YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

Size: px
Start display at page:

Download "YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS"

Transcription

1 YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the sampling theorem; sampling and message reconstruction. Time division multiplex (TDM) and its recovery. Equipment: Twin Pulse Generator Module Audio Oscillator Module Master Signals Module Dual Analog Switch Module Multiplier Module Headphone Amplifier Module Integrate & Dump Module Oscilloscope General Information: Sampling is the first step of the transformation of an analog signal into a digital format. Before it is possible to transmit analog information via a digital system the analog signal must be first transformed into a digital format. Sampling can be made by two types of procedures. In natural sampling, a slice of the waveform is taken and thus, the shape of the top of each sample is the same as that of the message. In sampling with sample and hold, called also as flat top sampling, a slide of the waveform is taken but the top of the slice does not preserve the shape of the waveform. These two sampling types are compared in Figure 4.1. Figure 4. 1 Natural Sampling (above) and Flat Top Sampling (below) 1/12

2 The arrangement to take samples of a sinewave is shown in Figure 4.2 Figure 4. 2 Sampling a Sine Wave The natural sampling is shown in Figure 4.3 and the sampling by sample-and-hold is shown in Figure 4.4. Figure 4. 1 Natural Sampling Figure 4. 4 Sampling by Sample-and Hold 2/12

3 Mathematical Review of Sampling Using elementary trigonometry it is possible to derive an expression for the spectrum of the sampled signal. The sampled signal is; sampled signal y(t) = m(t). s(t) (4.1) where, m(t) = V. cosμt is the message signal as a single cosine wave applied to the input of a switch having the switching function s(t) which is shown in Figure 4.5 and is expressed analytically by the Fourier series expansion as; s(t) = a 0 + a 1 cos 1 ωt + a 2 cos 2 ωt + a 3 cos 3 ωt + (4.2) s(t) is a periodic function of period T = (2.π)/ω.sec. When s(t) has the value 1 the switch is closed, and when 0 the switch is open. Figure 4. 2 The Switching Function Expansion of s(t), using equations (4.1) and (4.2), shows it to be a series of DSBSC signals located on harmonics of the switching frequency ω, including the e zeroeth harmonic, which is at DC, or baseband. The magnitude of each of the coefficients ai will determine the amplitude of each DSBSC term. The frequency spectrum of this signal is illustrated in graphical form in Figure 4.6. Figure 4. 3 The Sampled Signal in the Frequency Domain Inspection of Figure 4.6 reveals that, provided ω 2µ, there will be no overlapping of the DSBSC, and, specifically, the message can be separated from the remaining spectral components by a low pass filter. This means that, if a signal is band limited, i.e., if its Fourier transform is zero outside a finite band of frequencies, and if the samples are taken sufficiently close together in relation to the highest frequency present in the signal, then the samples uniquely specify the signal, and we can reconstruct it perfectly. This result is known as the sampling theorem. This theorem also says that the slowest usable sampling rate is twice the highest message frequency (ω 2µ). 3/12

4 Reconstruction / Interpolation From Fourier series analysis, and the consideration of the nature of the sampled signal, it can be seen that the spectrum of the sampled signal will contain components at and around harmonics of the switching signal and the message itself. Thus, a low pass filter can be used to extract the message from the s samples. The reconstruction circuitry is illustrated in Figure 4.7. Figure 4. 4 Reconstruction Circuit If the reconstruction filter does not remove all of the unwanted components-specifically the lower sideband of the nearest DSBSC, then these will be added to the message. Thus, the unwanted DSBSC was derived from the original message. It will be a frequency inverted version of the message, shifted from its original position in the spectrum. The distortion introduced by these components, if present in the reconstructed message, is known as aliasing distortion. If message reconstructions by low pass filtering of natural samples results in no distortion, then there must be e distortion when flat top pulses are involved. The pulse width determines the amount of energy in each pulse, and so can determine the amplitude of the reconstructed message. But, in n a linear and noise free system, the width of the samples plays no part in determining the amount of distortion of a reconstructed message. Time Division Multiplex (TDM) In this experiment we will sample several messages, and their samples will be interlaced to form a composite, or Time Division Multiplexed TDM signal. In Figure 4.8 the composition of a 2-channel TDM signal is shown. If two messages were sampled, at the same rate but at slightly different times, then the two trains of samples could be added without mutual interaction. 4/12

