GPSi Dead Reckoning White Paper: Product Overview

Size: px
Start display at page:

Download "GPSi Dead Reckoning White Paper: Product Overview"

Transcription

1 GPSi Dead Reckoning White Paper: Product Overview A Neve Technologies White Paper February 2001

2 GPSi DEAD RECKONING Vehicle Positioning in the Urban Environment Chris Wood and Owen Mace, Neve Technologies Pty Ltd. INTRODUCTION Policeman Hall and his partner are on patrol in a dangerous part of town when they receive a call for help. When the officers arrive, all seems quiet and so they enter the apartment building to investigate. On the way they are attacked and disabled. Luckily, Officer Hall pressed his duress alarm to call for help. Hall is confident that help will soon arrive as his equipment functioned as he expects. Unfortunately for Officer Hall, the position transmitted from the GPS receiver in his radio is in error by a couple of hundred meters; the receiver has been unable to receive clear signals in the street or in the apartment building. The dispatch center is doing its best, but he wasn t at the location sent in the transmission... In this example, and in many others where positions are needed in urban environments, inaccurate positions from GPS receivers limit the usefulness of GPS as a positioning device. The reasons for this are well known: Reflections of GPS signals from buildings (multipath); Poor signal propagation in cities, under dense vegetation or in deep valleys (shadowing); No signal in tunnels, undercover car parking, covered roadways; Extended time to first fix (TTFF) following a signal loss, especially in areas of poor signal quality; and Dynamic limitations, such as maximum jerk, and other receiver limitations. For someone relying on GPS for position, there are two outcomes: the GPS receiver may not provide any position (or it just repeats what it thought was the last good solution) or the position accuracy degrades to much worse than the advertised accuracy, perhaps even greater than 500 m. This paper aims to give an overview of the shortcomings of many GPS receivers using the standard positioning service and to show how a position augmentation system can correct and compensate for these. BACKGROUND The authors have used many Automatic Vehicle Location (AVL) receivers in their home town of Adelaide, South Australia (approximately 138º East and 35º South) which is not a difficult city for GPS. Adelaide has some urban canyons in the Central Business District. They have also tested systems in Hong Kong (approximately 114º East and 22º North) which is one of the worst places in the world for GPS reception. Adelaide, the capital of the state of South Australia, has a population of about one million people and, in the Australian way, sprawls over hundreds of square kilometers. In the Central Business District (CBD) there are many five to ten storey commercial buildings and a small number of taller buildings, up to 30 stories, see the photograph. The streets typically have four lanes and there are many narrow lanes between the buildings. The CBD is surrounded by North, South, East and West terraces and parklands. It is a very pleasant town. Even though Adelaide is not a big city, journeys into the CBD can result in unreliable and inaccurate positions, as we see in Figure 1. Notice how, as the vehicle drives down Grenfell Street, the receiver reports positions that 2

3 are hundreds of meters in error. Next, the vehicle drove into Wyatt Street, a narrow lane between multi-storey buildings. To test the receiver, it stopped for a minute in Wyatt Street. During this period, the positions reported by the 12-channel receiver jumped about randomly. Figure 1. Urban Canyon Journey What is going on here? The GPS manufacturer claims that their receiver is accurate to 25 m and yet positions up to 500 m in error were reported. In this case, the accuracy was degraded by a condition known as multipath. Multipath is a condition where signals from the GPS satellites are reflected off large objects (in this case the surrounding buildings) causing the receiver to make incorrect pseudorange measurements. If this can happen in Adelaide, imagine the sort of results that could be expected in the "urban canyons" of Hong Kong, New York or Tokyo where the satellites are shadowed by buildings for most of the time. OTHER GPS LIMITATIONS Manufacturers of GPS receivers for vehicles recognize that signals in cities can be badly degraded and so they incorporate sophisticated algorithms that attempt to continue navigating even when the number of satellites falls short of the minimum required for accurate navigation. For example, they may assume that the altitude remains constant or that the vehicle keeps traveling in the same direction. Sometimes these assumptions are reasonable, but often they are not - and the position solution suffers. The receivers themselves are not perfect; look at Figure 2 where the vehicle has driven rapidly 360º around a roundabout. Notice how the GPS receiver has totally lost the plot (Literally!). What has happened? The answer is that the receiver's maximum jerk specification has been exceeded, which, for this receiver is 2 ms -3. Jerk is the rate of change of acceleration. Although not shown, the receiver recovered after some time. 3

4 GPSi solution continues GPS receiver has lost signal lock here Figure 2. Dynamic Limits Exceeded In the previous figures where position solutions were poor, the receivers had been operating in non-differential mode. Many people think that by using DGPS (Differential GPS), the situation would be improved. In many cases this is true, DGPS typically improves accuracy to about 5 m for most AVL receivers, depending on various factors. However, the authors have seen examples in CBDs where differential GPS solutions are actually worse than non-differential GPS! ERROR ESTIMATES GPS receivers don't often fail, but like any system, they have their limitations. The informed user understands those limitations and makes allowances for them. However, many receivers do not provide the user with adequate information about the accuracy of the position solution so that the user can make an informed judgment. An estimate of the quality of the position derived by the GPS receiver is needed. Aviation users recognize the need for measures of the integrity of their positions and aviation GPS receivers incorporate Receiver Augmentation and Integrity Monitoring (RAIM) software. Some may say that the various Dilutions of Precision (DOP), such as Horizontal Dilution of Precision (HDOP), are such quality measures, but they are not. HDOP is an indication of how much the geometric arrangement of the satellites in view affect the quality of the solution. DOPs account for shadowing but they do not account for multipath signals. What is needed is an estimate of the error of the position solution that the receiver calculates. One way for a receiver to estimate error is for it to calculate the root mean square of the differences between its measured pseudoranges and the distance from its position solution to the GPS satellites. Which ever way a receiver calculates its estimated position error, at least the user has an idea of the quality of the position solution that the receiver is providing. Different receivers calculate different measures of the quality of their position solution, such as Estimated Horizontal Position Error (EHPE) and Horizontal Figure of Merit (HFOM). But remember, none of the DOPs truly give an indication of quality of the position solution. Those receivers that do go to the trouble of providing a position quality estimate cannot deliver it if they use the industry standard NMEA 0183 message interface. To get position quality information, users must delve into the manufacturer s proprietary 4

