A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS

Size: px
Start display at page:

Download "A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS"

Transcription

1 A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS Masum Hossain & Anthony Chan Carusone Electrical & Computer Engineering University of Toronto

2 Outline Applications g m -Boosting for bandwidth enhancement Differential pre-amplifier employing passive g m -boosting Full front end amplifier Conclusions A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 2

3 Applications AC-coupled receiver front end: Serial link receiver front end: A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 3

4 Pre-amp Topology Distributed Amplifier High bandwidth Large area High power consumption Difficult to achieve constant group delay Cascode Amplifier Low power High VDD due to stacked transistors Bandwidth limited by node capacitances A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 4

5 Standard CMOS Cascode 3 time constants of simple cascode: τ = R r ( ) C out L 0 OUT C + C + C + 2C C τ cascode = = g g GS2 DB1 SB2 GD1 X m2 m2 τ input = RinCin A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 5

6 g m -Boosted Cascode meff [ 1 ( )] g = + A s g m Increases output resistance Reduces time constant at V x Ameliorates Miller effect at the input A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 6

7 g m -Boosted Cascode Passive g m - boosting: meff [ 1 ( )] g = + As g g = g for s = 0 meff m g = 2 g for s = meff m m A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 7

8 g m -Boosted Cascode L 1 separates C PAD and C IN [Sackinger 05] A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 8

9 g m -Boosted Cascode L 2 separates the C D of M 1 and C S of M 2 [Analui 04] A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 9

10 g m -Boosted Cascode L3 and L4 provide series and shunt peaking [Lee 04] A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 10

11 g m -Boosted Cascode 3-dB Bandwidth (GHz) > 30 % improvement C (ff) R = 500Ω A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 11

12 Differential g m -Boosted Cascode R L is divided to improve the BW [Greshishchev 99] Feedback sets the input resistance to 50 Ω 1.2 ma 15 ma A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 12

13 Differential g m -Boosted Cascode 1.6 mm 0.7 mm Output Buffer A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 13

14 Measurement of g m -Boosted Pre-amp 2 port VNA 50 Ω DC Block DC Block 50 Ω A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 14

15 Measurement of g m -Boosted Pre-amp V DD = 2.5 V BW = 22 GHz 6 db was added to the S 21 measured on a 2-port network analyzer A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 15

16 Measurement of g m -Boosted Pre-amp V DD = 2.2 V BW = 21 GHz 6 db was added to the S 21 measured on a 2-port network analyzer A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 16

17 Measurement of g m -Boosted Pre-amp V DD = 2.5 V P 1dB for 6-GHz input A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 17

18 Measurement of g m -Boosted Pre-amp V DD = 2.5 V A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 18

19 Full Front End Design Bandwidth > 20 GHz Constant group delay Gain > 6 db 50-Ω Input Matching Bandwidth > 20 GHz Constant group delay Gain > 4 db 50-Ω output driver A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 19

20 Post-amplifier Used to cancel Miller capacitances A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 20

21 Post-amplifier L 1,L 2 chosen for maximally flat frequency response A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 21

22 Full Front End 2.0 mm 0.7 mm Cascode pre-amp 2 stage Post-amp G G S S G A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 22

23 Measurement of Full Front End V DD = 2.5 V BW = 19 GHz 6 db was added to the S 21 measured on a 2-port network analyzer A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 23

24 Measurement of Full Front End V DD = 2.2 V BW = 17.5 GHz 6 db was added to the S 21 measured on a 2-port network analyzer A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 24

25 Measurement of Full Front End V DD = 2.0 V BW = 16 GHz 6 db was added to the S 21 measured on a 2-port network analyzer A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 25

26 Measurement Setup for Eye Diagrams Agilent 86100C Scope Attenuator PRBS streams 4:1 Mux A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 26

27 Eye Diagram Measurements 20 Gb/s, 270 mvpp input amplitude A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 27

28 Eye Diagram Measurements 24 Gb/s, 270 mvpp input amplitude A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 28

29 Sensitivity Testing 14 Gb/s, 27 mvpp input amplitude 55 mv A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 29

30 Summary A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 30

31 Passive g m -boosting Conclusions Improves the time constant at cascode node Reduces Miller effect at the input node Does not reduce DC gain Does not introduce peaking No additional power consumption Pre-amplifier (only) achieves BW of 22 GHz in 0.18-µm CMOS Front end (pre-amp + post-amp) gain > 10 db is achieved with BW of 19 GHz A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 31