5 Figure 4. 8 Composition of a 2-channel TDM At the transmitter, there are some conditions for producing TDM signal. Considering 2- channel TDM signal composition shown in Figure 4.8; the width of the samples is δt, and the time between samples is T. The sampling thus occurs at the rate (1/T) Hz. One sample from each channel is contained in a frame, and this is of length T seconds. In principle, for a given frame width T, any number of channels could be interleaved into a frame, provided the sample width δt was small enough. At the receiver, an arrangement to see how the samples from one or the other channel could be separated from the TDM signal is called a de-multiplexer. An example is illustrated in Figure 4.9, for doing this, it is provided that the timing information was available a knowledge of the frame period T and the sampling width δt. Figure 4. 9 TDM Demultiplexer Block Diagram 5/12

6 The switching function s(t) has a period T. It is aligned under the samples from the desire channel. The switch is closed during the time the samples from the desired channel are at its input. Consequently, at the switch output appear only the samples of the desired channel. From these the message can be reconstructed. To recover individual channels it is necessary to have a copy of the sampling clock. This is generally derived from the TDM signal itself. The TDM signal contains no explicit information to indicate the start of a frame. Channel identification is of course vital in a commercial system, but we can dispense it for this experiment. A PCM encoder is shown in Figure Here, samples are coded into binary digital words, and placed into frames of eight slots, each slot being of length equal to a bit clock period. Each frame contained a coded version of a flat top sample of an analog signal (obtained with a sample-and-hold operation), together with a frame synchronization bit. Figure PCM Encoder Timing Diagram If the contents of every alternate frame were removed from the serial data, then it would appear that the sampling rate had been halved. Then, the allowable bandwidth of the signal to be sampled would have been halved. The message could still be decoded if each alternate frame could be identified. Thus, the empty spaces in the data stream could be filled with frames derived by sampling another message. These would not interfere with frames of the first message. Thus, two messages could be contained in the one data stream. This is a Time Division Multiplexed Pulse Code Modulated (PCM TDM) signal. 6/12

7 Procedure: 1. Build the sampling system shown in Figure 4.2 for natural sampling. In order to generate the switching function in the figure use the TWIN PULSE GENERATOR module. Take the sampling frequency as khz. Observe the message signal and its sampled version on the oscilloscope and draw them on a scope sheet. 2. Recover the message signal by using the LPF output of the HEADPONE AMPLIFIER module which has the response of a 3 khz LPF. Draw the recovered signal on a scope sheet. 3. Change the frequency of the message signal within the full frequency range of the module used for message signal generation. Explain the significant changes, if any, on the reconstructed signal as the message frequency changes. 4. Observe the changes when the width of the switching pulses is changed. Comment on the results. 5. To realize flat top sampling, use the INTEGRATE & DUMP module. Draw the waveforms of the message signal and the sampled signals on a scope sheet. 6. Use the TUNABLE LPF module to recover the message signal. Turn the tune knob of the TUNABLE LPF within its full range and explain the significant changes, if any, on the reconstructed signal. 7. Use 2 khz sinusoidal signals to observe a 2-channel TDM signal on the oscilloscope and draw the waveform on a scope sheet. Take the sampling frequency as khz. 8. Change the time and the width of the samples of the input signals and draw again the waveforms on a scope sheet. 9. Build the circuit of Figure 4.9. Observe the resulting waveform on the oscilloscope and draw it on a scope sheet. 10. Pass the TDM signal through a LPF and observe the result on the oscilloscope. Draw the scheme on a scope sheet. 7/12

8 YEDITEPE UNIVERSITY DEPARTMENT of ELECTRICAL & ELECTRONICS ENGINEERING E X P E R I M E N T R E S U L T S H E E T Course: EE 354 Communication Systems Experiment : 3 Semester: 2016 Spring Group No Student No Group Information Date Student Name Lab. Instructor s Notes Student Signature SAMPLING & TIME DIVISION MULTIPLEX (TDM) PROCEDURE 1. Build the natural sampling system in Figure 4.2 (see Experiment Sheet). In order to generate the switching function in the Figure 4.2, use the TWIN PULSE GENERATOR and DUAL ANALOG SWITCH modules. Take the sampling frequency as khz. You can use AUDIO OSCILLATOR module as a message signal with a variable operation frequency. Select an appropriate message frequency to obey Nyquist Criteria! CHANNEL 1 (Message signal) CHANNEL 2 (Sampled signal) Message Signal at. Hz. Sampling Frequency at khz. 8/12