5 binary message interface, which is often complex to decode and provides more information than required by most applications. AUGMENTING GPS When an application requires a position even when GPS is not accurate enough or not available, there is no choice but to augment the GPS receiver. There are several ways of doing this: in-car navigation systems (electronic street directories) use an electronic map stored on CD-ROM. Sensors in the vehicle inform the system of a rough position, the distance traveled and turns taken, from which a very accurate vehicle position can be determined by matching the data to geographical street information stored in electronic maps. Such systems direct drivers around cities and can navigate a vehicle to an individual street address. Instructions are displayed to the driver and spoken out loud. This type of car navigation system generally works very well and is in widespread use, particularly in Japan, Europe and the USA. The major drawback however is its price, typically in the vicinity of US $1,500. Another way of augmenting GPS is with a dead reckoning system. DEAD RECKONING Dead Reckoning (DR) is the system that mariners use to navigate. Their compass measures direction and the ship's log measures speed (or distance traveled). By combining the two measurements, the vessel's track from its starting point can be determined. The important point is that the dead reckoning positioning is relative to a known starting point. The starting point could be based on a well known location such as the tower at the Greenwich Observatory, or more conveniently, measured using a GPS receiver. A vehicle can use the same system, provided it has a means of determining speed and direction. Speed is easy. Modern vehicles have an electronic speed sensor that accurately measures speed and the distance traveled. But an accurate, low cost measure of direction is not so easy. DISTANCE AND DIRECTIONS SENSORS The odometer in a modern automobile measures rotations of an axle or drive shaft that is directly related to distance traveled. Unfortunately, the relationship changes with tyre wear, temperature of the tyre and wheel slip. There is even a change when the vehicle is driven up a slope. The result is that there can be as much as a ten percent change in the distance traveled per wheel revolution. An electronic magnetic compass might be used to measure the vehicle s direction from the Earth's magnetic field but this scheme suffers from a number of major shortcomings. The Earth's magnetic field changes from place to place and it changes slowly with time, so that compasses must be continually calibrated. Furthermore, the earth's magnetic field is altered by the currents flowing in vehicles, such as the car's air conditioner or hi-fi system as well as by external influences such as bridges, tunnels or buildings. Also, changes in the slope, or tilt, of the car can change the measured direction markedly. In Adelaide, a tilt of the car of one degree results in an apparent change of direction of up to three degrees. Using the Earth's magnetic field, despite its apparent attraction, is a poor way to measure direction. Aviators have solved the problem of measuring direction with gyros. (Remember how a spinning top tends to maintain its initial direction - upright - despite gravity trying to make it fall?) High quality gyros allow aircraft to navigate within a few kilometers after a flight across an ocean. Unfortunately, high quality gyros come at a high quality price. Nevertheless, solid state gyros are available for a cost comparable with an AVL receiver. However, with low cost comes relatively low performance and so designers of navigation systems using solid state gyros must take exceptional care to understand and account for the limitations of their gyros. (Recognizing the need for better performing, low cost gyros, many companies and departments of defense are trying to improve low cost gyros.) Neve Technologies has developed a DR system for vehicles, called GPSi - the "i" is for inertial. The system uses the vehicle's odometer to measure speed and its reverse light to indicate when it is moving backwards. A 5

6 miniature vibrating beam or tuning fork gyroscope is used to measure rate of turn. These gyroscopes operate from a 5 V DC supply and typically have a sensitivity of approximately 22 millivolts per degree/sec. Zero degrees per second (called the gyro bias voltage, or just bias) is approximately 2.5 V. To determine the vehicle s heading, the gyro bias must be subtracted from the gyro output and the result integrated to yield the change in direction relative to a known initial heading. This process sounds straightforward enough, especially since modern microprocessors make the calculations easy to perform, but there are numerous difficult problems to overcome. For example, the gyro bias voltage must be measured very accurately to ensure that bias errors do not translate into large navigation errors due to the mathematical integration process. To make things worse, the gyro bias changes with ambient temperature and is affected by electronic and mechanically induced noise. Also, as mentioned previously, the vehicle odometer is susceptible to various sources of error that must be take these into account. If a DR system is to be useful in the most critical time of need (i.e. when GPS is not providing a solution), then the various sensor errors must be managed very carefully. SOURCES OF ERROR In fact, all errors affecting the position estimate must be estimated and accounted for. Low cost GPS receivers used for vehicle navigation exhibit random errors in the order of 25 m. The predominant sources of error are in the ephemeris, which manifests itself as uncertainty in the satellite position; as aberrations in the delay due to variations of electron content in the ionosphere and, in some receivers, as phase noise in the local oscillator. Frequently, positioning errors as low as 2 m are reported, though seldom without the necessary additional information describing the state of the ionosphere etc. And of course, errors can be considerably larger, as we have already seen. Many GPS receivers fail to provide meaningful estimates of position error and consequently GPSi estimates position errors for those receivers. This is done using proprietary algorithms which give very good results under most conditions. However, there are limitations to this approach and GPSi performs better with GPS receivers that provide their own position error estimates. To compensate for the sources of odometer error discussed previously, GPSi continually calibrates the odometer. Calibration is achieved by generating an error signal between the distance measured by the odometer and the distance estimated by the GPS receiver when confidence in the GPS solution is high.. Using this approach, odometer calibration can be maintained at better than 1% of distance traveled. As for the gyro, first order errors manifest themselves as inaccurate estimates of gyro bias. Consequently, every measurement of gyro output includes a small error in angular rate. This error is then integrated along with the true signal. To understand the effect this has on the heading calculation, consider a system where the gyro output is measured with a 10-bit analog to digital converter (ADC). Let s assume that the gyro bias voltage is free of noise. Then in this case, the measurement error is equal to the quantization error and is up to half a bit or about 2.5 mv, which equates to about 1/10 of a degree/second for the gyro used in GPSi. Now let this error integrate for 5 minutes which is not an unusual time to loose GPS signals on the roads of Hong Kong. At the end of 5 minutes, the bias error in the gyro output will have produced an erroneous estimate in direction of 0.1 deg/sec 300 seconds = 30 degrees, which is quite unacceptable. A simple mathematical analysis shows that the position error due to gyro bias increases as the square of the distance traveled with an uncorrected gyro bias. Of course, the gyro output voltage does contain noise which includes noise from its internal electronics and noise induced by mechanical vibration (engine and road surface). This noise effectively dithers the ADC quantization error which has the effect of reducing the overall measurement error. So in the previous example, 30 degrees of heading error is actually quite an exaggeration. Second order gyro errors manifest themselves as nonlinearities and other perturbations in the scale factor. Compared to the bias errors, these are typically very small and are not significant for most AVL applications. This of course assumes the gyro scale factor is accurately measured via a calibration process. There is one further source of error worth mentioning that can enter the gyro system and it is a function of the type of terrain the vehicle travels over. Gyros have an axis of rotational sensitivity. This axis should be perpendicular to the coordinate plane the position solution is referenced to. If the axis is not perpendicular, the scale factor sensitivity must be reduced by the cosine of the angle of incline. For an incline of 10 degrees (which is a very steep slope for a vehicle) the effect will add about 1.5% of error. 6

7 GPS-INERTIAL DEAD RECKONING Through careful signal processing and sensor management, reliable measurements of vehicle heading and distance over ground are derived. Using these measurements and standard navigation equations, an inertial position solution is calculated; this is the i part of the GPSi. However, the story does not end here. No matter how expensive the sensors are or how good the signal processing algorithms are, the residual errors that have not been nulled out, will accumulate and eventually render the inertial solution useless. This is where the GPS part of the GPSi comes in to play. Figure 3 shows the (simplified) strategy employed for blending the two solutions. This process is used to correct the inertial position and heading estimates as well as the gyro bias estimate. GPS Inertial Subsystem True + GPS errors - True + INS errors Σ Quality Navigation Filter Figure 3. Blending GPS and Inertial solutions. Σ ε = INS error estimate GPSi Solution The Inertial Subsystem is comprised of the gyro, vehicle odometer, the software that manages these and the navigation equations that transform the heading and distance over ground to a position solution expressed in the same coordinate system used by the GPS receiver (in most cases these are geodetic coordinates referenced to the WGS84 datum). The GPS box is the GPS receiver that provides position solutions and vehicle heading at regular intervals. Some GPS receivers may also output solution quality information often called the Figure of Merit (FOM) that is a measure of how good the receiver thinks its solution is. Some receivers produce FOMs for horizontal and vertical positions, horizontal velocity and even time. If the receiver does not provide this (and many don t) GPSi estimates it as previously mentioned. The first step in the blending process is to create an error signal which is the difference between the GPS variables and the inertial variables. In the ideal case this difference would be zero because the inertial solution would perfectly track the GPS solution. However, there are may reasons why the error is non-zero and, in fact, it will always diverge over time. Also, it is worth noting that the sources of error in both the systems display quite different properties. GPS errors are absolute and are less than 22.5 m for 95% of the time (Standard Positioning Service without selective availability). In contrast, inertial errors are cumulative and increase without bound at a rate determined by the quality of the sensors and the signal processing algorithms. The error signal (which is the GPS and inertial errors combined) and the quality factor (FOM) are then passed into the navigation filter. In case of GPSi, the navigation filter is a Kalman filter, which is a statistically optimal digital filter. The job of the navigation filter is to estimate the value of the inertial error variable from the combined error input signal. The resulting inertial error estimate ε is then subtracted from the inertial solution to produce the GPSi corrected position solution. The FOM is used by the navigation filter to determine an estimate for the GPS measurement error. The reader will have observed that the GPSi output is actually the corrected inertial solution. This is significant because almost all low cost AVL receivers can supply a position solution at a maximum rate of only 1 Hz. However, the inertial solution can be calculated much faster and with a typical low cost 16-bit microprocessor, GPSi can actually output solutions at 10 Hz (using the NMEA 0183 RMC message and Baud rate of 19.2 Kbps) and even faster with more powerful devices. This can be very useful in some applications. - 7