32 Acknowledgements Shahriar Shahramian Canadian Microelectronics Corporation Intel Corporation A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 32

33 Extras

34 Standard CMOS Cascode For example, assuming R in = 50 Ω, R L = 150 Ω, M1 & M2 are 20 x 2 μm, I D = 7.5 ma, C PAD = 70 ff, and C L = 40 ff: τ = 15pS out τ = 12pS cascode τ = input 9pS A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 34

35 Time Constants of g m -boosted Cascode A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 35

36 Differential g m -boosted Cascode G S G S G g m boosting : Improves Input time constant Improves the time cascode node Do not reduce DC Gain No additional DC power consumption G S G S G A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 36

37 Post Amplifier Implementation Post Amplifier G G S S G G G S S G A 19-GHz Broadband Amplifier Using a g m -Boosted Cascode in 0.18-μm CMOS 37

A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone

A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology Shahriar Shahramian Sorin P. Voinigescu Anthony Chan Carusone Department of Electrical & Computer Eng. University of Toronto Canada Introduction

More information

6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers 6.776 High Speed Communication Circuits Lecture 7 High Freqeuncy, Broadband Amplifiers Massachusetts Institute of Technology February 24, 2005 Copyright 2005 by Hae-Seung Lee and Michael H. Perrott High

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.8 10.8 10Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering

More information

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto

20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS. Masum Hossain & Tony Chan Carusone University of Toronto 20 GHz Low Power QVCO and De-skew Techniques in 0.13µm Digital CMOS Masum Hossain & Tony Chan Carusone University of Toronto masum@eecg.utoronto.ca Motivation Data Rx3 Rx2 D-FF D-FF Rx1 D-FF Clock Clock

More information

Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth

Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth S.P. Voinigescu, R. Beerkens*, T.O. Dickson, and T. Chalvatzis University of Toronto *STMicroelectronics,

More information

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS

95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS 95GHz Receiver with Fundamental Frequency VCO and Static Frequency Divider in 65nm Digital CMOS Ekaterina Laskin, Mehdi Khanpour, Ricardo Aroca, Keith W. Tang, Patrice Garcia 1, Sorin P. Voinigescu University

More information

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN

CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 93 CHAPTER 4 ULTRA WIDE BAND LOW NOISE AMPLIFIER DESIGN 4.1 INTRODUCTION Ultra Wide Band (UWB) system is capable of transmitting data over a wide spectrum of frequency bands with low power and high data

More information

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2012 Lecture 5: Termination, TX Driver, & Multiplexer Circuits Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

Lecture 25 - Frequency Response of Amplifiers (III) Other Amplifier Stages. December 8, 2005

Lecture 25 - Frequency Response of Amplifiers (III) Other Amplifier Stages. December 8, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 251 Lecture 25 Frequency Response of Amplifiers (III) Other Amplifier Stages December 8, 2005 Contents: 1. Frequency response of commondrain

More information

Lecture 20: Passive Mixers

Lecture 20: Passive Mixers EECS 142 Lecture 20: Passive Mixers Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture 20 p.

More information

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks

A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks A Low Power Integrated UWB Transceiver with Solar Energy Harvesting for Wireless Image Sensor Networks Minjoo Yoo / Jaehyuk Choi / Ming hao Wang April. 13 th. 2009 Contents Introduction Circuit Description

More information

The GBTIA, a 5 Gbit/s Radiation-Hard Optical Receiver for the SLHC Upgrades

The GBTIA, a 5 Gbit/s Radiation-Hard Optical Receiver for the SLHC Upgrades The GBTIA, a 5 Gbit/s Radiation-Hard Optical Receiver for the SLHC Upgrades M. Menouni a, P. Gui b, P. Moreira c a CPPM, Université de la méditerranée, CNRS/IN2P3, Marseille, France b SMU, Southern Methodist

More information

EE105 Fall 2015 Microelectronic Devices and Circuits

EE105 Fall 2015 Microelectronic Devices and Circuits EE105 Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of MOS Amplifiers Common

More information

Measurement and Modeling of CMOS Devices in Short Millimeter Wave. Minoru Fujishima

Measurement and Modeling of CMOS Devices in Short Millimeter Wave. Minoru Fujishima Measurement and Modeling of CMOS Devices in Short Millimeter Wave Minoru Fujishima Our position We are circuit designers. Our final target is not device modeling, but chip demonstration. Provided device