9 Comment: What are the maximum operation frequencies of the message signal to obey Nyquist Critea? Explain, briefly. PROCEDURE 2. Recover the message signal by using the LPF output of the HEADPHONE AMPLIFIER module which has the frequency response of a 3 khz LPF. Select an appropriate message frequency to obey Nyquist Criteria! CHANNEL 1 (Message signal) CHANNEL 2 (Recovered signal) Message Signal at. Hz. Sampling Frequency at khz. 9/12

10 PROCEDURE 3-4. Answer the following questions Comment: What do you observe, when you change the pulse width of the TWIN PULSE GENERATOR? Comment: What do you observe, when you change the message signal frequency? PROCEDURE 5-6. To realize flat top sampling, use the INTEGRATE & DUMP module. Take the sampling frequency as khz. You can use AUDIO OSCILLATOR module as a message signal with a variable operation frequency. CHANNEL 1 (Message signal) CHANNEL 2 (Sampled signal) Flat Top Sampling Message Signal sine at. Hz. 10/12

11 Message Recovery by Tunable LPF module! CHANNEL 1 (Message signal) CHANNEL 2 (Recovered signal) Message Signal at. Hz. 11/12

12 PROCEDURE 7-8. Use 2 khz sinusoidal signals to observe a 2-channel TDM signal on the oscilloscope and draw the waveform on a scope sheet. Take the sampling frequency as khz. 2-Channel TDM Signal CHANNEL 1 (Message signal) CHANNEL 2 (Sampled signal) Flat Top Sampling Message Signal at. Hz. Comment: What do you observe, when you change the time and the width of the samples of the input signals? 12/12

The Sampling Theorem:

The Sampling Theorem: The Sampling Theorem: Aim: Experimental verification of the sampling theorem; sampling and message reconstruction (interpolation). Experimental Procedure: Taking Samples: In the first part of the experiment

More information

Communications I (ELCN 306)

Communications I (ELCN 306) Communications I (ELCN 306) c Samy S. Soliman Electronics and Electrical Communications Engineering Department Cairo University, Egypt Email: samy.soliman@cu.edu.eg Website: http://scholar.cu.edu.eg/samysoliman

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

DSBSC GENERATION. PREPARATION definition of a DSBSC viewing envelopes multi-tone message... 37

DSBSC GENERATION. PREPARATION definition of a DSBSC viewing envelopes multi-tone message... 37 DSBSC GENERATION PREPARATION... 34 definition of a DSBSC... 34 block diagram...36 viewing envelopes... 36 multi-tone message... 37 linear modulation...38 spectrum analysis... 38 EXPERIMENT... 38 the MULTIPLIER...

More information

CME312- LAB Manual DSB-SC Modulation and Demodulation Experiment 6. Experiment 6. Experiment. DSB-SC Modulation and Demodulation

CME312- LAB Manual DSB-SC Modulation and Demodulation Experiment 6. Experiment 6. Experiment. DSB-SC Modulation and Demodulation Experiment 6 Experiment DSB-SC Modulation and Demodulation Objectives : By the end of this experiment, the student should be able to: 1. Demonstrate the modulation and demodulation process of DSB-SC. 2.

More information

EXPERIMENT WISE VIVA QUESTIONS

EXPERIMENT WISE VIVA QUESTIONS EXPERIMENT WISE VIVA QUESTIONS Pulse Code Modulation: 1. Draw the block diagram of basic digital communication system. How it is different from analog communication system. 2. What are the advantages of

More information

EE 460L University of Nevada, Las Vegas ECE Department

EE 460L University of Nevada, Las Vegas ECE Department EE 460L PREPARATION 1- ASK Amplitude shift keying - ASK - in the context of digital communications is a modulation process which imparts to a sinusoid two or more discrete amplitude levels. These are related

More information

PRODUCT DEMODULATION - SYNCHRONOUS & ASYNCHRONOUS

PRODUCT DEMODULATION - SYNCHRONOUS & ASYNCHRONOUS PRODUCT DEMODULATION - SYNCHRONOUS & ASYNCHRONOUS INTRODUCTION...98 frequency translation...98 the process...98 interpretation...99 the demodulator...100 synchronous operation: ω 0 = ω 1...100 carrier

More information

UNIT TEST I Digital Communication

UNIT TEST I Digital Communication Time: 1 Hour Class: T.E. I & II Max. Marks: 30 Q.1) (a) A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal B.W. to be 15 khz. (I) Find Nyquist rate. (II) If the Nyquist

