EC6512 COMMUNICATION SYSTEMLABORATORY LIST OF EXPERIMENTS: CYCLE: 1 1. Signal Sampling and reconstruction 2. Time Division Multiplexing 3. AM Modulator and Demodulator 4. FM Modulator and Demodulator 5. Pulse Code Modulation and Demodulation 6. Delta Modulation and Demodulation CYCLE: 2 7. Observation (simulation) of signal constellations of BPSK, QPSK and QAM 8. Line coding schemes 9. FSK, PSK and DPSK schemes (Simulation) 10. Error control coding schemes - Linear Block Codes (Simulation) 11. Communication link simulation 12. Equalization Zero Forcing & LMS algorithms(simulation)

3 Exp-No: 1, 2 Date: SIGNAL SAMPLING AND RECONSTRUCTION AIM: To study the process of sampling and time division multiplexing of four signals using pulse amplitude modulation and De-modulation and to reconstruct the signals at the receiver using filters. APPARATUS REQUIRED: THEORY 1. Sampling and TDM Communication trainer kit: 2. Multi Output Power Supply. 3. Patch cords. 4. CRO (60MHz) The Sample and Hold circuit uses two buffers to keep a voltage level stored in a capacitor. Sample will charge the capacitor to the present signal level, while the input buffer ensures the signal won't be changed by the charging process. From there, the output buffer will make sure that the voltage level across the storage cap won't decrease over time. Sclear will short out the storage cap, discharging it and setting the output to 0V.In actual practice, the switches used are various forms of transistor switch, which provides cleaner switching and also allows another circuit to control the sample and clearing operations. Excellent Sample and Hold circuits like the LF398 are available on a single chip for cheap and easy use. Sample and Hold circuits are used internally in Analog to Digital conversion. We might also use them to hold a given signal value from any particular sensor on a robot, for analysis and later use. In TDM, by interleaving samples of several source waveforms in time, it is possible to transmit enough information to a receiver, via only one channel to recover all message waveforms. The conceptual implementation of the time multiplexing of N similar messages f n (t) where n= 1,2,3,..N is illustrated in fig 1. the time allocated to one sample of one message is called time slot. The time intervals over which all message signals are sampled atleast once is called a Frame. The portion of the time slot not used by the system may be allocated to other functions like signaling, monitoring, synchronization, etc.

4 The four channels CH0, CH1, CH2, and CH3 are multiplexed on a single line TXD with the aid of a electronic switch CD The CD 4016 latches one of the four inputs I0-I3 deping on the control inputs C0, C1, C2, C3 which are generated by a 2: 4 line decoder. The decoder, deping on the A0 and A1, which start from 00 to 11, generates 0000 to 0011 on the output lines Y0, Y1, Y2 and Y3. On receiving the control signals, the CD4016 latches the first information signal I0 on the first count In the next clock, the control inputs change their state to 0001 and the input II is latched to the output on the same line. Similarly, all the information signals are multiplexed without any interference on the line PROCEDURE: The sample and hold circuit is assembled with the desired components. The input signal is given to the circuit from the function generator. The amplitude of the input signal should not exceed 10 volts. The frequency of the input signal is set to 600 Hz. The frequency of the sample signal is set to 5600 Hz. The next sample available is zero order holding device, integrate the signal between consequence sampling inputs.

5

6 MODEL GRAPH FOR SAMPLING MODEL GRAPH FOR TDM RESULT Thus the sampling process was studied and the different types of signals are multiplexed using TDM Technique.

7 Exp-No:3 Date: AM MODULATION AND DEMODULATION AIM To transmit a modulating signal after amplitude modulation using AM transmitter and receive the signal back after demodulating using AM receiver. APPARATUS REQUIRED: 1. AM transmitter trainer kit 2. AM receiver trainer kit 3. CRO 4. Patch cards THEORY: AMPLITUDE MODULATION: Amplitude Modulation is a process by which amplitude of the carrier signal is varied in accordance with the instantaneous value of the modulating signal, but frequency and phase of carrier wave remains constant. The modulating and carrier signal are given by Where V m (t) = V m sin m t V C (t) = V C sin C t The modulation index is given by, m a = V m / V C. V m = V max V min and V C = V max + V min The amplitude of the modulated signal is given by, V AM (t) = V C (1+m a sin m t) sin C t V m = maximum amplitude of modulating signal V C = maximum amplitude of carrier signal V max = maximum variation of AM signal V min = minimum variation of AM signal

8 PROCEDURE: 1. The circuit wiring is done as shown in diagram 2. A modulating signal input given to the Amplitude modulator 3. Now increase the amplitude of the modulating signal to the required level. 4. The amplitude and the time duration of the modulating signal are observed using CRO. 5. Finally the amplitude modulated output is observed from the output of amplitude modulator stage and the amplitude and time duration of the AM wave are noted down. 6. Calculate the modulation index by using the formula and verify them. The final demodulated signal is viewed using an CRO at the output of audio power amplifier stage. Also the amplitude and time duration of the demodulated wave are noted down.

9

10

11 TABULATION: Waveform Amplitude (V) Time Period (msec) Frequency Message Carrier modulated Demodulated MODEL GRAPH Vm Message signal Vc Carrier signal time time AM signal Vmc time

12 RESULT Thus the AM signal was transmitted using AM trainer kit and the AM signal detected using AM detector kit.

13 Exp-No: 4 Date: FREQUENCY MODULATION AND DEMODULATION AIM To transmit a modulating signal after frequency modulation using FM transmitter and receive the signal back after demodulating using FM receiver. APPARATUS REQUIRED: THEORY: 1. FM transmitter trainer kit 2. FM receiver trainer kit 3. CRO 4. Patch cards Frequency modulation (FM) is a form of modulation that represents information as variations in the instantaneous frequency of a carrier wave. (Contrast this with amplitude modulation, in which the amplitude of the carrier is varied while its frequency remains constant.) In analog applications, the carrier frequency is varied in direct proportion to changes in the amplitude of an input signal. Shifting the carrier frequency among a set of discrete values can represent digital data, a technique known as frequency-shift keying. FM is commonly used at VHF radio frequencies for high-fidelity broadcasts of music and speech (see FM broadcasting). Normal (analog) TV sound is also broadcast using FM. A narrowband form is used for voice communications in commercial and amateur radio settings. The type of FM used in broadcast is generally called wide-fm, or W-FM. In two-way radio, narrowband narrow-fm (N-FM) is used to conserve bandwidth. In addition, it is used to s signals into space. FM is also used at intermediate frequencies by most analog VCR systems, including VHS, to record the luminance (black and white) portion of the video signal. FM is the only feasible method of recording video to and retrieving video from magnetic tape without extreme distortion, as video signals have a very large range of frequency components from a few hertz to several megahertz, too wide for equalizers to work with due to electronic noise below -60 db. FM also keeps the tape at saturation level, and therefore acts as a form of noise reduction, and a simple limiter can mask variations in the playback output, and the FM capture effect removes print-through and pre-echo. A continuous pilot-tone, if added to the signal as was done on V2000 and many Hi-band formats can keep mechanical jitter under control and assist time base correction.