More information

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER

HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER Progress In Electromagnetics Research C, Vol. 7, 183 191, 2009 HIGH-GAIN CMOS LOW NOISE AMPLIFIER FOR ULTRA WIDE-BAND WIRELESS RECEIVER A. Dorafshan and M. Soleimani Electrical Engineering Department Iran

More information

Low-Noise Amplifiers

Low-Noise Amplifiers 007/Oct 4, 31 1 General Considerations Noise Figure Low-Noise Amplifiers Table 6.1 Typical LNA characteristics in heterodyne systems. NF IIP 3 db 10 dbm Gain 15 db Input and Output Impedance 50 Ω Input

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

ECEN 720 High-Speed Links: Circuits and Systems. Lab3 Transmitter Circuits. Objective. Introduction. Transmitter Automatic Termination Adjustment

ECEN 720 High-Speed Links: Circuits and Systems. Lab3 Transmitter Circuits. Objective. Introduction. Transmitter Automatic Termination Adjustment 1 ECEN 720 High-Speed Links: Circuits and Systems Lab3 Transmitter Circuits Objective To learn fundamentals of transmitter and receiver circuits. Introduction Transmitters are used to pass data stream

More information

Lecture 33: Context. Prof. J. S. Smith

Lecture 33: Context. Prof. J. S. Smith Lecture 33: Prof J. S. Smith Context We are continuing to review some of the building blocks for multi-stage amplifiers, including current sources and cascode connected devices, and we will also look at

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622 Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers) A 40 GHz, broadband, highly linear amplifier, employing T-coil bandwith extension technique Cheema, H.M.; Mahmoudi, R.; Sanduleanu, M.A.T.; van Roermund, A.H.M. Published in: IEEE Radio Frequency Integrated

More information

Design and Simulation Study of Active Balun Circuits for WiMAX Applications

Design and Simulation Study of Active Balun Circuits for WiMAX Applications Design and Simulation Study of Circuits for WiMAX Applications Frederick Ray I. Gomez 1,2,*, John Richard E. Hizon 2 and Maria Theresa G. De Leon 2 1 New Product Introduction Department, Back-End Manufacturing

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 118 No. 0 018, 4187-4194 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A 5- GHz CMOS Low Noise Amplifier with High gain and Low power using Pre-distortion technique A.Vidhya

More information

A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling

A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling JeeYoung Hong, Daisuke Imanishi, Kenichi Okada, and Akira Tokyo Institute of Technology, Japan Contents 1 Introduction PA

More information

ECEN 720 High-Speed Links: Circuits and Systems

ECEN 720 High-Speed Links: Circuits and Systems 1 ECEN 720 High-Speed Links: Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by

More information

Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742

Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742 Design for MOSIS Educational Program (Research) Testing Report for Project Number 89742 Prepared By: Kossi Sessou (Graduate Student) and Nathan Neihart (Assistant Professor) Bin Huang (Graduate Student)

More information

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE by MICHAEL PETERS B.S., Kansas State University, 2009 A REPORT submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department

More information

O.13f-Lm 1.OV-l.5V Supply Digital Blocks for 40-Gb/s Optical Communication Systems

O.13f-Lm 1.OV-l.5V Supply Digital Blocks for 40-Gb/s Optical Communication Systems O.13f-Lm 1.OV-l.5V Supply Digital Blocks for 40-Gb/s Optical Communication Systems Bangli Liang, Tad Kwasniewski Department of Electronics Carleton University Ottawa, Ontario, Canada Email: bliang.tak@doe.carleton.ca

More information

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design.

Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. ECEN 622(ESS) Nonlinear Macromodeling of Amplifiers and Applications to Filter Design. By Edgar Sanchez-Sinencio Thanks to Heng Zhang for part of the material OP AMP MACROMODELS Systems containing a significant

More information

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c,

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c, 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015) A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a,

More information

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith

Reading. Lecture 33: Context. Lecture Outline. Chapter 9, multi-stage amplifiers. Prof. J. S. Smith eading Lecture 33: Chapter 9, multi-stage amplifiers Prof J. S. Smith Context Lecture Outline We are continuing to review some of the building blocks for multi-stage amplifiers, including current sources

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

ECEN 720 High-Speed Links Circuits and Systems

ECEN 720 High-Speed Links Circuits and Systems 1 ECEN 720 High-Speed Links Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by transmitters.