8 AN IMPLEMENTATION OF GPSI Integrating inertial and GPS solutions is a well understood process and has been done successfully for many years. However, producing reliable results using low cost gyroscopes and GPS receivers that do not supply a solution quality factor is still somewhat of a challenge. The design goals of the GPSi project have been to deliver a dead reckoning technology with a small firmware footprint, excellent performance over a wide range of operating conditions and is in a price bracket that make it a feasible addition to all AVL GPS receivers at the point of manufacture. We estimate that in large quantities (> 100k), the hardware and software cost of adding GPSi technology to a GPS chipset should add no more than $4 (excluding the gyroscope and temperature sensors). During the development of GPSi, particular attention was paid to minimizing the processing load on the CPU. The most compute intensive processes are the navigation filter, coordinate translation algorithms, statistical estimators and the GPS FOM estimator. Novel solutions to these problems were engineered and as a consequence, GPSi is able to run comfortably on a commonly available 16-bit microcontroller (without a floating point unit) operating at 10 MHz. As explained earlier, accurately estimating the gyro bias voltage is critical. There are many factors that affect the bias, the most important of which are: electronic noise, mechanically induced noise, temperature, power supply fluctuations and ADC resolution. A dynamic 2-stage bias estimator was developed that is able to produce excellent results both whilst the vehicle is stationary and when it is moving. The estimator is able to cope with rapid temperature fluctuations that may occur in some parts of the world (such as Adelaide where it is not uncommon for a morning starting temperature of 15 C to rise over 45 C within the space of a short journey over which the vehicle may seldom stop). AVL receivers are notorious for producing wildly unreliable heading measurements in urban environments. Apart from altitude, heading measurements are probably the most inaccurate data provided and the most susceptible to urban canyon effects. Much effort was expended in the development of algorithms able to discriminate between reliable and unreliable heading measurements. This information is imperative in determining when the heading solution can be reliably updated. GPSi takes a pragmatic approach to the effects of gyro scale factor sensitivity to angle of incline. Since the vast majority of urban roads have a gradient of less than 10 degrees (1:6), the standard software does not compensate for these effects as the induced error is small. However, the hardware provides an extra input to the ADC that can be used for an inclinometer, accelerometer or other application specific sensor and the capability can be easily added to the software. GPSi-M12 is one physical incarnation of GPSi technology. It is a PCB that is the same size and format as a popular commercial AVL GPS receiver board. Its design concept allows it to be installed to existing OEM equipment by removing the GPS receiver, replacing it with the GPSi-M12 board and then plugging the GPS receiver into the GPSi-M12 board (see Figure 4). The gyro, temperature sensor, odometer and reverse indicator are connected either directly to the GPSi-M12 board through a 90º connector (not shown), or for new designs via a straight through connector to the OEM board. The GPSi-M12 board is in-circuit programmable by the OEM equipment so that new or customized versions of the firmware can be downloaded whilst units are in the field. The firmware code size is approximately 38 Kbytes; a size that can easily be transmitted wireless to field units. Figure 5 shows a hardware block diagram of the GPSi-M12 board. 8

9 A GPSi-M12 board and a quarter coin for scale. The board has been designed to be exactly the same size as the popular M12-Oncore receiver (40 x 60 mm, 1.57 x 2.36 inches). The CPU section consists of a 16-bit microcontroller which provides 3 serial ports, 128 Kbytes of flash memory, 4 Kbytes of SRAM, timers and various other peripherals. The microcontroller is augmented with an external 128 Kbytes SRAM chip. The analog section consists of antialiasing filters for the gyro, temperature sensor and inclinometer signals, a high precision ADC, opto couplers to interface with the vehicle reverse and speed sensors and power conditioning. The connector section shows the 10-pin OEM connector on the right and the DR connector on the left. This view shows a GPSi-M12 mated with its M12- Oncore GPS receiver. The M12-Oncore s OEM connector is brought through by the GPSi-M12. The GPSi-M12 is available with a DR connector option that brings these signals out via a 90º connector. This allows it to mate with existing OEM equipment without modification. Figure 4. An implementation of GPSi. Gyro, temperature and tilt sensors Antialiasing filters Analog to digital converter Speed & reverse sensors Optical isolation Microcontroller and Memory GPS receiver Analog power GPSi Firmware OEM equipment Power conditioning Digital power Program mode Figure 5. GPSi-M12 hardware block diagram. Future GPSi implementations will integrate other receivers in the same way. In large scale applications, we expect GPSi will be integrated into the GPS receiver firmware or other in-vehicle electronics. 9

10 GPSi RESULTS To test the navigation system, GPSi was compared with plain GPS for various types of journeys. Results have been collected over a period of about 18 months at different times of the day (and night) and under varying weather conditions. Different gyro and GPS receiver combinations were used. Some of the more interesting journeys are presented here. Some of these results were taken while Selective Availability was present and all are without the assistance of differential GPS. The equipment used to record these tracks included a number of 12 channel AVL receivers from different manufacturers each augmented with GPSi dead reckoning. The GPSi software was configured to log the GPS and GPSi solutions simultaneously. 10

11 Suburban Journey This route is typical of a short suburban journey. The environment presents no particular difficulty for a GPS receiver. Most of the area is residential single storey dwellings where the only obstructions to GPS signals are the canopy of leaves from the Ash trees on First Avenue. The map scale is 1.3 km horizontally by 1.3 km vertically. As expected, the results are very good for this journey. The GPSi track (Figure 6-A) plots right over the streets. Overlaying the GPS and GPSi solutions (Figure 6-B) reveals how well the navigation filter is doing its job. GPSi is designed to allow the navigation filter to run at a different rate from the GPS measurement rate. This provides some interesting opportunities. For one, if a very low cost solution is desired, the navigation filter may be run only Figure 6-A. GPSi Track occasionally to save CPU bandwidth. Using this approach GPSi can be run on a two dollar microprocessor and still keep the inertial errors within specified limits (say 20 m). If on the other hand, the error budget is tighter, the navigation filter can be run faster (requiring more horsepower from the microprocessor) and keep the solutions tracking within a tighter range. Figure 6-B. GPS and GPSi Tracks Overlaid In the system used to generate these data, the navigation filter is only applying corrections every 10 seconds. 11

12 Urban Canyon Journey This route takes the vehicle down some very narrow lanes flanked by tall buildings on either side. The lanes are not marked on the map. Typically there are zero to one satellites visible in the lanes and three or four visible elsewhere. The map scale is 1.4 km horizontally by 1.1 km vertically. The GPSi solution (Figure 7-A) accurately reflects the true path of the vehicle even in the streets where no satellites are visible. Notice that the GPSi solution does not wander off the roadways into the buildings on either side. The GPSi solution exhibits sharp right angle turns and straight segments without jitter and wander. Figure 7-A. GPSi Track In contrast, the GPS solution (Figure 7-B) does not accurately reflect the true path taken by the vehicle. The segments through the streets are completely missing which is to be expected, since no satellites are visible. Notice how the path wanders and jitters as the GPS signals are affected by the tall buildings. Some segments show the vehicle off the road and traveling through the city buildings. Figure 8-B. GPS Track 12