14 PROCEDURE: 1. The circuit wiring is done as shown in diagram 2. A modulating signal input given to the Frequency modulator 3. Now increase the modulated signal to the required level. 4. The amplitude and the time duration of the modulating signal are observed using CRO. 5. Finally the frequency modulated output is observed from the output of frequency modulator stage and the amplitude and time duration of the FM wave are noted down.

15

16 MODEL GRAPH TABULATION: Message Carrier Waveform Amplitude (V) Time Period (msec) Frequency modulated Demodulated RESULT Thus the FM signal was transmitted using FM trainer kit and the FM signal detected using FM detector kit.

17 Exp-No: 5 Date: PULSE CODE MODULATION AIM To generate a PCM signal using PCM modulator and detect the message signal from PCM signal by using PCM demodulator. APPARATUS REQUIRED PCM kit, CRO and connecting probes THEORY Pulse code modulation is a process of converting an analog signal into digital. The voice or any data input is first sampled using a sampler (which is a simple switch) and then quantized. Quantization is the process of converting a given signal amplitude to an equivalent binary number with fixed number of bits. This quantization can be either midtread or mid-raise and it can be uniform or non-uniform based on the requirements. For example in speech signals, the higher amplitudes will be less frequent than the low amplitudes. So higher amplitudes are given less step size than the lower amplitudes and thus quantization is performed non-uniformly. After quantization the signal is digital and the bits are passed through a parallel to serial converter and then launched into the channel serially. At the demodulator the received bits are first converted into parallel frames and each frame is de-quantized to an equivalent analog value. This analog value is thus equivalent to a sampler output. This is the demodulated signal. In the kit this is implemented differently. The analog signal is passed trough a ADC (Analog to Digital Converter) and then the digital codeword is passed through a parallel to serial converter block. This is modulated PCM. This is taken by the Serial to Parallel converter and then through a DAC to get the demodulated signal. The clock is given to all these blocks for synchronization. The input signal can be either DC or AC according to the kit. The waveforms can be observed on a CRO for DC without problem. AC also can be observed but with poor resolution.

18 PROCEDURE 1. Power on the PCM kit. 2. Measure the frequency of sampling clock. 3. Apply the DC voltage as modulating signal. 4. Connect the DC input to the ADC and measure the voltage. 5. Connect the clock to the timing and control circuit. 6. Note the binary work from LED display. The serial data through the channel can be observed in the CRO. 7. Also observe the binary word at the receiver. 8. Now apply the AC modulating signal at the input. 9. Observe the waveform at the output of DAC. 10. Note the amplitude of the input voltage and the codeword. Also note the value of the output voltage. Show the codeword graphically for a DC input.

19

20 MODEL GRAPH: TABULAR COLUMN S.No Name of the signal Amplitude in V Time period in Sec Frequency in Hz 1 Modulating Signal 2 Carrier Signal 3 Modulated Signal 4 Demodulated Signal

21 RESULT Thus the PCM signal was generated using PCM modulator and the message signal was detected from PCM signal by using PCM demodulator.

22 Exp-No: 6 Date: DELTA MODULATION AIM To transmit an analog message signal in its digital form and again reconstruct back the original analog message signal at receiver by using Delta modulator. APPARATUS REQUIRED DM kit, CRO and connecting probes THEORY Delta modulation is the DPCM technique of converting an analog message signal to a digital sequence. The difference signal between two successive samples is encoded into a single bit code. The block and kit diagrams show the circuitry details of the modulation technique. A present sample of the analog signal m(t) is compared with a previous sample and the difference output is level shifted, i.e. a positive level (corresponding to bit 1) is given if difference is positive and negative level (corresponding to bit 0) if it is negative. The comparison of samples is accomplished by converting the digital to analog form and then comparing with the present sample. This is done using an Up counter and DAC as shown in block diagram. The delta modulated signal is given to up counter and then a DAC and the analog input is given to OPAMP and a LPF to obtain the demodulated output. PROCEDURE 1. Switch on the kit. Connect the clock signal and the modulating input signal to the modulator block. Observe the modulated signal in the CRO. 2. Connect the DM output to the demodulator circuit. Observe the demodulator output on the CRO. 3. Also observe the DAC output on the CRO. 4. Change the amplitude of the modulating signal and observe the DAC output. Notice the slope overload distortion. Keep the tuning knob so that the distortion is gone. Note this value of the amplitude. This is the minimum required value of the amplitude to overcome slope overload distortion. 1. Calculate the sampling frequency required for no slope overload distortion. Compare the calculated and measured values of the sampling frequency.

23

24 MODEL GRAPH TABULAR COLUMN S.No Name of the signal Amplitude in V Time period in Sec Frequency in Hz 1 Modulating Signal 2 Carrier Signal 3 Modulated Signal 4 Demodulated Signal RESULT Thus the analog message signal in its digital form was transmitted and again the original analog message signal was reconstructed at receiver by using Delta modulator and Demodulator.