More information

EE 400L Communications. Laboratory Exercise #7 Digital Modulation

EE 400L Communications. Laboratory Exercise #7 Digital Modulation EE 400L Communications Laboratory Exercise #7 Digital Modulation Department of Electrical and Computer Engineering University of Nevada, at Las Vegas PREPARATION 1- ASK Amplitude shift keying - ASK - in

More information

Communication Systems Lab

Communication Systems Lab LAB MANUAL Communication Systems Lab (EE-226-F) Prepared by: Varun Sharma (Lab In-charge) Dayal C. Sati (Faculty In-charge) B R C M CET BAHAL DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING Page

More information

German Jordanian University Department of Communication Engineering Digital Communication Systems Lab. CME 313-Lab

German Jordanian University Department of Communication Engineering Digital Communication Systems Lab. CME 313-Lab German Jordanian University Department of Communication Engineering Digital Communication Systems Lab CME 313-Lab Experiment 1 Sampling Theorem Eng. Anas Alashqar Dr. Ala' Khalifeh 1 Experiment 1 Objectives:

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2016 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Part 05 Pulse Code

More information

INTRODUCTION TO COMMUNICATION SYSTEMS LABORATORY IV. Binary Pulse Amplitude Modulation and Pulse Code Modulation

INTRODUCTION TO COMMUNICATION SYSTEMS LABORATORY IV. Binary Pulse Amplitude Modulation and Pulse Code Modulation INTRODUCTION TO COMMUNICATION SYSTEMS Introduction: LABORATORY IV Binary Pulse Amplitude Modulation and Pulse Code Modulation In this lab we will explore some of the elementary characteristics of binary

More information

Pulse Code Modulation (PCM)

Pulse Code Modulation (PCM) Project Title: e-laboratories for Physics and Engineering Education Tempus Project: contract # 517102-TEMPUS-1-2011-1-SE-TEMPUS-JPCR 1. Experiment Category: Electrical Engineering >> Communications 2.

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 1 INTRODUCTION TO THE EMONA SIGEX BOARD FOR NI ELVIS OBJECTIVES The purpose of this experiment is

More information

CME 312-Lab Communication Systems Laboratory

CME 312-Lab Communication Systems Laboratory Objective: By the end of this experiment, the student should be able to: 1. Demonstrate the Modulation and Demodulation of the AM. 2. Observe the relation between modulation index and AM signal envelope.

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE)

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE) Department of Electronics & Telecommunication Engg. LAB MANUAL SUBJECT:-DIGITAL COMMUNICATION SYSTEM [BTEC-501] B.Tech V Semester [2013-14] (Branch: ETE) KCT COLLEGE OF ENGG & TECH., FATEHGARH PUNJAB TECHNICAL

More information

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued CSCD 433 Network Programming Fall 2016 Lecture 5 Physical Layer Continued 1 Topics Definitions Analog Transmission of Digital Data Digital Transmission of Analog Data Multiplexing 2 Different Types of

More information

Multiplexing Concepts and Introduction to BISDN. Professor Richard Harris

Multiplexing Concepts and Introduction to BISDN. Professor Richard Harris Multiplexing Concepts and Introduction to BISDN Professor Richard Harris Objectives Define what is meant by multiplexing and demultiplexing Identify the main types of multiplexing Space Division Time Division

More information

Understanding Digital Communication Principles.

Understanding Digital Communication Principles. s Understanding Digital Communication Principles Scientech TechBooks are compact and user friendly learning platforms to provide a modern, portable, comprehensive and practical way to learn Technology.

More information

UNIT III -- DATA AND PULSE COMMUNICATION PART-A 1. State the sampling theorem for band-limited signals of finite energy. If a finite energy signal g(t) contains no frequency higher than W Hz, it is completely

More information

Emona Telecoms-Trainer ETT-101

Emona Telecoms-Trainer ETT-101 EXPERIMENTS IN MODERN COMMUNICATIONS Emona Telecoms-Trainer ETT-101 Multi-Experiment Single Board Telecommunications Trainer for Technical College and Technical High School Students EMONA INSTRUMENTS www.ett101.com

More information

EEE 309 Communication Theory

EEE 309 Communication Theory EEE 309 Communication Theory Semester: January 2017 Dr. Md. Farhad Hossain Associate Professor Department of EEE, BUET Email: mfarhadhossain@eee.buet.ac.bd Office: ECE 331, ECE Building Types of Modulation