13 Hills & Tunnel Journey The map scale is 2.2 km horizontally by 4.7 km vertically. Adelaide is flanked to the west by the Gulf of St. Vincent and to the east by the Mt. Lofty Ranges. This journey takes the vehicle through a steep ascent cut into the foothills and through the newly completed Crafers tunnel. The cuttings leading up to the tunnel have steep sides that are 100 to 150 m high. The tunnel is cut through the rock and is approximately 750 m in length, and ascends for its full length. Figure 9-A. GPSi Track. In the tunnel there is zero satellite visibility. Notice how the GPSi solution (Figure 9-A) has continued to report position in the tunnel and has kept the vehicle on the road. Also note that there are no abrupt discontinuities as signal was lost on entry and re-acquired on exit. In contrast, the GPS solution (Figure 9-B) begins to repeat the same position after the signal is lost on entry to the tunnel. After the vehicle has exited, the GPS receiver takes some time to re-acquire and produce a solution. Notice how initially there is a large amount of error and it takes the receiver some time to get its solution back to within normal error limits. Figure 9-B. GPS Track. 13

14 Undercover Car Park For some applications (e.g. road user charging), accurately measuring distance overground is of prime importance. Calculating distance over ground from GPS measurements does not produce reliable results. There are a number of reasons for this: The GPS measurement rate (for AVL typically 1 to 10 sec) is such that significant loss of information can occur. For instance, if the GPS receiver was being sampled at 10 second intervals, and the vehicle drove 360º around a roundabout in that time interval, the system would calculate that zero distance had been covered; In areas of GPS signal degradation (e.g. CBDs or undercover areas) position measurement errors in the order of hundreds of meters can be reported. Calculating the distance between such points gives silly results. Figure 10 shows an every day occurrence for some of us; a trip to the shopping mall. No trip to the mall is complete without driving around and around searching for the best (undercover) parking space. In this case we tried for an undercover space but without luck. In the end we settled for an outside space. The interesting thing to note is the behavior of the GPS receiver while the vehicle was under cover. The GPSi solution depicts what the vehicle actually did. The GPS solution continues for a brief time undercover and then begins to produce some pretty strange measurements. If we were to calculate distance over-ground from these measurements we would be in error by hundreds of percent. In contrast, GPSi calculates distance over ground from the vehicle speed sensor which it continually re-calibrates from GPS so that accuracy is consistent over time. Figure 10. The effect of Signal Obstruction 14

15 CONCLUSIONS The positions provided by AVL GPS receivers have limitations due to the disruption of clear signals in an urban environment. The informed GPS user understands the limitations of their AVL receiver and demands either: A receiver that reports the quality of its solution; or If positions are required continuously even when the GPS signals are compromised, a second system that augments the AVL receiver with another navigation system. But whatever the application, users should insist that their GPS receiver reports the quality of the position solutions that it provides. Only by knowing the quality of the solution, can the results be interpreted intelligently. That is exactly why aviation users have RAIM when they rely on GPS for navigating their aircraft. An excellent means of augmenting GPS receivers for automobiles is with a dead reckoning system based on inertial sensors such as the one described here. Dead reckoning opens up a whole new world of applications not previously possible for low cost AVL receivers. If an application requires continuously available position, heading and speed, accurate distance over ground, an estimate of solution quality and immunity to common GPS problems such as shadowing and multipath, then GPS augmented with dead reckoning is an excellent solution. BIOGRAPHIES Chris Wood (chris.wood@neve.com.au) is a senior project engineer with Neve Technologies Pty Limited working on the GPSi project. Previously he was the project manager in charge of development of the software component of the Electronic Road Pricing (VPS) trials held by the Hong Kong Government. He has an honors degree in Electrical and Computer Systems Engineering from Monash University, Melbourne Australia. Dr. Owen Mace (owen.mace@neve.com.au) is chief scientist with Neve Technologies Pty Limited. He holds a Bachelor of Electrical Engineering (Electronics) and a Doctorate of Philosophy in physics from the University of Melbourne. After many years as a Senior Lecturer, he left academia to join industry. He has a passion for GPS technology despite of his ability to navigate at sea by dead reckoning. 15

16 GPSi Dead Reckoning White Paper Product Overview February 2001 This document is provided for informational purposes only and the information herein is subject to change without notice. Please report any error herein to Neve Technologies Pty Limited. Neve does not provide any warranties covering and specifically disclaims any liability in connection with this document. GPSi is a trademark of Neve Technologies Pty Limited. All other company and product names are used for identification purposes only and may be trademarks of their respective owners. Neve Technologies Pty Limited 83 First Avenue St. Peters, SA 5069 Australia Worldwide Inquires: Voice Fax info@neve.com.au Copyright Neve Technologies Pty Limited 2000, 2001 All Rights Reserved. Printed in Australia 16

VEHICLE INTEGRATED NAVIGATION SYSTEM

VEHICLE INTEGRATED NAVIGATION SYSTEM VEHICLE INTEGRATED NAVIGATION SYSTEM Ian Humphery, Fibersense Technology Corporation Christopher Reynolds, Fibersense Technology Corporation Biographies Ian P. Humphrey, Director of GPSI Engineering, Fibersense

More information

SPAN Technology System Characteristics and Performance

SPAN Technology System Characteristics and Performance SPAN Technology System Characteristics and Performance NovAtel Inc. ABSTRACT The addition of inertial technology to a GPS system provides multiple benefits, including the availability of attitude output

More information

INTELLIGENT LAND VEHICLE NAVIGATION: INTEGRATING SPATIAL INFORMATION INTO THE NAVIGATION SOLUTION

INTELLIGENT LAND VEHICLE NAVIGATION: INTEGRATING SPATIAL INFORMATION INTO THE NAVIGATION SOLUTION INTELLIGENT LAND VEHICLE NAVIGATION: INTEGRATING SPATIAL INFORMATION INTO THE NAVIGATION SOLUTION Stephen Scott-Young (sscott@ecr.mu.oz.au) Dr Allison Kealy (akealy@unimelb.edu.au) Dr Philip Collier (p.collier@unimelb.edu.au)

More information

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg

OughtToPilot. Project Report of Submission PC128 to 2008 Propeller Design Contest. Jason Edelberg OughtToPilot Project Report of Submission PC128 to 2008 Propeller Design Contest Jason Edelberg Table of Contents Project Number.. 3 Project Description.. 4 Schematic 5 Source Code. Attached Separately

More information

PHINS, An All-In-One Sensor for DP Applications

PHINS, An All-In-One Sensor for DP Applications DYNAMIC POSITIONING CONFERENCE September 28-30, 2004 Sensors PHINS, An All-In-One Sensor for DP Applications Yves PATUREL IXSea (Marly le Roi, France) ABSTRACT DP positioning sensors are mainly GPS receivers

More information

GLOBAL POSITIONING SYSTEMS. Knowing where and when

GLOBAL POSITIONING SYSTEMS. Knowing where and when GLOBAL POSITIONING SYSTEMS Knowing where and when Overview Continuous position fixes Worldwide coverage Latitude/Longitude/Height Centimeter accuracy Accurate time Feasibility studies begun in 1960 s.