25 Exp-No: 7 Date: OBSERVATION OF SIGNAL CONSTELLATIONS OF BPSK, QPSK AND QAM USING MATLAB AIM: To write a program in MATLAB for design of BPSK, QPSK and QAM. PROGRAM: QPSK clc clear all; close all; N=20; X=randint(1,N); L=100; l=(n/2*l*0.01)-0.01 i=1; for t=0:0.01:1 I(i)=cos(2*pi*t); i=i+1; i=1; for t=0:0.01:1 Q(i)=sin(2*pi*t); i=i+1; for i=1:n/2 if X((i-1)*2+1)==1 for j=((i-1)*l+1):(i*l) y(j)=1; QMI(j)=y(j)*I(j); else for j=((i-1)*l+1):(i*l) y(j)=-1; QMI(j)=y(j)*I(j);

26 k=((i-1)*2)+2; if X(k)==1 for j=((i-1)*l+1):(i*l) y(j)=1; QMQ(j)=y(j)*Q(j); else for j=((i-1)*l+1):(i*l) y(j)=-1; QMQ(j)=y(j)*Q(j); for i=1:(n/2*l) QP(i)=QMI(i)+QMQ(i); for i=1:(n/2*l) re1(i)=qp(i)*i(i); req(i)=qp(i)*q(i); k=1; for i=1:n/2 ri=0; rq=0; for j=((i-1)*l+1):(i*l) ri=ri+re(j); rq=rq+req(j); if ri>=0 real(i)=1; else real(i)=0; if rq>=0 imag(i)=1; else imag(i)=0; det(k)=real(i);

27 det(k+1)=imag(i); k=k+2; RESULT: Thus the FSK, PSK and DPSK was designed using MATLAB.

28 Exp-No: 8 Date: LINE CODING AIM : To study different line coding techniques. APPARATUS REQUIRED: 1. Communication trainer kit 2. Multi Output Power Supply. 3. Patch cords. 4. DSO/CRO THEORY: We need to represent PCM binary digits by electrical pulses in order to transmit them through a base band channel. The most commonly used PCM popular data formats are being realized here. Line coding refers to the process of representing the bit stream (1 s and 0 s) in the form of voltage or current variations optimally tuned for the specific properties of the physical channel being used. The selection of a proper line code can help in so many ways: One possibility is to aid in clock recovery at the receiver. A clock signal is recovered by observing transitions in the received bit sequence, and if enough transitions exist, a good recovery of the clock is guaranteed, and the signal is said to be self-clocking. Another advantage is to get rid of DC shifts. The DC component in a line code is called the bias or the DC coefficient. Unfortunately, most long-distance communication channels cannot transport a DC component. This is why most line codes try to eliminate the DC component before being transmitted on the channel.such codes are called DC balanced, zero-dc, zero-bias, or DC equalized.some common types of line encoding in common-use nowadays are unipolar, polar, bipolar, Manchester, MLT-3 and Duobinary encoding. These codes are explained here: 1. Unipolar (Unipolar NRZ and Unipolar RZ): Unipolar is the simplest line coding scheme possible. It has the advantage of being compatible with TTL logic. Unipolar coding uses a positive rectangular pulse p(t) to represent binary 1, and the absence of a pulse (i.e., zero voltage) to represent a binary 0. Two possibilities for the pulse p(t) exist3: Non-Return-to-Zero (NRZ) rectangular pulse and Return-to-Zero (RZ) rectangular pulse. The difference between Unipolar NRZ and Unipolar RZ codes is that the rectangular pulse in NRZ stays at a positive value (e.g., +5V) for the full duration of the logic 1 bit, while the pule in RZ drops from +5V to 0V in the middle of the bit time.

29 A drawback of unipolar (RZ and NRZ) is that its average value is not zero, which means it creates a significant DC-component at the receiver (see the impulse at zero frequency in the corresponding power spectral density (PSD) of this line code UNIPOLAR NRZ CODE The disadvantage of unipolar RZ compared to unipolar NRZ is that each rectangular pulse in RZ is only half the length of NRZ pulse. This means that unipolar RZ requires twice the bandwidth of the NRZ code. Polar (Polar NRZ and Polar RZ): In Polar NRZ line coding binary 1 s are represented by a pulse p(t) and binary 0 s are represented by the negative of this pulse -p(t) (e.g., -5V). Polar (NRZ and RZ) signals.using the assumption that in a regular bit stream a logic 0 is just as likely as a logic 1,polar signals (whether RZ or NRZ) have the advantage that the resulting Dccomponent is very close to zero.

30 The rms value of polar signals is bigger than unipolar signals, which means that polar signals have more power than unipolar signals, and hence have better SNR at the receiver. Actually, polar NRZ signals have more power compared to polar RZ signals. The drawback of polar NRZ, however, is that it lacks clock information especially when a long sequence of 0 s or 1 s is transmitted. Non-Return-to-Zero, Inverted (NRZI): NRZI is a variant of Polar NRZ. In NRZI there are two possible pulses, p(t) and p(t). A transition from one pulse to the other happens if the bit being transmitted is a logic 1, and no transition happens if the bit being transmitted is a logic 0. This is the code used on compact discs (CD), USB ports, and on fiber-based Fast Ethernet at 100-Mbit/s.

31 MANCHESTER ENCODING: In Manchester code each bit of data is signified by at least one transition. Manchester encoding is therefore considered to be self-clocking, which means that accurate clock recovery from a data stream is possible. In addition, the DC component of the encoded signal is zero. Although transitions allow the signal to be self-clocking, it carries significant overhead as there is a need for essentially twice the bandwidth of a simple NRZ or NRZI encoding POWER SPECTRA OF LINE CODES: Unipolar most of signal power is centered around origin and there is waste of power due to DC component that is present. Polar format most of signal power is centered around origin and they are simple to implement. Bipolar format does not have DC component and does not demand more bandwidth, but power requirement is double than other formats. Manchester format does not have DC component but provides proper clocking.

32 PROCEDURE 1. Connect the PRBS (test point P5) to various line coding formats. Obtain the coded output as per the requirement. 2. Connect coded signal test point to corresponding decoding test point as inputs. 3. Set the SW1 as per the requirement. 4. Set the potentiometer P1 in minimum position. 5. Switch ON the power supply. Press the switch SW2 once. 6. Display the encoded signal on one channel of CRO and decoded signal on second channel of CRO.

33 MODEL GRAPH: TABULAR COLUMN S.No Name of the signal Amplitude in V Time period in Sec Frequency in Hz 1 Modulating Signal 2 Carrier Signal 3 Modulated Signal 4 Demodulated Signal RESULT Thus the different line coding techniques was studied.

