Helicopter Aerial Laser Ranging

Size: px
Start display at page:

Download "Helicopter Aerial Laser Ranging"

Transcription

1 Helicopter Aerial Laser Ranging Håkan Sterner TopEye AB P.O.Box 1017, SE Jönköping, Sweden 1 Introduction Measuring distances with light has been used for terrestrial surveys since the fifties. The instruments measured the distance between itself and a reflecting prism. When the Laser Range finder was introduced in military target acquisition systems a requirement to measure against basically any undefined surface with as few laser pulses as possible was introduced. The military requirement has driven the development of Laser Range Finders and hence generated an instrument technology that is well suited for capturing geographical information. Profiling systems, since 1970's airborne Laser Range Finders have been used to capture terrain profiles. The principle is basically that a geographically positioned aircraft measures the distance from the aircraft to the ground/object and consequently assigns a geographical position to the measured point on the ground. Scanning area/corridor capturing systems, basically creates a three dimensional digital terrain model (DTM) as the sensor is passing; push broom principle. The leading edge technology needed to build such a system has only recently been made available. Technology enhancements in the following areas have made it possible to make scanning systems: GPS positioning systems, accurate XYZ position. Inertial system, high resolution. Laser Range Finder; single pulse measurements with high Pulse Repetition Frequency. Scanning and stabilization systems. The advanced laser systems are made to be eye safe and have LRF's with a Pulse Repetition Frequency (PRF) up to 8000 Hz and a capability to distinguish multiple returns from each laser sounding. The absolute accuracy for a single point on the face of the earth can be better than 15 cm. 1.1 Key Applications Building digital terrain models is the principle application for any type of airborne Laser Range Finder. A key advantage versus alternate methods is that the laser, used as a "probe", makes it possible to penetrate through a tree canopy and hence finding the true ground. Advanced systems that can discriminate up to four returns from each laser pulse, provides a wealth of data that can be used to determine tree height, bushes, etc.

2 Applications are opened or augmented because the method circumvents previous obstacles. The advantages in this respect are possibly mainly the time and/or cost reduction concurrent with the technologies inherent advantages - reaching to the ground and measuring objects without texture such as tidal flats. Examples in this area are environmental modeling, related to natural disasters such as flooding, erosion and 3D city modeling for propagation models (telecommunication, noise, pollution..). Transmission lines can easily be mapped. One single survey flight can capture the data to: Map the location of the transmission towers and the right of way. Data to measure the line sag for each catinary - can be used in an engineering model to determine the transmission capacity of a segment ampacity. Identify potential danger trees - arcing between the conductor and a treetop can create forest fires and electricity outages. From the data set a work order can be generated to dispatch a field crew to take down a specific tree at a defined location (GPS coordinates). The same data set can be used for mapping, engineering and operational procedures and thus creates a new dimension in the use of spatial data. It is feasible to establish surveillance systems that on a regular basis monitor a transmission line for various parameters; encroachment, line sag, snow jeopardy, etc Danger Trees

3 2 Survey Process Any airborne survey system needs to take a number of factors into consideration. This paper discusses only the primary data acquisition process. Where the data capturing process ends and the mapping process starts determines to what extent data needs to be integrated with other information to produce the deliverable product. Survey Plan Survey Flight Post Proc. Airborne Equipment GPS Radio Link Post Processing Software Ground Reference Station 2.1 Survey Planning Part of the survey planning is standard procedure, for example; defining the survey area or object and planning the approach flight, refueling location, etc. Most are the same as for any aircraft operation. However, selecting reference points, plotting flight lines and way points requires an understanding of both flying and surveying. If the positioning system is based on GPS, the satellite availability and configuration must be checked for the period the survey flight is planned. The satellite configuration is correlated to achievable GPS position accuracy and is thus related to the required accuracy. The LRF sensor parameters need to be defined for systems using an advanced Laser Range Finder. Parameters such as beam divergence, ground separation between each laser pulse and how the returns shall be digitized. The selection is related to the purpose for which the data is to be used.