More information

Robust Positioning for Urban Traffic

Robust Positioning for Urban Traffic Robust Positioning for Urban Traffic Motivations and Activity plan for the WG 4.1.4 Dr. Laura Ruotsalainen Research Manager, Department of Navigation and positioning Finnish Geospatial Research Institute

More information

NovAtel s. Performance Analysis October Abstract. SPAN on OEM6. SPAN on OEM6. Enhancements

NovAtel s. Performance Analysis October Abstract. SPAN on OEM6. SPAN on OEM6. Enhancements NovAtel s SPAN on OEM6 Performance Analysis October 2012 Abstract SPAN, NovAtel s GNSS/INS solution, is now available on the OEM6 receiver platform. In addition to rapid GNSS signal reacquisition performance,

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

Appendix D Brief GPS Overview

Appendix D Brief GPS Overview Appendix D Brief GPS Overview Global Positioning System (GPS) Theory What is GPS? The Global Positioning System (GPS) is a satellite-based navigation system, providing position information, accurate to

More information

Primer on GPS Operations

Primer on GPS Operations MP Rugged Wireless Modem Primer on GPS Operations 2130313 Rev 1.0 Cover illustration by Emma Jantz-Lee (age 11). An Introduction to GPS This primer is intended to provide the foundation for understanding

More information

Addressing Issues with GPS Data Accuracy and Position Update Rate for Field Traffic Studies

Addressing Issues with GPS Data Accuracy and Position Update Rate for Field Traffic Studies Addressing Issues with GPS Data Accuracy and Position Update Rate for Field Traffic Studies THIS FEATURE VALIDATES INTRODUCTION Global positioning system (GPS) technologies have provided promising tools

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

Mobile Positioning in Wireless Mobile Networks

Mobile Positioning in Wireless Mobile Networks Mobile Positioning in Wireless Mobile Networks Peter Brída Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina SLOVAKIA Outline Why Mobile Positioning?

More information

Chapter 5. Clock Offset Due to Antenna Rotation

Chapter 5. Clock Offset Due to Antenna Rotation Chapter 5. Clock Offset Due to Antenna Rotation 5. Introduction The goal of this experiment is to determine how the receiver clock offset from GPS time is affected by a rotating antenna. Because the GPS

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS

AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS MODELING, IDENTIFICATION AND CONTROL, 1999, VOL. 20, NO. 3, 165-175 doi: 10.4173/mic.1999.3.2 AN AIDED NAVIGATION POST PROCESSING FILTER FOR DETAILED SEABED MAPPING UUVS Kenneth Gade and Bjørn Jalving

More information

A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology

A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology A Positon and Orientation Post-Processing Software Package for Land Applications - New Technology Tatyana Bourke, Applanix Corporation Abstract This paper describes a post-processing software package that

More information

Receiver Technology CRESCENT OEM WHITE PAPER AMY DEWIS JENNIFER COLPITTS

Receiver Technology CRESCENT OEM WHITE PAPER AMY DEWIS JENNIFER COLPITTS CRESCENT OEM WHITE PAPER AMY DEWIS JENNIFER COLPITTS With offices in Kansas City, Hiawatha, Calgary and Scottsdale, Hemisphere GPS is a global leader in designing and manufacturing innovative, costeffective,

More information

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation

Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Integration of GPS with a Rubidium Clock and a Barometer for Land Vehicle Navigation Zhaonian Zhang, Department of Geomatics Engineering, The University of Calgary BIOGRAPHY Zhaonian Zhang is a MSc student

More information

SENSORS SESSION. Operational GNSS Integrity. By Arne Rinnan, Nina Gundersen, Marit E. Sigmond, Jan K. Nilsen

SENSORS SESSION. Operational GNSS Integrity. By Arne Rinnan, Nina Gundersen, Marit E. Sigmond, Jan K. Nilsen Author s Name Name of the Paper Session DYNAMIC POSITIONING CONFERENCE 11-12 October, 2011 SENSORS SESSION By Arne Rinnan, Nina Gundersen, Marit E. Sigmond, Jan K. Nilsen Kongsberg Seatex AS Trondheim,

More information

10/21/2009. d R. d L. r L d B L08. POSE ESTIMATION, MOTORS. EECS 498-6: Autonomous Robotics Laboratory. Midterm 1. Mean: 53.9/67 Stddev: 7.

10/21/2009. d R. d L. r L d B L08. POSE ESTIMATION, MOTORS. EECS 498-6: Autonomous Robotics Laboratory. Midterm 1. Mean: 53.9/67 Stddev: 7. 1 d R d L L08. POSE ESTIMATION, MOTORS EECS 498-6: Autonomous Robotics Laboratory r L d B Midterm 1 2 Mean: 53.9/67 Stddev: 7.73 1 Today 3 Position Estimation Odometry IMUs GPS Motor Modelling Kinematics:

More information

3DM-GX3-45 Theory of Operation

3DM-GX3-45 Theory of Operation Theory of Operation 8500-0016 Revision 001 3DM-GX3-45 Theory of Operation www.microstrain.com Little Sensors, Big Ideas 2012 by MicroStrain, Inc. 459 Hurricane Lane Williston, VT 05495 United States of

More information

Today s modern vector network analyzers

Today s modern vector network analyzers DISTORTION INHERENT TO VNA TEST PORT CABLE ASSEMBLIES Fig. 1 VNA shown with a flexible test port cable assembly on. Today s modern vector network analyzers (VNA) are the product of evolutionary advances

More information

Chapter 6 GPS Relative Positioning Determination Concepts

Chapter 6 GPS Relative Positioning Determination Concepts Chapter 6 GPS Relative Positioning Determination Concepts 6-1. General Absolute positioning, as discussed earlier, will not provide the accuracies needed for most USACE control projects due to existing

More information

Problem Areas of DGPS

Problem Areas of DGPS DYNAMIC POSITIONING CONFERENCE October 13 14, 1998 SENSORS Problem Areas of DGPS R. H. Prothero & G. McKenzie Racal NCS Inc. (Houston) Table of Contents 1.0 ABSTRACT... 2 2.0 A TYPICAL DGPS CONFIGURATION...

More information

UniTraQ OEM Module. GT-310F (Flash version) Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module. Features

UniTraQ OEM Module. GT-310F (Flash version) Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module. Features UniTraQ OEM Module Features 12 parallel channel GPS receiver 4000 simultaneous time-frequency search bins SBAS (WAAS, EGNOS) support Programmable Flash version -140dBm acquisition sensitivity -150dBm tracking

More information

Vehicle Speed Estimation Using GPS/RISS (Reduced Inertial Sensor System)

Vehicle Speed Estimation Using GPS/RISS (Reduced Inertial Sensor System) ISSC 2013, LYIT Letterkenny, June 20 21 Vehicle Speed Estimation Using GPS/RISS (Reduced Inertial Sensor System) Thomas O Kane and John V. Ringwood Department of Electronic Engineering National University

More information

Release Notes. Contents. u-blox M8 UDR 1.21 Firmware for UDR products UBX Martin Wallebohr 27 August 2018

Release Notes. Contents. u-blox M8 UDR 1.21 Firmware for UDR products UBX Martin Wallebohr 27 August 2018 Release Notes Topic Author Date u-blox M8 UDR 1.21 Firmware for UDR products UBX-18050702 Martin Wallebohr 27 August 2018 Copying, reproduction, modification or disclosure to third parties of this document

More information

Inertially Aided RTK Performance Evaluation

Inertially Aided RTK Performance Evaluation Inertially Aided RTK Performance Evaluation Bruno M. Scherzinger, Applanix Corporation, Richmond Hill, Ontario, Canada BIOGRAPHY Dr. Bruno M. Scherzinger obtained the B.Eng. degree from McGill University

More information

1 General Information... 2

1 General Information... 2 Release Note Topic : u-blox M8 Flash Firmware 3.01 UDR 1.00 UBX-16009439 Author : ahaz, yste, amil Date : 01 June 2016 We reserve all rights in this document and in the information contained therein. Reproduction,

More information

Intelligent Transport Systems and GNSS. ITSNT 2017 ENAC, Toulouse, France 11/ Nobuaki Kubo (TUMSAT)

Intelligent Transport Systems and GNSS. ITSNT 2017 ENAC, Toulouse, France 11/ Nobuaki Kubo (TUMSAT) Intelligent Transport Systems and GNSS ITSNT 2017 ENAC, Toulouse, France 11/14-17 2017 Nobuaki Kubo (TUMSAT) Contents ITS applications in Japan How can GNSS contribute to ITS? Current performance of GNSS