34 Exp-No: 9 Date: AIM: FSK, PSK and DPSK schemes USING MATLAB To write a program in MATLAB for design of FSK,PSK and DPSK. PROGRAM: FSK clc clear all close all N=10; x=randint(1,n); k=1; for t=0.01:0.01:10 c1(k)=sin(2*pi*t); c2(k)=sin(4*pi*t); k=k+1; for j=1:1:n; if x(j)==0 for i=(j-1)*100+1:1:j*100 y(i)=0; tr(i)=c2(i); if x(j)==1 for i=(j-1)*100+1:1:j*100 y(i)=1; tr(i)=c1(i); for i=1:1:1000 re(i)=tr(i)*c1(i)*c2(i); for j=1:1:n

35 d=0; for i=(j-1)*100+1:1:j*100 d=d+re(i); if d>0.5 det(j)=1; else det(j)=0; for j=1:1:n if det(j)==0 for i=(j-1)*100+1:1:j*100 det(i)=0; if x(j)==1 for i=(j-1)*100+1:1:j*100 det(i)=1; subplot(6,1,1); plot(y); title('message signal'); subplot(6,1,2); plot(c1); title('carrier Signal-1'); subplot(6,1,3); plot(c2); title('carrier Signal-2'); subplot(6,1,4); plot(tr); title('transmitted Signal'); subplot(6,1,5); plot(re); title('received Signal'); subplot(6,1,6); plot(det);

36 title('detected Signal');

37 PSK clc clear all; close all; N=10;%No.of Data x=randint(1,n); k=1; for t=0.01:0.01:10 c(k)=2*sin(2*pi*t); k=k+1; for j=1:1:n if x(j)==0 for i=(((j-1)*100)+1):1:(j*100) y(i)=0; tr(i)=-c(i); else for i=(((j-1)*100)+1):1:(j*100) y(i)=1; tr(i)=c(i); for i=1:1:1000 re(i)=tr(i)*c(i); for j=1:1:n d=0; for i=(((j-1)*100)+1):1:(j*100) d=d+re(i) if d>=0 det(j)=1; else det(j)=0; for j=1:1:n

38 if det(j)==0 for i=(((j-1)*100)+1):1:(j*100) det(i)=0; if x(j)==1 for i=(((j-1)*100)+1):1:(j*100) det(i)=1; subplot(5,1,1); plot(y); title('message Signal'); subplot(5,1,2); plot(c); title('carrier Signal'); subplot(5,1,3); plot(tr); title('transmitted Signal'); subplot(5,1,4); plot(re); title('received Signal'); subplot(5,1,5); plot(det); title('detected Signal'); RESULT: Thus the FSK, PSK and DPSK was designed using MATLAB.

39 Exp-No:10 Date: ERROR CONTROL CODING USING MATLAB AIM: To write a program in MATLAB for error control coding techniques. ALGORITHM: 1.Get the input binary sequcence. 2.Calculate the reundancy bits for the corrosponding code. 3.Transmit the signal that contains message bits+redundancy bits added at the. 4.Calculate the redundancy bits once again for the received bits. 5.If the redundancy bits= 0 then no error in the transmission otherwise some error in the transmission. PROGRAM: clc; clear all; close all; k=input('number of message bits'); n=input('number of coded bits'); P=[1 1 1;0 1 1;1 0 1;1 1 0] G=[eye(k) P] for i=1:2^k str=dec2base(i-1,2,4); for j=1:k m(i,j)=str(j);

40 for i=1:(2^k) for r=1:n o=0; for j=1:k o=o+(m(i,j)*g(j,r)); c(i,r)=mod(o,2); e=zeros(n,n) for i=1:n e(i,i)=1; % Syndrome Table H=[P' eye(n-k)]; H1=H'; for i=1:n for r=1:n-k o=0; for j=1:n o=o+(e(i,j)*h1(j,r)); er(i,r)=mod(o,2);

41 for i=1:n rec1=c(2^k,i)+e(1,i); rec(1,i)=mod(rec1,2); for i=1:1 for r=1:n-k o=0; for j=1:n o=o+(rec(i,j)*h1(j,r)); sy(i,r)=mod(o,2); i=1; j=1; while sy(1,j)==er(i,j)&&sy(1,j+1)==er(i,j+1)&&sy(1,j+2)==er(i,j+2) rec_er=e(i,:); i=i+1; rec_er %Error Corrected Message for i=1:n Det=rec(1,i)+rec_er(1,i); det_rec(1,i)=mod(det,2);

42 det_rec RESULT: Thus the error control coding techniques are executed using MATLAB programs.

Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai

Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai Dhanalakshmi College of Engineering Manimangalam, Tambaram, Chennai 601 301 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING V SEMESTER - R 2013 EC6512 COMMUNICATION SYSTEMS LABORATORY LABORATORY

More information

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE)

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE) Department of Electronics & Telecommunication Engg. LAB MANUAL SUBJECT:-DIGITAL COMMUNICATION SYSTEM [BTEC-501] B.Tech V Semester [2013-14] (Branch: ETE) KCT COLLEGE OF ENGG & TECH., FATEHGARH PUNJAB TECHNICAL

More information

BAPATLA ENGINEERING COLLEGE DIGITAL COMMUNICATIONS LAB EC-451. PREPARED BY S. Pallaviram, Lecturer

BAPATLA ENGINEERING COLLEGE DIGITAL COMMUNICATIONS LAB EC-451. PREPARED BY S. Pallaviram, Lecturer BAPATLA ENGINEERING COLLEGE DIGITAL COMMUNICATIONS LAB EC-451 PREPARED BY S. Pallaviram, Lecturer Department of Electronics and Communications Engineering Bapatla Engineering College (Affiliated to Acharya

More information

Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] (Branch: ECE)

Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] (Branch: ECE) Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION LABORATORY [ECE324] B.Tech Year 3 rd, Semester - 5 th (Branch: ECE) Version: 01 st August 2018 The LNM Institute

More information

DHANALAKSHMI COLLEGE OF ENGINEERING Tambaram, Chennai

DHANALAKSHMI COLLEGE OF ENGINEERING Tambaram, Chennai DHANALAKSHMI COLLEGE OF ENGINEERING Tambaram, Chennai 601 301 DEPARTMENT OF ELECTRONICS COMMUNICATION ENGINEERING V SEMESTER - R 2013 EC6512 COMMUNICATION SYSTEMS LABORATORY LABORATORY MANUAL Name : Register