More information

A GSM Band Low-Power LNA 1. LNA Schematic

A GSM Band Low-Power LNA 1. LNA Schematic A GSM Band Low-Power LNA 1. LNA Schematic Fig1.1 Schematic of the Designed LNA 2. Design Summary Specification Required Simulation Results Peak S21 (Gain) > 10dB >11 db 3dB Bandwidth > 200MHz (

More information

TWO AND ONE STAGES OTA

TWO AND ONE STAGES OTA TWO AND ONE STAGES OTA F. Maloberti Department of Electronics Integrated Microsystem Group University of Pavia, 7100 Pavia, Italy franco@ele.unipv.it tel. +39-38-50505; fax. +39-038-505677 474 EE Department

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6 26.6 40Gb/s Amplifier and ESD Protection Circuit in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi University of California, Los Angeles, CA Optical

More information

A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF

A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF Ning Li 1, Kenichi Okada 1, Toshihide Suzuki 2, Tatsuya Hirose 2 and Akira 1 1. Tokyo Institute of Technology, Japan 2. Advanced

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 Low power OTA 1 Two-Stage, Miller Op Amp Operating in Weak Inversion Low frequency response: gm1 gm6 Av 0 g g g g A v 0 ds2 ds4 ds6 ds7 I D m, ds D nvt g g I n GB and SR: GB 1 1 n 1 2 4 6 6 7 g 2 2 m1

More information

56 Gb/s 4:1 Multiplexer Module

56 Gb/s 4:1 Multiplexer Module MS4S1V2M Datasheet CENTELLAX Description Applications The MS4S1V2M can be used with existing equipment to generate higher rate bit streams for use in telecom applications up to 56 Gb/s. Broadband test

More information

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS

CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 46 CHAPTER 3 CMOS LOW NOISE AMPLIFIERS 3.1 INTRODUCTION The Low Noise Amplifier (LNA) plays an important role in the receiver design. LNA serves as the first block in the RF receiver. It is a critical

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.8

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.8 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.8 26.8 A 2GHz CMOS Variable-Gain Amplifier with 50dB Linear-in-Magnitude Controlled Gain Range for 10GBase-LX4 Ethernet Chia-Hsin Wu, Chang-Shun Liu,

More information

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation Rail-To-Rail Op-Amp Design with Negative Miller Capacitance Compensation Muhaned Zaidi, Ian Grout, Abu Khari bin A ain Abstract In this paper, a two-stage op-amp design is considered using both Miller

More information

A 2.4GHz Cascode CMOS Low Noise Amplifier

A 2.4GHz Cascode CMOS Low Noise Amplifier A 2.4GHz Cascode CMOS Low Noise Amplifier Gustavo Campos Martins, Fernando Rangel de Sousa Federal University of Santa Catarina (UFSC) Integrated Circuits Laboratory (LCI) August 31, 2012 G. C. Martins,

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

Design technique of broadband CMOS LNA for DC 11 GHz SDR

Design technique of broadband CMOS LNA for DC 11 GHz SDR Design technique of broadband CMOS LNA for DC 11 GHz SDR Anh Tuan Phan a) and Ronan Farrell Institute of Microelectronics and Wireless Systems, National University of Ireland Maynooth, Maynooth,Co. Kildare,

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II)

Analysis and Design of Analog Integrated Circuits Lecture 20. Advanced Opamp Topologies (Part II) Analysis and Design of Analog Integrated Circuits Lecture 20 Advanced Opamp Topologies (Part II) Michael H. Perrott April 15, 2012 Copyright 2012 by Michael H. Perrott All rights reserved. Outline of Lecture

More information

Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier

Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier Kalpesh B. Pandya 1, Kehul A. shah 2 1 Gujarat Technological University, Department of Electronics & Communication,

More information

Lecture 2: Non-Ideal Amps and Op-Amps

Lecture 2: Non-Ideal Amps and Op-Amps Lecture 2: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical Op-Amps Linear Imperfections: Finite open-loop gain (A 0 < ) Finite input resistance

More information

CMOS LNA Design for Ultra Wide Band - Review

CMOS LNA Design for Ultra Wide Band - Review International Journal of Innovation and Scientific Research ISSN 235-804 Vol. No. 2 Nov. 204, pp. 356-362 204 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/ CMOS LNA