More information

ANALOGUE AND DIGITAL COMMUNICATION

ANALOGUE AND DIGITAL COMMUNICATION ANALOGUE AND DIGITAL COMMUNICATION Syed M. Zafi S. Shah Umair M. Qureshi Lecture xxx: Analogue to Digital Conversion Topics Pulse Modulation Systems Advantages & Disadvantages Pulse Code Modulation Pulse

More information

Pulse-Width Modulation (PWM)

Pulse-Width Modulation (PWM) Pulse-Width Modulation (PWM) Modules: Integrate & Dump, Digital Utilities, Wideband True RMS Meter, Tuneable LPF, Audio Oscillator, Multiplier, Utilities, Noise Generator, Speech, Headphones. 0 Pre-Laboratory

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued CSCD 433 Network Programming Fall 2016 Lecture 5 Physical Layer Continued 1 Topics Definitions Analog Transmission of Digital Data Digital Transmission of Analog Data Multiplexing 2 Different Types of

More information

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM)

ELEC3242 Communications Engineering Laboratory Amplitude Modulation (AM) ELEC3242 Communications Engineering Laboratory 1 ---- Amplitude Modulation (AM) 1. Objectives 1.1 Through this the laboratory experiment, you will investigate demodulation of an amplitude modulated (AM)

More information

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication

SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication SIGNALS AND SYSTEMS LABORATORY 13: Digital Communication INTRODUCTION Digital Communication refers to the transmission of binary, or digital, information over analog channels. In this laboratory you will

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

DIGITAL COMMUNICATION

DIGITAL COMMUNICATION DIGITAL COMMUNICATION TRAINING LAB Digital communication has emerged to augment or replace the conventional analog systems, which had been used widely a few decades back. Digital communication has demonstrated

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

CHAPTER 4. PULSE MODULATION Part 2

CHAPTER 4. PULSE MODULATION Part 2 CHAPTER 4 PULSE MODULATION Part 2 Pulse Modulation Analog pulse modulation: Sampling, i.e., information is transmitted only at discrete time instants. e.g. PAM, PPM and PDM Digital pulse modulation: Sampling

More information

Linear Time-Invariant Systems

Linear Time-Invariant Systems Linear Time-Invariant Systems Modules: Wideband True RMS Meter, Audio Oscillator, Utilities, Digital Utilities, Twin Pulse Generator, Tuneable LPF, 100-kHz Channel Filters, Phase Shifter, Quadrature Phase

More information

Waveform Encoding - PCM. BY: Dr.AHMED ALKHAYYAT. Chapter Two

Waveform Encoding - PCM. BY: Dr.AHMED ALKHAYYAT. Chapter Two Chapter Two Layout: 1. Introduction. 2. Pulse Code Modulation (PCM). 3. Differential Pulse Code Modulation (DPCM). 4. Delta modulation. 5. Adaptive delta modulation. 6. Sigma Delta Modulation (SDM). 7.

More information

ADVANCED EXPERIMENTS IN MODERN COMMUNICATIONS

ADVANCED EXPERIMENTS IN MODERN COMMUNICATIONS ADVANCED EXPERIMENTS IN MODERN COMMUNICATIONS NEW FIBER OPTICS KIT New Generation Single-Board Telecoms Experimenter for Advanced Experiments Emona ETT-101 BiSKIT Multi-Experiment Telecommunications &

More information

10 Speech and Audio Signals

10 Speech and Audio Signals 0 Speech and Audio Signals Introduction Speech and audio signals are normally converted into PCM, which can be stored or transmitted as a PCM code, or compressed to reduce the number of bits used to code

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

Part I - Amplitude Modulation

Part I - Amplitude Modulation EE/CME 392 Laboratory 1-1 Part I - Amplitude Modulation Safety: In this lab, voltages are less than 15 volts and this is not normally dangerous to humans. However, you should assemble or modify a circuit

More information

Time division multiplexing The block diagram for TDM is illustrated as shown in the figure

Time division multiplexing The block diagram for TDM is illustrated as shown in the figure CHAPTER 2 Syllabus: 1) Pulse amplitude modulation 2) TDM 3) Wave form coding techniques 4) PCM 5) Quantization noise and SNR 6) Robust quantization Pulse amplitude modulation In pulse amplitude modulation,

More information

INTRODUCTION TO MODELLING WITH TIMS

INTRODUCTION TO MODELLING WITH TIMS INTRODUCTION TO MODELLING WITH TIMS model building...2 why have patching diagrams?...2 organization of experiments...3 who is running this experiment?...3 early experiments...4 modulation...4 messages...4