More information

POWERGPS : A New Family of High Precision GPS Products

POWERGPS : A New Family of High Precision GPS Products POWERGPS : A New Family of High Precision GPS Products Hiroshi Okamoto and Kazunori Miyahara, Sokkia Corp. Ron Hatch and Tenny Sharpe, NAVCOM Technology Inc. BIOGRAPHY Mr. Okamoto is the Manager of Research

More information

Keywords. DECCA, OMEGA, VOR, INS, Integrated systems

Keywords. DECCA, OMEGA, VOR, INS, Integrated systems Keywords. DECCA, OMEGA, VOR, INS, Integrated systems 7.4 DECCA Decca is also a position-fixing hyperbolic navigation system which uses continuous waves and phase measurements to determine hyperbolic lines-of

More information

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney GPS and Recent Alternatives for Localisation Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney Global Positioning System (GPS) All-weather and continuous signal system designed

More information

Quartz Lock Loop (QLL) For Robust GNSS Operation in High Vibration Environments

Quartz Lock Loop (QLL) For Robust GNSS Operation in High Vibration Environments Quartz Lock Loop (QLL) For Robust GNSS Operation in High Vibration Environments A Topcon white paper written by Doug Langen Topcon Positioning Systems, Inc. 7400 National Drive Livermore, CA 94550 USA

More information

POSITIONING AN AUTONOMOUS OFF-ROAD VEHICLE BY USING FUSED DGPS AND INERTIAL NAVIGATION. T. Schönberg, M. Ojala, J. Suomela, A. Torpo, A.

POSITIONING AN AUTONOMOUS OFF-ROAD VEHICLE BY USING FUSED DGPS AND INERTIAL NAVIGATION. T. Schönberg, M. Ojala, J. Suomela, A. Torpo, A. POSITIONING AN AUTONOMOUS OFF-ROAD VEHICLE BY USING FUSED DGPS AND INERTIAL NAVIGATION T. Schönberg, M. Ojala, J. Suomela, A. Torpo, A. Halme Helsinki University of Technology, Automation Technology Laboratory

More information

GT-720F (Flash version) Fast Acquisition Enhanced Sensitivity 65 Channel GPS Sensor Module

GT-720F (Flash version) Fast Acquisition Enhanced Sensitivity 65 Channel GPS Sensor Module GT-720F (Flash version) Fast Acquisition Enhanced Sensitivity 65 Channel GPS Sensor Module The GT-720F is a compact all-in-one GPS module solution intended for a broad range of Original Equipment Manufacturer

More information

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic 1.0 Introduction OpenSource GPS is open source software that runs a GPS receiver based on the Zarlink GP2015 / GP2021 front end and digital processing chipset. It is a fully functional GPS receiver which

More information

High Precision GNSS in Automotive

High Precision GNSS in Automotive High Precision GNSS in Automotive Jonathan Auld, VP Engineering and Safety 6, March, 2018 2 Global OEM Positioning Solutions and Services for Land, Sea, and Air. GNSS in Automotive Today Today the primary

More information

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC GPS GPS, which stands for Global Positioning System, is the only system today able to show you your exact position on the Earth anytime,

More information

GMS6-CR6(SIRF-IV) Fast Acquisition Enhanced Sensitivity 48 Channel GPS Sensor Module

GMS6-CR6(SIRF-IV) Fast Acquisition Enhanced Sensitivity 48 Channel GPS Sensor Module GMS6-CR6(SIRF-IV) Fast Acquisition Enhanced Sensitivity 48 Channel GPS Sensor Module The GMS6-CR6 is a compact all-in-one GPS module solution intended for a broad range of Original Equipment Manufacturer

More information

Smart Design Technology Co., Ltd.

Smart Design Technology Co., Ltd. Mars700Mini-TMC GNS TC5000 TMC Module Smart Design Technology Co., Ltd. 20F-8, No.107, Sec 1,Jhongshan Rd. Sinjhuang City, Taipei County 242, Taiwan Phone: +886-2-8522-7628 Fax: +886-2-8522-7784 Contact:

More information

A VIRTUAL VALIDATION ENVIRONMENT FOR THE DESIGN OF AUTOMOTIVE SATELLITE BASED NAVIGATION SYSTEMS FOR URBAN CANYONS

A VIRTUAL VALIDATION ENVIRONMENT FOR THE DESIGN OF AUTOMOTIVE SATELLITE BASED NAVIGATION SYSTEMS FOR URBAN CANYONS 49. Internationales Wissenschaftliches Kolloquium Technische Universität Ilmenau 27.-30. September 2004 Holger Rath / Peter Unger /Tommy Baumann / Andreas Emde / David Grüner / Thomas Lohfelder / Jens

More information

Chapter 2 Analog-to-Digital Conversion...

Chapter 2 Analog-to-Digital Conversion... Chapter... 5 This chapter examines general considerations for analog-to-digital converter (ADC) measurements. Discussed are the four basic ADC types, providing a general description of each while comparing

More information

GPS data correction using encoders and INS sensors

GPS data correction using encoders and INS sensors GPS data correction using encoders and INS sensors Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, Avenue de la Renaissance 30, 1000 Brussels, Belgium sidahmed.berrabah@rma.ac.be

More information

The experimental evaluation of the EGNOS safety-of-life services for railway signalling

The experimental evaluation of the EGNOS safety-of-life services for railway signalling Computers in Railways XII 735 The experimental evaluation of the EGNOS safety-of-life services for railway signalling A. Filip, L. Bažant & H. Mocek Railway Infrastructure Administration, LIS, Pardubice,

More information

SPEEDBOX Technical Datasheet

SPEEDBOX Technical Datasheet SPEEDBOX Technical Datasheet Race Technology Limited, 2008 Version 1.1 1. Introduction... 3 1.1. Product Overview... 3 1.2. Applications... 3 1.3. Standard Features... 3 2. Port / Connector details...

More information

GPS-41EBR GPS-41EBF. GPS Receiver Module GPS-41EB. Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module FEATURES. Ordering Information

GPS-41EBR GPS-41EBF. GPS Receiver Module GPS-41EB. Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module FEATURES. Ordering Information FEATURES 12 parallel channel GPS receiver 4000 simultaneous time-frequency search bins SBAS (WAAS, EGNOS) support High Sensitivity: -140dBm acquisition sensitivity -150dBm tracking sensitivity Fast Acquisition:

More information

Aircraft Scatter Propagation on 10 GHz using JT65C

Aircraft Scatter Propagation on 10 GHz using JT65C Aircraft Scatter Propagation on 10 GHz using JT65C Results of initial Tests over a 624 km Path By Rex Moncur VK7MO and David Smith VK3HZ This is an initial report of our first tests of 10 GHz propagation

More information

PDHonline Course L105 (12 PDH) GPS Surveying. Instructor: Jan Van Sickle, P.L.S. PDH Online PDH Center

PDHonline Course L105 (12 PDH) GPS Surveying. Instructor: Jan Van Sickle, P.L.S. PDH Online PDH Center PDHonline Course L105 (12 PDH) GPS Surveying Instructor: Jan Van Sickle, P.L.S. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

OEM Done Right: Hemisphere GNSS & Carlson Software Bring Lightweight, State-of-the-Art Receivers to Market

OEM Done Right: Hemisphere GNSS & Carlson Software Bring Lightweight, State-of-the-Art Receivers to Market OEM Done Right: Hemisphere GNSS & Carlson Software Bring Lightweight, State-of-the-Art Receivers to Market For land surveyors and others in careers that rely on constant use of GPS and GNSS technology,

More information

GT-321R-RS232 Fast Acquisition Enhanced Sensitivity 65 Channels GPS Sensor Receiver