4 2.2 Survey flight - Capturing the Data The Laser Range Finder system is either designed for a special purpose dedicated aircraft or designed as a mobile system that can use a general-purpose aircraft. Saab has chosen the latter to accommodate maximum utilization of the system and to incorporate pilot guidance and support to make the survey flight itself as routine as ever possible. To achieve highest possible accuracy a ground reference station is needed to capture GPS data for the post processing. Commercial differential GPS services (e.g.rds; Oministar) or a radio link is needed to provide the pilot guidance system with better real-time accuracy. A Scanning Laser system is not affected by weather and lighting conditions. As the flying altitude is below 500 meters (1,600 feet) the cloud base is seldom a problem nor is turbulent air. However, rain and snowfall are conditions best avoided. 2.3 Post processing The post processing can be seen as two separate procedures. The first phase is related to determine the GPS position of the aircraft. Combining the GPS data from the aircraft with the data captured by the ground reference station does this. This will provide two very accurate positions for every second of the survey mission. Considering that up to 8000 laser soundings can be done per second, two GPS positions during the same time is far from sufficient. Henceforth, the second phase, is where the Inertial Navigation System (INS) data determines the exact position for each laser sounding. This position and the attitude of the scanner combined with the data from the LRF will produce up to four Geo-referenced XYZ positions for each laser sounding. To facilitate the subsequent processing of the data, each XYZ position is also tagged with a time stamp and quality information that defines what kind of laser echo was retained for every single position. Generating the DTM itself and extracting features is the next process and is not included in the primary data acquisition. Establishing the DTM is done according to common practice. Extracting a transmission line and determining the line sag between every tower is probably not that widespread practice and can be seen as one good illustration of what integration of advanced technology can do to be of service to the community. 3 Customer benefits 3.1 Lead time As the method is only to a limited extent affected by weather, tree canopy and other ground conditions, data can be captured when needed even if it is out of traditional season. The significantly shorter process time further reduces the total lead-time from identified need to available data.

5 3.2 Cost efficiency Capturing the data is less costly than alternate methods. The saving is due to elimination of activities such as ground control, model orientation, etc. The primary data is closer to the desired finished result that further enhances the cost efficiency compared with alternative methods. 3.3 Penetration to the ground Using photogrammetric methods requires that a given point be represented in two images constituting a stereo pair. This can be very difficult to achieve in both rural forested areas as well as in urban areas with high rise buildings and narrow streets. A single probing laser pulse will reach the ground in these types of areas and produce the XYZ coordinates from the ground. 3.4 High XYZ accuracy for small objects Measuring electrical transmission line sag has been a cumbersome task that with this method can be done in a highly automated process. Other survey and surveillance applications will surface as currently un-served needs are efficiently addressed. 4 Accuracy Defining accuracy is by itself a rather large task. The achieved absolute accuracy for an individual point is a result of the precision of a number of sub-systems: How accurate is each GPS position Precision and resolution of the INS How well can the LRF determine the distance between the sensor and the target. How precisely the scanner is moving. How fast and precise the stabilization system compensates for aircraft movements. XYZ 30cm 10 cm Absolute Accuracy Altitude Relative Accuracy The actual achieved accuracy is related to the quality of the engineering work, manufacturing of each component and the assembly of the system. The result will also be dependent of the professional skill of the team operating the system. The relative accuracy will be significantly better than the absolute due to the error contribution from the INS platform. The INS platform has a drift in accuracy that is stable in a short term perspective while the accuracy in GPS and LRF systems are more random.