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 2018 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

** Dice/wafers are designed to operate from -40 C to +85 C, but +3.3V. V CC LIMITING AMPLIFIER C FILTER 470pF PHOTODIODE FILTER OUT+ IN TIA OUT-

** Dice/wafers are designed to operate from -40 C to +85 C, but +3.3V. V CC LIMITING AMPLIFIER C FILTER 470pF PHOTODIODE FILTER OUT+ IN TIA OUT- 19-2105; Rev 2; 7/06 +3.3V, 2.5Gbps Low-Power General Description The transimpedance amplifier provides a compact low-power solution for 2.5Gbps communications. It features 495nA input-referred noise,

More information

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity

Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Low-Power RF Integrated Circuit Design Techniques for Short-Range Wireless Connectivity Marvin Onabajo Assistant Professor Analog and Mixed-Signal Integrated Circuits (AMSIC) Research Laboratory Dept.

More information

Electronic Dispersion Compensation of 40-Gb/s Multimode Fiber Links Using IIR Equalization

Electronic Dispersion Compensation of 40-Gb/s Multimode Fiber Links Using IIR Equalization Electronic Dispersion Compensation of 4-Gb/s Multimode Fiber Links Using IIR Equalization George Ng & Anthony Chan Carusone Dept. of Electrical & Computer Engineering University of Toronto Canada Transmitting

More information

Lecture 21: Voltage/Current Buffer Freq Response

Lecture 21: Voltage/Current Buffer Freq Response Lecture 21: Voltage/Current Buffer Freq Response Prof. Niknejad Lecture Outline Last Time: Frequency Response of Voltage Buffer Frequency Response of Current Buffer Current Mirrors Biasing Schemes Detailed

More information

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair,

Basic Circuits. Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, Basic Circuits Current Mirror, Gain stage, Source Follower, Cascode, Differential Pair, CCS - Basic Circuits P. Fischer, ZITI, Uni Heidelberg, Seite 1 Reminder: Effect of Transistor Sizes Very crude classification:

More information

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS UT Mixed-Signal/RF Integrated Circuits Seminar Series A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS Pio Balmelli April 19 th, Austin TX 2 Outline VDSL specifications Σ A/D converter features Broadband

More information

Multi-Gb/s Bit-by-Bit Receiver Architectures for 1 D Partial Response Channels

Multi-Gb/s Bit-by-Bit Receiver Architectures for 1 D Partial Response Channels SUBMITTED: IEEE TRANSACTION ON CIRCUITS AND SYSTEMS-I, VOL., NO., SEPTEMBER 2008 1 Multi-Gb/s Bit-by-Bit Receiver Architectures for 1 D Partial Response Channels Masum Hossain, Anthony Chan Carusone, Senior

More information

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers

6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers 6.776 High Speed Communication Circuits Lecture 6 MOS Transistors, Passive Components, Gain- Bandwidth Issue for Broadband Amplifiers Massachusetts Institute of Technology February 17, 2005 Copyright 2005

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS -3GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS Hyohyun Nam and Jung-Dong Park a Division of Electronics and Electrical Engineering, Dongguk University, Seoul E-mail

More information

Probing for oscilloscope

Probing for oscilloscope Probing for oscilloscope Agenda - Notion de sonde en oscilloscopie - Structure des différentes sondes - Passives - Actives - Logiques - Différentielles - Comment choisir la bonne sonde - Nouvelle technologie

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

AVoltage Controlled Oscillator (VCO) was designed and

AVoltage Controlled Oscillator (VCO) was designed and 1 EECE 457 VCO Design Project Jason Khuu, Erik Wu Abstract This paper details the design and simulation of a Voltage Controlled Oscillator using a 0.13µm process. The final VCO design meets all specifications.