GT-321R-RS232 Fast Acquisition Enhanced Sensitivity 65 Channels GPS Sensor Receiver GT-321R-RS232 Fast Acquisition Enhanced Sensitivity 65 Channels GPS Sensor Receiver The GT-321R-RS232 is a compact all-in-one GPS module solution intended for a broad range of Original Equipment Manufacturer

More information

V2X-Locate Positioning System Whitepaper

V2X-Locate Positioning System Whitepaper V2X-Locate Positioning System Whitepaper November 8, 2017 www.cohdawireless.com 1 Introduction The most important piece of information any autonomous system must know is its position in the world. This

More information

RECOMMENDATION ITU-R BS

RECOMMENDATION ITU-R BS Rec. ITU-R BS.1350-1 1 RECOMMENDATION ITU-R BS.1350-1 SYSTEMS REQUIREMENTS FOR MULTIPLEXING (FM) SOUND BROADCASTING WITH A SUB-CARRIER DATA CHANNEL HAVING A RELATIVELY LARGE TRANSMISSION CAPACITY FOR STATIONARY

More information

GE 113 REMOTE SENSING

GE 113 REMOTE SENSING GE 113 REMOTE SENSING Topic 9. Introduction to Global Positioning Systems (GPS) and Other GNSS Technologies Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering

More information

Table of Contents. Frequently Used Abbreviation... xvii

Table of Contents. Frequently Used Abbreviation... xvii GPS Satellite Surveying, 2 nd Edition Alfred Leick Department of Surveying Engineering, University of Maine John Wiley & Sons, Inc. 1995 (Navtech order #1028) Table of Contents Preface... xiii Frequently

More information

HG4930 INERTIAL MEASUREMENT UNIT (IMU) Performance and Environmental Information

HG4930 INERTIAL MEASUREMENT UNIT (IMU) Performance and Environmental Information HG493 INERTIAL MEASUREMENT UNIT () Performance and Environmental Information HG493 Performance and Environmental Information aerospace.honeywell.com/hg493 2 Table of Contents 4 4 5 5 6 7 8 9 9 9 Honeywell

More information

Key Modules For Your Success. ANTARIS 4 SuperSense. GPS Module. User s Manual Ver 展得國際有限公司

Key Modules For Your Success. ANTARIS 4 SuperSense. GPS Module. User s Manual Ver 展得國際有限公司 ANTARIS 4 SuperSense GPS Module User s Manual Ver 1.01 Item Date New Release Information In Charge 1 2006/06/06 New released. Harry Lee 2 Contents 1. INTRODUCTION... 4 1.1 OVERVIEW. 4 1.2 MAIN FEATURES...

More information

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful?

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful? Brainstorm In addition to cameras / Kinect, what other kinds of sensors would be useful? How do you evaluate different sensors? Classification of Sensors Proprioceptive sensors measure values internally

More information

Integrated Navigation System

Integrated Navigation System Integrated Navigation System Adhika Lie adhika@aem.umn.edu AEM 5333: Design, Build, Model, Simulate, Test and Fly Small Uninhabited Aerial Vehicles Feb 14, 2013 1 Navigation System Where am I? Position,

More information

Evaluation of RTKLIB's Positioning Accuracy Using low-cost GNSS Receiver and ASG-EUPOS

Evaluation of RTKLIB's Positioning Accuracy Using low-cost GNSS Receiver and ASG-EUPOS http://www.transnav.eu the International Journal on Marine Navigation and Safety of Sea Transportation Volume 7 Number 1 March 2013 DOI: 10.12716/1001.07.01.10 Evaluation of RTKLIB's Positioning Accuracy

More information

GPS-41MLR GPS-41MLF. GPS Receiver Module GPS-41ML. Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module FEATURES. Ordering Information

GPS-41MLR GPS-41MLF. GPS Receiver Module GPS-41ML. Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module FEATURES. Ordering Information GPS-41ML Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module FEATURES 12 parallel channel GPS receiver 4100 simultaneous time-frequency search bins SBAS (WAAS, EGNOS) support High Sensitivity:

More information

NMEA2000- Par PGN. Mandatory Request, Command, or Acknowledge Group Function Receive/Transmit PGN's

NMEA2000- Par PGN. Mandatory Request, Command, or Acknowledge Group Function Receive/Transmit PGN's PGN Number Category Notes - Datum Local geodetic datum and datum offsets from a reference datum. T The Request / Command / Acknowledge Group type of 126208 - NMEA - Request function is defined by first

More information

FLASH LiDAR KEY BENEFITS

FLASH LiDAR KEY BENEFITS In 2013, 1.2 million people died in vehicle accidents. That is one death every 25 seconds. Some of these lives could have been saved with vehicles that have a better understanding of the world around them

More information

Pixel Response Effects on CCD Camera Gain Calibration

Pixel Response Effects on CCD Camera Gain Calibration 1 of 7 1/21/2014 3:03 PM HO M E P R O D UC T S B R IE F S T E C H NO T E S S UP P O RT P UR C HA S E NE W S W E B T O O L S INF O C O NTA C T Pixel Response Effects on CCD Camera Gain Calibration Copyright

More information

An internal gyroscope minimizes the influence of dynamic linear acceleration on slope sensor readings.

An internal gyroscope minimizes the influence of dynamic linear acceleration on slope sensor readings. TECHNICAL DATASHEET #TDAX06070X Triaxial Inclinometer with Gyro ±180⁰ Pitch/Roll Angle Pitch Angle Rate Acceleration SAE J1939, Analog Output or RS-232 Options 2 M12 Connectors, IP67 with Electronic Assistant

More information

ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM

ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM ECE 174 Computer Assignment #2 Due Thursday 12/6/2012 GLOBAL POSITIONING SYSTEM (GPS) ALGORITHM Overview By utilizing measurements of the so-called pseudorange between an object and each of several earth

More information

Introduction to the Global Positioning System

Introduction to the Global Positioning System GPS for Fire Management - 2004 Introduction to the Global Positioning System Pre-Work Pre-Work Objectives Describe at least three sources of GPS signal error, and identify ways to mitigate or reduce those

More information

Measuring GALILEOs multipath channel

Measuring GALILEOs multipath channel Measuring GALILEOs multipath channel Alexander Steingass German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany alexander.steingass@dlr.de Co-Authors: Andreas Lehner, German Aerospace Center,

More information

Dynamic Angle Estimation

Dynamic Angle Estimation Dynamic Angle Estimation with Inertial MEMS Analog Devices Bob Scannell Mark Looney Agenda Sensor to angle basics Accelerometer basics Accelerometer behaviors Gyroscope basics Gyroscope behaviors Key factors

More information

Measuring Galileo s Channel the Pedestrian Satellite Channel

Measuring Galileo s Channel the Pedestrian Satellite Channel Satellite Navigation Systems: Policy, Commercial and Technical Interaction 1 Measuring Galileo s Channel the Pedestrian Satellite Channel A. Lehner, A. Steingass, German Aerospace Center, Münchnerstrasse

More information

CHAPTER. delta-sigma modulators 1.0

CHAPTER. delta-sigma modulators 1.0 CHAPTER 1 CHAPTER Conventional delta-sigma modulators 1.0 This Chapter presents the traditional first- and second-order DSM. The main sources for non-ideal operation are described together with some commonly

More information

GPS-Aided INS Datasheet Rev. 3.0

GPS-Aided INS Datasheet Rev. 3.0 1 GPS-Aided INS The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO, QZSS, BEIDOU and L-Band navigation

More information

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION Journal of Young Scientist, Volume IV, 2016 ISSN 2344-1283; ISSN CD-ROM 2344-1291; ISSN Online 2344-1305; ISSN-L 2344 1283 ARDUINO BASED CALIBRATION OF AN INERTIAL SENSOR IN VIEW OF A GNSS/IMU INTEGRATION

More information

GPS Glossary Written by Carl Carter SiRF Technology 2005

GPS Glossary Written by Carl Carter SiRF Technology 2005 GPS Glossary Written by Carl Carter SiRF Technology 2005 This glossary provides supplementary information for students of GPS Fundamentals. While many of the terms can have other definitions from those