6 An absolute accuracy of cm can be achieved with components available today. To reduce the absolute accuracy to better than 5 cm is probably beyond reach. The relative accuracy is significantly better and can be further enhanced by various filtering methods. 5 Past Technology Progression 5.1 Positioning GPS positioning systems that allows for 5-10 centimeter accurate XYZ positioning of the sensor platform that is today readily available. 5.2 Inertial Platforms - Laser Ring Gyro An inertial system that provides accurate position between the GPS fixes (2 Hz) and also controls the stabilization system is a required subsystem. The modern Laser Ring Gyros that is sturdy and fast enough to be used in-stable fighters planes, accommodates the need for fast and high precision inertial data. 5.3 Laser Range Finder A Laser Range Finder (LRF) using diode pumped lasers that allow for high pulse repeat frequencies is used to obtain high accuracy measurement and multiple distances from one single laser pulse. 5.4 Stabilized scanning Saab has during a number of years developed scanning and stabilization systems for optical systems. The technology has been used to produce a scanner that delivers a consistent laser scan pattern. 6 Helicopter versus Fixed Wing A Helicopter can operate from any reasonable flat area and does not need the access of an airfield. This is increases the operational efficiency and directly reduces operational expenses. It is easy for a Helicopter to follow any winding corridor. It can even stand still in the air and make turns without any banking - so called flat turns. A Helicopter is a remarkably stable aircraft even in turbulent air. Flying is normally done in uncontrolled airspace that further facilitates the ease of operation. A Helicopter will always be more expensive per flying hour versus a fixed wing aircraft. If the specific operational advantages of a Helicopter are not needed, then a fixed wing airplane is a better alternative.

7 The principles for rotary and fixed wing systems are the same. However, the engineering consideration that comes into play when designing a system for a Helicopter is quite different to a fixed wing aircraft. Other considerations that have a bearing on the system integration are related to the target applications. These are primarily: corridors versus area, desired map scale and accuracy together with different operational characteristic. As usually, there will never be a sole solution that is the best for everything 7 Future Developments Future developments are primarily to be expected in two areas; added sensor capabilities and to a larger extent, automated post processing of the captured data that produces the finished product faster and for less cost. Envisioned prospective sensors are better digital imaging devices such as infrared cameras, high resolution digital cameras, low light cameras, radar, etc. All combined with better storage systems. The most useful for most infrastructures related applications are expected to be infrared sensors and the high-resolution digital cameras.

Chapter 3 Data Acquisition in an Urban Environment

Chapter 3 Data Acquisition in an Urban Environment Chapter 3 Data Acquisition in an Urban Environment - One fundamental issue : cost of data 5-10 times of HW, SW, org ware, staff training, maintenance - Another issue : different kinds of data alphanumeric

More information

Combining Technologies: LiDaR, High Resolution Digital Images, Infrared Thermography and Geographic Information Systems

Combining Technologies: LiDaR, High Resolution Digital Images, Infrared Thermography and Geographic Information Systems : LiDaR, High Resolution Digital Images, Infrared Thermography and Geographic Information Systems Presented by: Eldris Ferrer, Ms E, GIS Analyst and Remote Sensing Specialist, CSA Group Alexis Ocasio,

More information

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11 Global Positioning Systems GPS is a technology that provides Location coordinates Elevation For any location with a decent view of the sky

More information

AIRCRAFT AVIONIC SYSTEMS

AIRCRAFT AVIONIC SYSTEMS AIRCRAFT AVIONIC SYSTEMS B-777 cockpit Package C:\Documents and ettings\administrato Course Outline Radio wave propagation Aircraft Navigation Systems - Very High Omni-range (VOR) system - Instrument Landing

More information

HALS-H1 Ground Surveillance & Targeting Helicopter

HALS-H1 Ground Surveillance & Targeting Helicopter ARATOS-SWISS Homeland Security AG & SMA PROGRESS, LLC HALS-H1 Ground Surveillance & Targeting Helicopter Defense, Emergency, Homeland Security (Border Patrol, Pipeline Monitoring)... Automatic detection