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 9 Operational Amplifiers Analog IC Analysis and Design 9- Chih-Cheng Hsieh Outline. General Consideration. One-Stage Op Amps / Two-Stage Op Amps 3. Gain Boosting 4. Common-Mode Feedback 5. Input

More information

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI

On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital VLSI ELEN 689 606 Techniques for Layout Synthesis and Simulation in EDA Project Report On Chip Active Decoupling Capacitors for Supply Noise Reduction for Power Gating and Dynamic Dual Vdd Circuits in Digital

More information

High Voltage Operational Amplifiers in SOI Technology

High Voltage Operational Amplifiers in SOI Technology High Voltage Operational Amplifiers in SOI Technology Kishore Penmetsa, Kenneth V. Noren, Herbert L. Hess and Kevin M. Buck Department of Electrical Engineering, University of Idaho Abstract This paper

More information

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

Hot Topics and Cool Ideas in Scaled CMOS Analog Design Engineering Insights 2006 Hot Topics and Cool Ideas in Scaled CMOS Analog Design C. Patrick Yue ECE, UCSB October 27, 2006 Slide 1 Our Research Focus High-speed analog and RF circuits Device modeling,

More information

Chapter 12 Opertational Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits 1 Chapter 12 Opertational Amplifier Circuits Learning Objectives 1) The design and analysis of the two basic CMOS op-amp architectures: the two-stage circuit and the single-stage, folded cascode circuit.

More information

5Gbps Serial Link Transmitter with Pre-emphasis

5Gbps Serial Link Transmitter with Pre-emphasis Gbps Serial Link Transmitter with Pre-emphasis Chih-Hsien Lin, Chung-Hong Wang and Shyh-Jye Jou Department of Electrical Engineering,National Central University,Chung-Li, Taiwan R.O.C. Abstract- High-speed

More information

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Bindu Madhavan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111 Indexing

More information

Designing of Low Power RF-Receiver Front-end with CMOS Technology

Designing of Low Power RF-Receiver Front-end with CMOS Technology Sareh Salari Shahrbabaki Designing of Low Power RF-Receiver Front-end with CMOS Technology School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology.

More information

Inductorless CMOS Receiver Front-End Circuits for 10-Gb/s Optical Communications

Inductorless CMOS Receiver Front-End Circuits for 10-Gb/s Optical Communications Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 449 458 (2009) 449 Inductorless CMOS Receiver Front-End Circuits for 10-Gb/s Optical Communications Hsin-Liang Chen*, Chih-Hao Chen, Wei-Bin

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.976 High Speed Communication Circuits and Systems Spring 2003 Homework #4: Narrowband LNA s and Mixers

More information

An 8-Gb/s Inductorless Adaptive Passive Equalizer in µm CMOS Technology

An 8-Gb/s Inductorless Adaptive Passive Equalizer in µm CMOS Technology JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.12, NO.4, DECEMBER, 2012 http://dx.doi.org/10.5573/jsts.2012.12.4.405 An 8-Gb/s Inductorless Adaptive Passive Equalizer in 0.18- µm CMOS Technology

More information

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS

10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS 10.1: A 4 GSample/s 8b ADC in 0.35-um CMOS Ken Poulton, Robert Neff, Art Muto, Wei Liu*, Andy Burstein**, Mehrdad Heshami*** Agilent Technologies, Palo Alto, CA *Agilent Technologies, Colorado Springs,

More information

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN OPAMP DESIGN AND SIMULATION Vishal Saxena OPAMP DESIGN PROJECT R 2 v out v in /2 R 1 C L v in v out V CM R L V CM C L V CM -v in /2 R 1 C L (a) (b) R 2 ECE415/EO

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS

Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS LETTER IEICE Electronics Express, Vol.15, No.7, 1 10 Design of low-loss 60 GHz integrated antenna switch in 65 nm CMOS Korkut Kaan Tokgoz a), Seitaro Kawai, Kenichi Okada, and Akira Matsuzawa Department

More information

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM

DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM Progress In Electromagnetics Research C, Vol. 9, 25 34, 2009 DESIGN OF 3 TO 5 GHz CMOS LOW NOISE AMPLIFIER FOR ULTRA-WIDEBAND (UWB) SYSTEM S.-K. Wong and F. Kung Faculty of Engineering Multimedia University

More information

A 60GHz CMOS Power Amplifier Using Varactor Cross-Coupling Neutralization with Adaptive Bias

A 60GHz CMOS Power Amplifier Using Varactor Cross-Coupling Neutralization with Adaptive Bias A 6GHz CMOS Power Amplifier Using Varactor Cross-Coupling Neutralization with Adaptive Bias Ryo Minami,Kota Matsushita, Hiroki Asada, Kenichi Okada,and Akira Tokyo Institute of Technology, Japan Outline