More information

UNIT TEST I Digital Communication

UNIT TEST I Digital Communication Time: 1 Hour Class: T.E. I & II Max. Marks: 30 Q.1) (a) A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal B.W. to be 15 khz. (I) Find Nyquist rate. (II) If the Nyquist

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

DIGITAL COMMUNICATIONS LAB

DIGITAL COMMUNICATIONS LAB DIGITAL COMMUNICATIONS LAB List of Experiments: 1. PCM Generation and Detection. 2. Differential Pulse Code modulation. 3. Delta modulation. 4. Time Division Multiplexing of 2band Limited Signals. 5. Frequency

More information

Department of Electronics & Communication Engineering LAB MANUAL

Department of Electronics & Communication Engineering LAB MANUAL Department of Electronics & Communication Engineering LAB MANUAL SUBJECT: DIGITAL COMMUNICATION [06BEC201] B.Tech III Year VI Semester (Branch: ECE) BHAGWANT UNIVERSITY SIKAR ROAD, AJMER DIGITAL COMMUNICATION

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2017 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Types of Modulation

More information

Communication Systems Lab

Communication Systems Lab LAB MANUAL Communication Systems Lab (EE-226-F) Prepared by: Varun Sharma (Lab In-charge) Dayal C. Sati (Faculty In-charge) B R C M CET BAHAL DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING Page

More information

Class 4 ((Communication and Computer Networks))

Class 4 ((Communication and Computer Networks)) Class 4 ((Communication and Computer Networks)) Lesson 5... SIGNAL ENCODING TECHNIQUES Abstract Both analog and digital information can be encoded as either analog or digital signals. The particular encoding

More information

COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES

COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES COMPUTER COMMUNICATION AND NETWORKS ENCODING TECHNIQUES Encoding Coding is the process of embedding clocks into a given data stream and producing a signal that can be transmitted over a selected medium.

More information

SEN366 Computer Networks

SEN366 Computer Networks SEN366 Computer Networks Prof. Dr. Hasan Hüseyin BALIK (5 th Week) 5. Signal Encoding Techniques 5.Outline An overview of the basic methods of encoding digital data into a digital signal An overview of

More information

Time division multiplexing The block diagram for TDM is illustrated as shown in the figure

Time division multiplexing The block diagram for TDM is illustrated as shown in the figure CHAPTER 2 Syllabus: 1) Pulse amplitude modulation 2) TDM 3) Wave form coding techniques 4) PCM 5) Quantization noise and SNR 6) Robust quantization Pulse amplitude modulation In pulse amplitude modulation,

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

DIGITAL COMMUNICATION

DIGITAL COMMUNICATION DIGITAL COMMUNICATION TRAINING LAB Digital communication has emerged to augment or replace the conventional analog systems, which had been used widely a few decades back. Digital communication has demonstrated

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2016 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Part 05 Pulse Code

More information

BLOCK DIAGRAM: PULSE CODE MODULATION: FUNCTION GENERATOR CHECKER CIRCUIT DEMODULATED O/P TIMING

BLOCK DIAGRAM: PULSE CODE MODULATION:   FUNCTION GENERATOR CHECKER CIRCUIT DEMODULATED O/P TIMING BLOCK DIAGRAM: PULSE CODE MODULATION: FUNCTION GENERATOR CHECKER CIRCUIT DEMODULATED O/P TIMING LOGIC TIMING LOGIC PCM OUTPUT SAMPLE INPUT SIGNAL OUTPUT LOGIC LATCH DIGITAL TO ANALOG CONVERTER PAM O/P

More information

Communications I (ELCN 306)

Communications I (ELCN 306) Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

More information

PULSE CODE MODULATION (PCM)

PULSE CODE MODULATION (PCM) PULSE CODE MODULATION (PCM) 1. PCM quantization Techniques 2. PCM Transmission Bandwidth 3. PCM Coding Techniques 4. PCM Integrated Circuits 5. Advantages of PCM 6. Delta Modulation 7. Adaptive Delta Modulation

More information

Dharmapuri LAB MANUAL. Regulation : Branch : B.E. ECE 12- COMMUNICATION SYSTEMS LABORATORY EC6512

Dharmapuri LAB MANUAL. Regulation : Branch : B.E. ECE 12- COMMUNICATION SYSTEMS LABORATORY EC6512 Dharmapuri 636 703. LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. ECE : III Year / V Semester EC6512 12- COMMUNICATION SYSTEMS LABORATORY INTRODUCTION Exchanging information between two systems

More information

Sixth Semester B.E. Degree Examination, May/June 2010 Digital Communication Note: Answer any FIVEfull questions, selecting at least TWO questionsfrom each part. PART-A a. With a block diagram, explain

More information

CHAPTER 3 Syllabus (2006 scheme syllabus) Differential pulse code modulation DPCM transmitter

CHAPTER 3 Syllabus (2006 scheme syllabus) Differential pulse code modulation DPCM transmitter CHAPTER 3 Syllabus 1) DPCM 2) DM 3) Base band shaping for data tranmission 4) Discrete PAM signals 5) Power spectra of discrete PAM signal. 6) Applications (2006 scheme syllabus) Differential pulse code

More information

Data Communications and Networking (Module 2)

Data Communications and Networking (Module 2) Data Communications and Networking (Module 2) Chapter 5 Signal Encoding Techniques References: Book Chapter 5 Data and Computer Communications, 8th edition, by William Stallings 1 Outline Overview Encoding

More information

DEPARTMENT OF COMPUTER GCE@Bodi_ SCIENCE GCE@Bodi_ AND ENIGNEERING GCE@Bodi_ GCE@Bodi_ GCE@Bodi_ Analog and Digital Communication GCE@Bodi_ DEPARTMENT OF CsE Subject Name: Analog and Digital Communication

More information

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( ) CHAPTER 2 Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication (2170710) Syllabus Chapter-2.3 Modulation Techniques Reasons for Choosing Encoding Techniques Digital data,

More information

BINARY AMPLITUDE SHIFT KEYING

BINARY AMPLITUDE SHIFT KEYING BINARY AMPLITUDE SHIFT KEYING AIM: To set up a circuit to generate Binary Amplitude Shift keying and to plot the output waveforms. COMPONENTS AND EQUIPMENTS REQUIRED: IC CD4016, IC 7474, Resistors, Zener