More information

DIGITAL COMMUNICATIONS LAB

DIGITAL COMMUNICATIONS LAB DIGITAL COMMUNICATIONS LAB List of Experiments: 1. PCM Generation and Detection. 2. Differential Pulse Code modulation. 3. Delta modulation. 4. Time Division Multiplexing of 2band Limited Signals. 5. Frequency

More information

In this lecture. System Model Power Penalty Analog transmission Digital transmission

In this lecture. System Model Power Penalty Analog transmission Digital transmission System Model Power Penalty Analog transmission Digital transmission In this lecture Analog Data Transmission vs. Digital Data Transmission Analog to Digital (A/D) Conversion Digital to Analog (D/A) Conversion

More information

Amplitude Modulated Systems

Amplitude Modulated Systems Amplitude Modulated Systems Communication is process of establishing connection between two points for information exchange. Channel refers to medium through which message travels e.g. wires, links, or

More information

Universitas Sumatera Utara

Universitas Sumatera Utara Amplitude Shift Keying & Frequency Shift Keying Aim: To generate and demodulate an amplitude shift keyed (ASK) signal and a binary FSK signal. Intro to Generation of ASK Amplitude shift keying - ASK -

More information

Appendix B. Design Implementation Description For The Digital Frequency Demodulator

Appendix B. Design Implementation Description For The Digital Frequency Demodulator Appendix B Design Implementation Description For The Digital Frequency Demodulator The DFD design implementation is divided into four sections: 1. Analog front end to signal condition and digitize the

More information

Experiment # (3) PCM Modulator

Experiment # (3) PCM Modulator Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (3) PCM Modulator Digital Communications Lab. Prepared by: Eng. Mohammed K. Abu Foul Experiment Objectives: 1. To understand

More information

Signals and Systems. Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI

Signals and Systems. Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI Signals and Systems Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Continuous time versus discrete time Continuous time

More information

CS311: Data Communication. Transmission of Analog Signal - I

CS311: Data Communication. Transmission of Analog Signal - I CS311: Data Communication Transmission of Analog Signal - I by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

A Complete Set of Experiments for Communication Classes

A Complete Set of Experiments for Communication Classes A Complete Set of Experiments for Communication Classes Firas Hassan Ohio Northern University, Ada, OH 45810 f-hassan@onu.edu Abstract In this paper, a set of module based hands-on experiments that cover

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 UNIT I SAMPLING AND QUANTIZATION Pulse Modulation 1. Explain in detail the generation of PWM and PPM signals (16) (M/J 2011) 2. Explain in detail the concept of PWM and PAM (16) (N/D 2012) 3. What is the

More information

Communications IB Paper 6 Handout 3: Digitisation and Digital Signals

Communications IB Paper 6 Handout 3: Digitisation and Digital Signals Communications IB Paper 6 Handout 3: Digitisation and Digital Signals Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk Lent

More information

Charan Langton, Editor

Charan Langton, Editor Charan Langton, Editor SIGNAL PROCESSING & SIMULATION NEWSLETTER Baseband, Passband Signals and Amplitude Modulation The most salient feature of information signals is that they are generally low frequency.

More information

ITM 1010 Computer and Communication Technologies

ITM 1010 Computer and Communication Technologies ITM 1010 Computer and Communication Technologies Lecture #14 Part II Introduction to Communication Technologies: Digital Signals: Digital modulation, channel sharing 2003 香港中文大學, 電子工程學系 (Prof. H.K.Tsang)

More information

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission:

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission: Data Transmission The successful transmission of data depends upon two factors: The quality of the transmission signal The characteristics of the transmission medium Some type of transmission medium is

More information

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier

Costas Loop. Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier Costas Loop Modules: Sequence Generator, Digital Utilities, VCO, Quadrature Utilities (2), Phase Shifter, Tuneable LPF (2), Multiplier 0 Pre-Laboratory Reading Phase-shift keying that employs two discrete

More information

Sampling and Signal Processing

Sampling and Signal Processing Sampling and Signal Processing Sampling Methods Sampling is most commonly done with two devices, the sample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquires a continuous-time signal

More information

Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan

Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan Emona 101 Trainer SAMPLE Lab Manual Volumes 1 and 2 Experiments in Modern Analog & Digital Telecommunications Barry Duncan Emona 101 Trainer SAMPLE Lab Manual Volumes 1 and 2 Experiments in Modern Analog