More information

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP

Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP Comparative Analysis of Compensation Techniques for improving PSRR of an OPAMP 1 Pathak Jay, 2 Sanjay Kumar M.Tech VLSI and Embedded System Design, Department of School of Electronics, KIIT University,

More information

A12 10 Gb/s fully integrated CMOS parallel optical receiver front-end amplifier array

A12 10 Gb/s fully integrated CMOS parallel optical receiver front-end amplifier array . RESEARCH PAPER. SCIENCE CHINA Information Sciences June 2012 Vol. 55 No. 6: 1415 1428 doi: 10.1007/s11432-011-4385-6 A12 10 Gb/s fully integrated CMOS parallel optical receiver front-end amplifier array

More information

DC Coupling: General Trends

DC Coupling: General Trends DC Coupling: General Trends * Goal: want both input and output to be centered at halfway between the positive and negative supplies (or ground, for a single supply) -- in order to have maximum possible

More information

Low-Power Pipelined ADC Design for Wireless LANs

Low-Power Pipelined ADC Design for Wireless LANs Low-Power Pipelined ADC Design for Wireless LANs J. Arias, D. Bisbal, J. San Pablo, L. Quintanilla, L. Enriquez, J. Vicente, J. Barbolla Dept. de Electricidad y Electrónica, E.T.S.I. de Telecomunicación,

More information

High-Speed Data Communication LA310Z 8.3 GHz Differential Limiting Amplifier 16-pin Plastic QFN Package

High-Speed Data Communication LA310Z 8.3 GHz Differential Limiting Amplifier 16-pin Plastic QFN Package High-Speed Data Communication LA10Z 8. GHz Differential Limiting Amplifier 16-pin Plastic QFN Package PRODUCT DESCRIPTION The LA10Z is an ultra-broadband fully differential limiting amplifier designed

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 26.4 40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems H. Shigematsu 1, M. Sato 1, T. Hirose 1, F. Brewer 2, M. Rodwell 2 1 Fujitsu,

More information

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017

AN-1106 Custom Instrumentation Amplifier Design Author: Craig Cary Date: January 16, 2017 AN-1106 Custom Instrumentation Author: Craig Cary Date: January 16, 2017 Abstract This application note describes some of the fine points of designing an instrumentation amplifier with op-amps. We will

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications

Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications Designing a fully integrated low noise Tunable-Q Active Inductor for RF applications M. Ikram Malek, Suman Saini National Institute of technology, Kurukshetra Kurukshetra, India Abstract Many architectures

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

C H A P T E R 5. Amplifier Design

C H A P T E R 5. Amplifier Design C H A P T E 5 Amplifier Design The Common-Source Amplifier v 0 = r ( g mvgs )( D 0 ) A v0 = g m r ( D 0 ) Performing the analysis directly on the circuit diagram with the MOSFET model used implicitly.

More information

Chapter 2 CMOS at Millimeter Wave Frequencies

Chapter 2 CMOS at Millimeter Wave Frequencies Chapter 2 CMOS at Millimeter Wave Frequencies In the past, mm-wave integrated circuits were always designed in high-performance RF technologies due to the limited performance of the standard CMOS transistors

More information

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE Progress In Electromagnetics Research C, Vol. 16, 161 169, 2010 A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE J.-Y. Li, W.-J. Lin, and M.-P. Houng Department

More information

A Broadband Transimpedance Amplifier with Optimum Bias Network Qian Gao 1, a, Sheng Xie 1, b*, Luhong Mao 1, c and Sicong Wu 1, d

A Broadband Transimpedance Amplifier with Optimum Bias Network Qian Gao 1, a, Sheng Xie 1, b*, Luhong Mao 1, c and Sicong Wu 1, d 6th International Conference on Management, Education, Information and Control (MEICI 06) A Broadband Transimpedance Amplifier with Optimum Bias etwork Qian Gao, a, Sheng Xie, b*, Luhong Mao, c and Sicong

More information

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4 25.4 A 1.8V 14b 10MS/s Pipelined ADC in 0.18µm CMOS with 99dB SFDR Yun Chiu, Paul R. Gray, Borivoje Nikolic University of California, Berkeley,

More information

Preamplifier shaper: The preamplifier. The shaper. The Output.

Preamplifier shaper: The preamplifier. The shaper. The Output. Preamplifier shaper: In previous simulations I just tried to reach the speed limits. The only way to realise this was by using a lot of current, about 1 ma through the input transistor. This gives in the

More information