More information

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks

Year : TYEJ Sub: Digital Communication (17535) Assignment No. 1. Introduction of Digital Communication. Question Exam Marks Assignment 1 Introduction of Digital Communication Sr. Question Exam Marks 1 Draw the block diagram of the basic digital communication system. State the function of each block in detail. W 2015 6 2 State

More information

Comm 502: Communication Theory. Lecture 4. Line Coding M-ary PCM-Delta Modulation

Comm 502: Communication Theory. Lecture 4. Line Coding M-ary PCM-Delta Modulation Comm 502: Communication Theory Lecture 4 Line Coding M-ary PCM-Delta Modulation PCM Decoder PCM Waveform Types (Line Coding) Representation of binary sequence into the electrical signals that enter the

More information

UNIT I Source Coding Systems

UNIT I Source Coding Systems SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: DC (16EC421) Year & Sem: III-B. Tech & II-Sem Course & Branch: B. Tech

More information

DIGITAL COMMINICATIONS

DIGITAL COMMINICATIONS Code No: R346 R Set No: III B.Tech. I Semester Regular and Supplementary Examinations, December - 23 DIGITAL COMMINICATIONS (Electronics and Communication Engineering) Time: 3 Hours Max Marks: 75 Answer

More information

Amplitude modulator trainer kit diagram

Amplitude modulator trainer kit diagram Amplitude modulator trainer kit diagram AM Detector trainer kit Diagram Calculations: Result: Pre lab test (20) Observation (20) Simulation (20) Remarks & Signature with Date Circuit connection (30) Result

More information

Engr M. Hadi Ali Khan B. Sc. Engg (AMU), MIETE (India), Ex-MIEEE (USA), Ex-MSSI (India)

Engr M. Hadi Ali Khan B. Sc. Engg (AMU), MIETE (India), Ex-MIEEE (USA), Ex-MSSI (India) Page 1 of 26 Department of Electronics Engineering, Communication Systems Laboratory Laboratory Manual for B. Tech. (Electronics), III Year (VI Semester) Lab Course EL 394 ( Communication Lab. II) List

More information

Signal Encoding Techniques

Signal Encoding Techniques 2 Techniques ITS323: to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

1 Analog and Digital Communication Lab

1 Analog and Digital Communication Lab 1 2 Amplitude modulator trainer kit diagram AM Detector trainer kit Diagram 3 4 Calculations: 5 Result: 6 7 8 Balanced modulator circuit diagram Generation of DSB-SC 1. For the same circuit apply the modulating

More information

Chapter 2: Fundamentals of Data and Signals

Chapter 2: Fundamentals of Data and Signals Chapter 2: Fundamentals of Data and Signals TRUE/FALSE 1. The terms data and signal mean the same thing. F PTS: 1 REF: 30 2. By convention, the minimum and maximum values of analog data and signals are

More information

CTD600 Communication Trainer kit

CTD600 Communication Trainer kit kit Digital RELATED PRODUCTS v Analog s v Optical Fibers s v Digital and Analog s v Communication Electronic Trainers v Function Generator and Power Supply v Multiple Signal Generator and 1 Line Code 2

More information

Signals and codes. Path and modulation

Signals and codes. Path and modulation Signals and codes Path and modulation Communication system The goal is to transfer a status message from source to destination. Signal quality is decreased by channel noise / interference Transferred message

More information

Pulse Code Modulation

Pulse Code Modulation Pulse Code Modulation Modulation is the process of varying one or more parameters of a carrier signal in accordance with the instantaneous values of the message signal. The message signal is the signal

More information

LATHA MATHAVAN ENGINEERING COLLEGE Alagarkovil, Madurai

LATHA MATHAVAN ENGINEERING COLLEGE Alagarkovil, Madurai UNIT I - SAMPLING & QUANTIZATION PART A 1. What is aliasing? (EC6501 June 2016) 2. What is Companding? Sketch the input-output characteristics of a compressor and an expander. (EC6501 June 2016) 3. An

More information

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued CSCD 433 Network Programming Fall 2016 Lecture 5 Physical Layer Continued 1 Topics Definitions Analog Transmission of Digital Data Digital Transmission of Analog Data Multiplexing 2 Different Types of

More information

Objectives. Presentation Outline. Digital Modulation Lecture 01

Objectives. Presentation Outline. Digital Modulation Lecture 01 Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold

QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold QUESTION BANK EC 1351 DIGITAL COMMUNICATION YEAR / SEM : III / VI UNIT I- PULSE MODULATION PART-A (2 Marks) 1. What is the purpose of sample and hold circuit 2. What is the difference between natural sampling

More information

EC6501 Digital Communication

EC6501 Digital Communication EC6501 Digital Communication UNIT -1 DIGITAL COMMUNICATION SYSTEMS Digital Communication system 1) Write the advantages and disadvantages of digital communication. [A/M 11] The advantages of digital communication

More information

2. By convention, the minimum and maximum values of analog data and signals are presented as voltages.

2. By convention, the minimum and maximum values of analog data and signals are presented as voltages. Chapter 2: Fundamentals of Data and Signals Data Communications and Computer Networks A Business Users Approach 8th Edition White TEST BANK Full clear download (no formatting errors) at: https://testbankreal.com/download/data-communications-computer-networksbusiness-users-approach-8th-edition-white-test-bank/

More information

Waveform Encoding - PCM. BY: Dr.AHMED ALKHAYYAT. Chapter Two

Waveform Encoding - PCM. BY: Dr.AHMED ALKHAYYAT. Chapter Two Chapter Two Layout: 1. Introduction. 2. Pulse Code Modulation (PCM). 3. Differential Pulse Code Modulation (DPCM). 4. Delta modulation. 5. Adaptive delta modulation. 6. Sigma Delta Modulation (SDM). 7.