More information

Design of Simulcast Paging Systems using the Infostream Cypher. Document Number Revsion B 2005 Infostream Pty Ltd. All rights reserved

Design of Simulcast Paging Systems using the Infostream Cypher. Document Number Revsion B 2005 Infostream Pty Ltd. All rights reserved Design of Simulcast Paging Systems using the Infostream Cypher Document Number 95-1003. Revsion B 2005 Infostream Pty Ltd. All rights reserved 1 INTRODUCTION 2 2 TRANSMITTER FREQUENCY CONTROL 3 2.1 Introduction

More information

Dynamic Positioning TCommittee

Dynamic Positioning TCommittee RETURN TO DIRETORetr Dynamic Positioning TCommittee PMarine Technology Society DYNAMIC POSITIONING CONFERENCE October 17 18, 2000 ADVANCES IN TECHNOLOGY Removal of GPS Selective Availability - Consequences

More information

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning Summer School on GNSS 2014 Student Scholarship Award Workshop August 2, 2014 3D-Map Aided Multipath Mitigation for Urban GNSS Positioning I-Wen Chu National Cheng Kung University, Taiwan. Page 1 Outline

More information

UNIT 1 - introduction to GPS

UNIT 1 - introduction to GPS UNIT 1 - introduction to GPS 1. GPS SIGNAL Each GPS satellite transmit two signal for positioning purposes: L1 signal (carrier frequency of 1,575.42 MHz). Modulated onto the L1 carrier are two pseudorandom

More information

High Precision Urban and Indoor Positioning for Public Safety

High Precision Urban and Indoor Positioning for Public Safety High Precision Urban and Indoor Positioning for Public Safety NextNav LLC September 6, 2012 2012 NextNav LLC Mobile Wireless Location: A Brief Background Mass-market wireless geolocation for wireless devices

More information

NJDEP GPS Data Collection Standards for GIS Data Development

NJDEP GPS Data Collection Standards for GIS Data Development NJDEP GPS Data Collection Standards for GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management April 24 th, 2017 Table of Contents 1.0 Introduction... 3

More information

Performance Evaluation of the Effect of QZS (Quasi-zenith Satellite) on Precise Positioning

Performance Evaluation of the Effect of QZS (Quasi-zenith Satellite) on Precise Positioning Performance Evaluation of the Effect of QZS (Quasi-zenith Satellite) on Precise Positioning Nobuaki Kubo, Tomoko Shirai, Tomoji Takasu, Akio Yasuda (TUMST) Satoshi Kogure (JAXA) Abstract The quasi-zenith

More information

Introduction to Datums James R. Clynch February 2006

Introduction to Datums James R. Clynch February 2006 Introduction to Datums James R. Clynch February 2006 I. What Are Datums in Geodesy and Mapping? A datum is the traditional answer to the practical problem of making an accurate map. If you do not have

More information

INTRODUCTION TO C-NAV S IMCA COMPLIANT QC DISPLAYS

INTRODUCTION TO C-NAV S IMCA COMPLIANT QC DISPLAYS INTRODUCTION TO C-NAV S IMCA COMPLIANT QC DISPLAYS 730 East Kaliste Saloom Road Lafayette, Louisiana, 70508 Phone: +1 337.210.0000 Fax: +1 337.261.0192 DOCUMENT CONTROL Revision Author Revision description

More information

Raveon M7 GX Frequently Asked Questions

Raveon M7 GX Frequently Asked Questions Technical Brief AN134Rev A3 Raveon M7 GX Frequently Asked Questions By John Sonnenberg Raveon Technologies Corp How far will a 5-watt UHF radio communicate? An excellent question, but very difficult to

More information

Introduction to the Global Positioning System

Introduction to the Global Positioning System GPS for ICS - 2003 Introduction to the Global Positioning System Pre-Work Pre-Work Objectives Describe at least three sources of GPS signal error, and ways to mitigate or reduce those errors. Identify

More information

Global Navigation Satellite Systems II

Global Navigation Satellite Systems II Global Navigation Satellite Systems II AERO4701 Space Engineering 3 Week 4 Last Week Examined the problem of satellite coverage and constellation design Looked at the GPS satellite constellation Overview

More information

GPS-Aided INS Datasheet Rev. 2.7

GPS-Aided INS Datasheet Rev. 2.7 1 The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO, QZSS and BEIDOU navigation and highperformance

More information

Heuristic Drift Reduction for Gyroscopes in Vehicle Tracking Applications

Heuristic Drift Reduction for Gyroscopes in Vehicle Tracking Applications White Paper Heuristic Drift Reduction for Gyroscopes in Vehicle Tracking Applications by Johann Borenstein Last revised: 12/6/27 ABSTRACT The present invention pertains to the reduction of measurement

More information

If you want to use an inertial measurement system...

If you want to use an inertial measurement system... If you want to use an inertial measurement system...... which technical data you should analyse and compare before making your decision by Dr.-Ing. E. v. Hinueber, imar Navigation GmbH Keywords: inertial

More information

UNIT 26 ELECTRONIC AIDS TO NAVIGATION

UNIT 26 ELECTRONIC AIDS TO NAVIGATION UNIT 26 ELECTRONIC AIDS TO NAVIGATION Basic terms aid to navigation >Loran-C >Omega >Transit satellite >GPS >hyperbolic systems > satellite navigation system >fix accuracy small-screen >satnav receiver

More information

Errors in GPS. Errors in GPS. Geodetic Co-ordinate system. R. Khosla Fall Semester

Errors in GPS. Errors in GPS. Geodetic Co-ordinate system. R. Khosla Fall Semester Errors in GPS Errors in GPS GPS is currently the most accurate positioning system available globally. Although we are talking about extreme precision and measuring distances by speed of light, yet there

More information

BW-VG525 Serials. High Precision CAN bus Dynamic Inclination Sensor. Technical Manual

BW-VG525 Serials. High Precision CAN bus Dynamic Inclination Sensor. Technical Manual Serials High Precision CAN bus Dynamic Inclination Sensor Technical Manual Introduction The Dynamic Inclination Sensor is a high precision inertial measurement device that measures the attitude parameters

More information

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC

More information

Integrated Dual-Axis Gyro IDG-1004

Integrated Dual-Axis Gyro IDG-1004 Integrated Dual-Axis Gyro NOT RECOMMENDED FOR NEW DESIGNS. PLEASE REFER TO THE IDG-25 FOR A FUTIONALLY- UPGRADED PRODUCT APPLICATIONS GPS Navigation Devices Robotics Electronic Toys Platform Stabilization

More information

The information carrying capacity of a channel

The information carrying capacity of a channel Chapter 8 The information carrying capacity of a channel 8.1 Signals look like noise! One of the most important practical questions which arises when we are designing and using an information transmission

More information

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt METIS Second Master Training & Seminar Augmentation Systems Available in Egypt By Eng. Ramadan Salem M. Sc. Surveying and Geodesy Email: ramadan_salem@link.net Page 1 Augmentation Systems Available in

More information

IG-2500 OPERATIONS GROUND CONTROL Updated Wednesday, October 02, 2002

IG-2500 OPERATIONS GROUND CONTROL Updated Wednesday, October 02, 2002 IG-2500 OPERATIONS GROUND CONTROL Updated Wednesday, October 02, 2002 CONVENTIONS USED IN THIS GUIDE These safety alert symbols are used to alert about hazards or hazardous situations that can result in

More information

Helicopter Aerial Laser Ranging

Helicopter Aerial Laser Ranging Helicopter Aerial Laser Ranging Håkan Sterner TopEye AB P.O.Box 1017, SE-551 11 Jönköping, Sweden 1 Introduction Measuring distances with light has been used for terrestrial surveys since the fifties.

More information