More information

ECE 2111 Signals and Systems Spring 2012, UMD Experiment 9: Sampling

ECE 2111 Signals and Systems Spring 2012, UMD Experiment 9: Sampling ECE 2111 Signals and Systems Spring 2012, UMD Experiment 9: Sampling Objective: In this experiment the properties and limitations of the sampling theorem are investigated. A specific sampling circuit will

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

Experiment 19 Binary Phase Shift Keying

Experiment 19 Binary Phase Shift Keying Experiment 19 Binary Phase Shift Keying Preliminary discussion Experiments 17 and 18 show that the AM and FM modulation schemes can be used to transmit digital signals and this allows for the channel to

More information

A Low-Cost Programmable Arbitrary Function Generator for Educational Environment

A Low-Cost Programmable Arbitrary Function Generator for Educational Environment Paper ID #5740 A Low-Cost Programmable Arbitrary Function Generator for Educational Environment Mr. Mani Dargahi Fadaei, Azad University Mani Dargahi Fadaei received B.S. in electrical engineering from

More information

Pulse Code Modulation

Pulse Code Modulation Pulse Code Modulation Modulation is the process of varying one or more parameters of a carrier signal in accordance with the instantaneous values of the message signal. The message signal is the signal

More information

EXAMINATION FOR THE DEGREE OF B.E. Semester 1 June COMMUNICATIONS IV (ELEC ENG 4035)

EXAMINATION FOR THE DEGREE OF B.E. Semester 1 June COMMUNICATIONS IV (ELEC ENG 4035) EXAMINATION FOR THE DEGREE OF B.E. Semester 1 June 2007 101902 COMMUNICATIONS IV (ELEC ENG 4035) Official Reading Time: Writing Time: Total Duration: 10 mins 120 mins 130 mins Instructions: This is a closed

More information

German Jordanian University Department of Communication Engineering Digital Communication Systems Lab. CME 313-Lab

German Jordanian University Department of Communication Engineering Digital Communication Systems Lab. CME 313-Lab German Jordanian University Department of Communication Engineering Digital Communication Systems Lab CME 313-Lab Experiment 7 Binary Frequency-shift keying (BPSK) Eng. Anas Al-ashqar Dr. Ala' Khalifeh

More information

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal University of Saskatchewan EE 9 Electrical Engineering Laboratory III Amplitude and Frequency Modulation Objectives: To observe the time domain waveforms and spectra of amplitude modulated (AM) waveforms

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

AMPLITUDE MODULATION

AMPLITUDE MODULATION AMPLITUDE MODULATION PREPARATION...2 theory...3 depth of modulation...4 measurement of m... 5 spectrum... 5 other message shapes.... 5 other generation methods...6 EXPERIMENT...7 aligning the model...7

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2

ECE 556 BASICS OF DIGITAL SPEECH PROCESSING. Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 ECE 556 BASICS OF DIGITAL SPEECH PROCESSING Assıst.Prof.Dr. Selma ÖZAYDIN Spring Term-2017 Lecture 2 Analog Sound to Digital Sound Characteristics of Sound Amplitude Wavelength (w) Frequency ( ) Timbre

More information

DEPARTMENT OF CSE QUESTION BANK

DEPARTMENT OF CSE QUESTION BANK DEPARTMENT OF CSE QUESTION BANK SUBJECT CODE: CS6304 SUBJECT NAME: ANALOG AND DIGITAL COMMUNICATION Part-A UNIT-I ANALOG COMMUNICATION 1.Define modulation? Modulation is a process by which some characteristics

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2005 Unit: Day and Time: Time Allowed: ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. Total Number of Questions:

More information

The figures and the logic used for the MATLAB are given below.

The figures and the logic used for the MATLAB are given below. MATLAB FIGURES & PROGRAM LOGIC: Transmitter: The figures and the logic used for the MATLAB are given below. Binary Data Sequence: For our project we assume that we have the digital binary data stream.

More information

DATA INTEGRATION MULTICARRIER REFLECTOMETRY SENSORS

DATA INTEGRATION MULTICARRIER REFLECTOMETRY SENSORS Report for ECE 4910 Senior Project Design DATA INTEGRATION IN MULTICARRIER REFLECTOMETRY SENSORS Prepared by Afshin Edrissi Date: Apr 7, 2006 1-1 ABSTRACT Afshin Edrissi (Cynthia Furse), Department of

More information

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION

TE 302 DISCRETE SIGNALS AND SYSTEMS. Chapter 1: INTRODUCTION TE 302 DISCRETE SIGNALS AND SYSTEMS Study on the behavior and processing of information bearing functions as they are currently used in human communication and the systems involved. Chapter 1: INTRODUCTION