More information

List of Experiments Exp.No. Title of the Experiment

List of Experiments Exp.No. Title of the Experiment List of Experiments Exp.No. Title of the Experiment Signal sampling and reconstruction 2 Amplitude modulation and demodulation 3 Frequency modulation and demodulation 4 Pulse code modulation and demodulation

More information

Digital Communication - Analog to Digital

Digital Communication - Analog to Digital Unit 26. Digital Communication Digital Communication - Analog to Digital The communication that occurs in our day-to-day life is in the form of signals. These signals, such as sound signals, generally,

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

Voice Transmission --Basic Concepts--

Voice Transmission --Basic Concepts-- Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Telephone Handset (has 2-parts) 2 1. Transmitter

More information

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued CSCD 433 Network Programming Fall 2016 Lecture 5 Physical Layer Continued 1 Topics Definitions Analog Transmission of Digital Data Digital Transmission of Analog Data Multiplexing 2 Different Types of

More information

C06a: Digital Modulation

C06a: Digital Modulation CISC 7332X T6 C06a: Digital Modulation Hui Chen Department of Computer & Information Science CUNY Brooklyn College 10/2/2018 CUNY Brooklyn College 1 Outline Digital modulation Baseband transmission Line

More information

AC LAB ECE-D ecestudy.wordpress.com

AC LAB ECE-D ecestudy.wordpress.com PART B EXPERIMENT NO: 1 AIM: PULSE AMPLITUDE MODULATION (PAM) & DEMODULATION DATE: To study Pulse Amplitude modulation and demodulation process with relevant waveforms. APPARATUS: 1. Pulse amplitude modulation

More information

DIGITAL COMMUNICATIONS

DIGITAL COMMUNICATIONS DIGITAL COMMUNICATIONS LAB MANUAL (STUDENT COPY) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING GUDLAVALLERU ENGINEERING COLLEGE SESHADRI RAO KNOWLEDGE VILLAGE::GUDLAVALLERU INDEX S.NO. NAME OF

More information

EE 460L University of Nevada, Las Vegas ECE Department

EE 460L University of Nevada, Las Vegas ECE Department EE 460L PREPARATION 1- ASK Amplitude shift keying - ASK - in the context of digital communications is a modulation process which imparts to a sinusoid two or more discrete amplitude levels. These are related

More information

Signal Encoding Techniques

Signal Encoding Techniques Signal Encoding Techniques Overview Have already noted previous chapters that both analog and digital information can be encoded as either analog or digital signals: Digital data, digital signals: simplest

More information

Digital Communication (650533) CH 3 Pulse Modulation

Digital Communication (650533) CH 3 Pulse Modulation Philadelphia University/Faculty of Engineering Communication and Electronics Engineering Digital Communication (650533) CH 3 Pulse Modulation Instructor: Eng. Nada Khatib Website: http://www.philadelphia.edu.jo/academics/nkhatib/

More information

Digital Communication

Digital Communication Digital Communication Laboratories bako@ieee.org DigiCom Labs There are 5 labs related to the digital communication. Study of the parameters of metal cables including: characteristic impendance, attenuation

More information

Introduction: Presence or absence of inherent error detection properties.

Introduction: Presence or absence of inherent error detection properties. Introduction: Binary data can be transmitted using a number of different types of pulses. The choice of a particular pair of pulses to represent the symbols 1 and 0 is called Line Coding and the choice

More information

EE 400L Communications. Laboratory Exercise #7 Digital Modulation

EE 400L Communications. Laboratory Exercise #7 Digital Modulation EE 400L Communications Laboratory Exercise #7 Digital Modulation Department of Electrical and Computer Engineering University of Nevada, at Las Vegas PREPARATION 1- ASK Amplitude shift keying - ASK - in

More information

UNIT III -- DATA AND PULSE COMMUNICATION PART-A 1. State the sampling theorem for band-limited signals of finite energy. If a finite energy signal g(t) contains no frequency higher than W Hz, it is completely

More information

28. What is meant by repetition rate of the AM envelope? (ADC,AU-2010) 29. Describe the upper and lower sidebands. (ADC, AU-2010) 30.

28. What is meant by repetition rate of the AM envelope? (ADC,AU-2010) 29. Describe the upper and lower sidebands. (ADC, AU-2010) 30. Institute of Road and Transport Technology, Erode Department of Electronics and Communication Engineering Class/Sem: 2 nd Year Information Technology-3rd Semester Subject: Principles of Communication (IT)

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

Datacommunication I. Layers of the OSI-model. Lecture 3. signal encoding, error detection/correction

Datacommunication I. Layers of the OSI-model. Lecture 3. signal encoding, error detection/correction Datacommunication I Lecture 3 signal encoding, error detection/correction Layers of the OSI-model repetition 1 The OSI-model and its networking devices repetition The OSI-model and its networking devices

More information

10 Speech and Audio Signals

10 Speech and Audio Signals 0 Speech and Audio Signals Introduction Speech and audio signals are normally converted into PCM, which can be stored or transmitted as a PCM code, or compressed to reduce the number of bits used to code

More information

Wireless Communications

Wireless Communications 2. Physical Layer DIN/CTC/UEM 2018 Periodic Signal Periodic signal: repeats itself in time, that is g(t) = g(t + T ) in which T (given in seconds [s]) is the period of the signal g(t) The number of cycles

More information

Communications and Signals Processing

Communications and Signals Processing Communications and Signals Processing Dr. Ahmed Masri Department of Communications An Najah National University 2012/2013 1 Dr. Ahmed Masri Chapter 5 - Outlines 5.4 Completing the Transition from Analog

More information

Lecture 2 Fiber Optical Communication Lecture 2, Slide 1

Lecture 2 Fiber Optical Communication Lecture 2, Slide 1 Lecture 2 General concepts Digital modulation in general Optical modulation Direct modulation External modulation Modulation formats Differential detection Coherent detection Fiber Optical Communication

More information

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter 5. Analog Transmission

College of information Technology Department of Information Networks Telecommunication & Networking I Chapter 5. Analog Transmission Analog Transmission 5.1 DIGITAL-TO-ANALOG CONVERSION Digital-to-analog conversion is the process of changing one of the characteristics of an analog signal based on the information in digital data. The

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

BSc (Hons) Computer Science with Network Security. Examinations for Semester 1

BSc (Hons) Computer Science with Network Security. Examinations for Semester 1 BSc (Hons) Computer Science with Network Security Cohort: BCNS/15B/FT Examinations for 2015-2016 Semester 1 MODULE: DATA COMMUNICATIONS MODULE CODE: CAN1101C Duration: 2 Hours Instructions to Candidates:

More information

The figures and the logic used for the MATLAB are given below.

The figures and the logic used for the MATLAB are given below. MATLAB FIGURES & PROGRAM LOGIC: Transmitter: The figures and the logic used for the MATLAB are given below. Binary Data Sequence: For our project we assume that we have the digital binary data stream.

More information

The HC-5560 Digital Line Transcoder

The HC-5560 Digital Line Transcoder TM The HC-5560 Digital Line Transcoder Application Note January 1997 AN573.l Introduction The Intersil HC-5560 digital line transcoder provides mode selectable, pseudo ternary line coding and decoding

More information

Amplitude Modulated Systems

Amplitude Modulated Systems Amplitude Modulated Systems Communication is process of establishing connection between two points for information exchange. Channel refers to medium through which message travels e.g. wires, links, or

More information

Communication System KL-910. Advanced Communication System

Communication System KL-910. Advanced Communication System KL-910 Advanced KL-910 is a modular trainer with various advanced communication s, including digital encoding/decoding, modulation/demodulation and related multiplexing techniques, developed for bridging

More information

ITM 1010 Computer and Communication Technologies

ITM 1010 Computer and Communication Technologies ITM 1010 Computer and Communication Technologies Lecture #14 Part II Introduction to Communication Technologies: Digital Signals: Digital modulation, channel sharing 2003 香港中文大學, 電子工程學系 (Prof. H.K.Tsang)

More information

Digital signal is denoted by discreet signal, which represents digital data.there are three types of line coding schemes available:

Digital signal is denoted by discreet signal, which represents digital data.there are three types of line coding schemes available: Digital-to-Digital Conversion This section explains how to convert digital data into digital signals. It can be done in two ways, line coding and block coding. For all communications, line coding is necessary

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Universitas Sumatera Utara

Universitas Sumatera Utara Amplitude Shift Keying & Frequency Shift Keying Aim: To generate and demodulate an amplitude shift keyed (ASK) signal and a binary FSK signal. Intro to Generation of ASK Amplitude shift keying - ASK -

More information

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION)

QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) QUESTION BANK (VI SEM ECE) (DIGITAL COMMUNICATION) UNIT-I: PCM & Delta modulation system Q.1 Explain the difference between cross talk & intersymbol interference. Q.2 What is Quantization error? How does

More information

Digital to Digital Encoding

Digital to Digital Encoding MODULATION AND ENCODING Data must be transformed into signals to send them from one place to another Conversion Schemes Digital-to-Digital Analog-to-Digital Digital-to-Analog Analog-to-Analog Digital to

More information

Basic Concepts in Data Transmission

Basic Concepts in Data Transmission Basic Concepts in Data Transmission EE450: Introduction to Computer Networks Professor A. Zahid A.Zahid-EE450 1 Data and Signals Data is an entity that convey information Analog Continuous values within

More information

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY

Syllabus. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 1 : INTRODUCTION TO DIGITAL COMMUNICATION CHAPTER - 3 : INFORMATION THEORY i Syllabus osmania university UNIT - I CHAPTER - 1 : INTRODUCTION TO Elements of Digital Communication System, Comparison of Digital and Analog Communication Systems. CHAPTER - 2 : DIGITAL TRANSMISSION

More information

Lecture 3 Concepts for the Data Communications and Computer Interconnection

Lecture 3 Concepts for the Data Communications and Computer Interconnection Lecture 3 Concepts for the Data Communications and Computer Interconnection Aim: overview of existing methods and techniques Terms used: -Data entities conveying meaning (of information) -Signals data

More information

Digital Transceiver using H-Ternary Line Coding Technique

Digital Transceiver using H-Ternary Line Coding Technique Digital Transceiver using H-Ternary Line Coding Technique Abstract In this paper Digital Transceiver using Hybrid Ternary Technique gives the details about digital transmitter and receiver with the design

More information

Panimalar Engineering College

Panimalar Engineering College PANIMALAR ENGINEERING COLLEGE (A CHRISTIAN MINORITY INSTITUTION) JAISAKTHI EDUCATIONAL TRUST ACCREDITED BY NATIONAL BOARD OF ACCREDITATION (NBA) Bangalore Trunk Road, Varadharajapuram, Nasarathpettai,

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

6. has units of bits/second. a. Throughput b. Propagation speed c. Propagation time d. (b)or(c)

6. has units of bits/second. a. Throughput b. Propagation speed c. Propagation time d. (b)or(c) King Saud University College of Computer and Information Sciences Information Technology Department First Semester 1436/1437 IT224: Networks 1 Sheet# 10 (chapter 3-4-5) Multiple-Choice Questions 1. Before

More information

University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016

University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016 University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2016 Title of Paper Course Number Time Allowed Instructions Digital Communication Systems

More information

EEE482F: Problem Set 1

EEE482F: Problem Set 1 EEE482F: Problem Set 1 1. A digital source emits 1.0 and 0.0V levels with a probability of 0.2 each, and +3.0 and +4.0V levels with a probability of 0.3 each. Evaluate the average information of the source.

More information

AMSEC/ECE

AMSEC/ECE EC6501 -DIGITAL COMMUNICATION UNIT-I SAMPLING & QUANTIZATION 1. Define Dirac comb or ideal sampling function. What is its Fourier Transform? Dirac comb is nothing but a periodic impulse train in which

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK. Subject Name: Digital Communication Techniques

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK. Subject Name: Digital Communication Techniques KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK Subject Code: EC1351 Year/Sem: III/IV Subject Name: Digital Communication Techniques UNIT I PULSE MODULATION

More information

Emona Telecoms-Trainer ETT-101

Emona Telecoms-Trainer ETT-101 EXPERIMENTS IN MODERN COMMUNICATIONS Emona Telecoms-Trainer ETT-101 Multi-Experiment Single Board Telecommunications Trainer for Technical College and Technical High School Students EMONA INSTRUMENTS www.ett101.com

More information

CODING TECHNIQUES FOR ANALOG SOURCES

CODING TECHNIQUES FOR ANALOG SOURCES CODING TECHNIQUES FOR ANALOG SOURCES Prof.Pratik Tawde Lecturer, Electronics and Telecommunication Department, Vidyalankar Polytechnic, Wadala (India) ABSTRACT Image Compression is a process of removing

More information