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

AC : DEVELOPING DIGITAL/ANALOG TELECOMMUNICA- TION LABORATORY

AC : DEVELOPING DIGITAL/ANALOG TELECOMMUNICA- TION LABORATORY AC 2011-2119: DEVELOPING DIGITAL/ANALOG TELECOMMUNICA- TION LABORATORY Dr. Yuhong Zhang, Texas Southern University Yuhong Zhang is an assistant professor at Texas Southern University Xuemin Chen, Texas

More information

Introduction. In the frequency domain, complex signals are separated into their frequency components, and the level at each frequency is displayed

Introduction. In the frequency domain, complex signals are separated into their frequency components, and the level at each frequency is displayed SPECTRUM ANALYZER Introduction A spectrum analyzer measures the amplitude of an input signal versus frequency within the full frequency range of the instrument The spectrum analyzer is to the frequency

More information

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications Lecture 6: Amplitude Modulation II EE 3770: Communication Systems AM Limitations AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Lecture 6 Amplitude Modulation II Amplitude modulation is

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

CARRIER ACQUISITION AND THE PLL

CARRIER ACQUISITION AND THE PLL CARRIER ACQUISITION AND THE PLL PREPARATION... 22 carrier acquisition methods... 22 bandpass filter...22 the phase locked loop (PLL)....23 squaring...24 squarer plus PLL...26 the Costas loop...26 EXPERIMENT...

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

UNIT-1. Basic signal processing operations in digital communication

UNIT-1. Basic signal processing operations in digital communication UNIT-1 Lecture-1 Basic signal processing operations in digital communication The three basic elements of every communication systems are Transmitter, Receiver and Channel. The Overall purpose of this system

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

More information

Amplitude Modulation II

Amplitude Modulation II Lecture 6: Amplitude Modulation II EE 3770: Communication Systems Lecture 6 Amplitude Modulation II AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Multiplexing Mojtaba Vaezi 6-1 Contents

More information

6. has units of bits/second. a. Throughput b. Propagation speed c. Propagation time d. (b)or(c)

6. has units of bits/second. a. Throughput b. Propagation speed c. Propagation time d. (b)or(c) King Saud University College of Computer and Information Sciences Information Technology Department First Semester 1436/1437 IT224: Networks 1 Sheet# 10 (chapter 3-4-5) Multiple-Choice Questions 1. Before

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation

Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation Experiment No. 2 Pre-Lab Signal Mixing and Amplitude Modulation Read the information presented in this pre-lab and answer the questions given. Submit the answers to your lab instructor before the experimental

More information

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Contents Slide 1 Single-Sideband Modulation Slide 2 SSB by DSBSC-AM and Filtering Slide 3 SSB by DSBSC-AM and Filtering (cont.) Slide

More information

Class 4 ((Communication and Computer Networks))

Class 4 ((Communication and Computer Networks)) Class 4 ((Communication and Computer Networks)) Lesson 5... SIGNAL ENCODING TECHNIQUES Abstract Both analog and digital information can be encoded as either analog or digital signals. The particular encoding

More information

Text Book: Simon Haykin & Michael Moher,

Text Book: Simon Haykin & Michael Moher, Qassim University College of Engineering Electrical Engineering Department Electronics and Communications Course: EE322 Digital Communications Prerequisite: EE320 Text Book: Simon Haykin & Michael Moher,

More information

Signal Characteristics

Signal Characteristics Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium

More information

Chapter-1: Introduction

Chapter-1: Introduction Chapter-1: Introduction The purpose of a Communication System is to transport an information bearing signal from a source to a user destination via a communication channel. MODEL OF A COMMUNICATION SYSTEM

More information

Encoding and Framing

Encoding and Framing Encoding and Framing EECS 489 Computer Networks http://www.eecs.umich.edu/~zmao/eecs489 Z. Morley Mao Tuesday Nov 2, 2004 Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica 1 Questions

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier

Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier Twelve voice signals, each band-limited to 3 khz, are frequency -multiplexed using 1 khz guard bands between channels and between the main carrier and the first channel. The modulation of the main carrier

More information

Amplitude Modulation. Ahmad Bilal

Amplitude Modulation. Ahmad Bilal Amplitude Modulation Ahmad Bilal 5-2 ANALOG AND DIGITAL Analog-to-analog conversion is the representation of analog information by an analog signal. Topics discussed in this section: Amplitude Modulation

More information