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

PHOTOGRAMMETRY STEREOSCOPY FLIGHT PLANNING PHOTOGRAMMETRIC DEFINITIONS GROUND CONTROL INTRODUCTION

PHOTOGRAMMETRY STEREOSCOPY FLIGHT PLANNING PHOTOGRAMMETRIC DEFINITIONS GROUND CONTROL INTRODUCTION PHOTOGRAMMETRY STEREOSCOPY FLIGHT PLANNING PHOTOGRAMMETRIC DEFINITIONS GROUND CONTROL INTRODUCTION Before aerial photography and photogrammetry became a reliable mapping tool, planimetric and topographic

More information

Preliminary Datasheet

Preliminary Datasheet LONG-RANGE AIRBORNE LASER SCANNER LMS-Q680 FOR FULL WAVEFORM ANALYSIS The new long-range RIEGL LMS-Q680 airborne laser scanner makes use of a powerful laser source and of RIEGL s proprietary digital full

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Remote Sensing Platforms Michiel Damen (September 2011) damen@itc.nl 1 Overview Platforms & missions aerial surveys

More information

Leica - 3 rd Generation Airborne Digital Sensors Features / Benefits for Remote Sensing & Environmental Applications

Leica - 3 rd Generation Airborne Digital Sensors Features / Benefits for Remote Sensing & Environmental Applications Leica - 3 rd Generation Airborne Digital Sensors Features / Benefits for Remote Sensing & Environmental Applications Arthur Rohrbach, Sensor Sales Dir Europe, Middle-East and Africa (EMEA) Luzern, Switzerland,

More information

Airborne Laser Scanning. Long-Range Airborne Laser Scanner for Full Waveform Analysis. visit our webpage LASER MEASUREMENT SYSTEMS

Airborne Laser Scanning. Long-Range Airborne Laser Scanner for Full Waveform Analysis. visit our webpage   LASER MEASUREMENT SYSTEMS Long-Range Airborne Laser Scanner for Full Waveform Analysis LMS-Q680 The long-range RIEGL LMS-Q680 airborne laser scanner makes use of a powerful laser source and of RIEGL s proprietary digital full waveform

More information

Full Waveform Digitizing, Dual Channel Airborne LiDAR Scanning System for Ultra Wide Area Mapping

Full Waveform Digitizing, Dual Channel Airborne LiDAR Scanning System for Ultra Wide Area Mapping Full Waveform Digitizing, Dual Channel Airborne LiDAR Scanning System for Ultra Wide Area Mapping RIEGL LMS-Q56 high laser pulse repetition rate up to 8 khz digitization electronics for full waveform data

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

LMS-Q780. Airborne Laser Scanning. Full Waveform Digitizing Airborne Laser Scanner for Wide Area Mapping. visit our website

LMS-Q780. Airborne Laser Scanning. Full Waveform Digitizing Airborne Laser Scanner for Wide Area Mapping. visit our website Full Waveform Digitizing Airborne Laser Scanner for Wide Area Mapping LMS-Q78 up to 266 measurements/sec on the ground even from a typical operating altitude of 67 ft multiple time around processing: up

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

Sensor set stabilization system for miniature UAV

Sensor set stabilization system for miniature UAV Sensor set stabilization system for miniature UAV Wojciech Komorniczak 1, Tomasz Górski, Adam Kawalec, Jerzy Pietrasiński Military University of Technology, Institute of Radioelectronics, Warsaw, POLAND

More information

AIRBORNE LASER SCANNER FOR FULL WAVEFORM ANALYSIS. visit our webpage

AIRBORNE LASER SCANNER FOR FULL WAVEFORM ANALYSIS.  visit our webpage AIRBORNE LASER SCANNER LMS-Q560 FOR FULL WAVEFORM ANALYSIS The RIEGL LMS-Q560 is a revolutionary new D laser scanner using the latest state-of-the-art digital signal processing, which meets the most challenging

More information

DLR Project ADVISE-PRO Advanced Visual System for Situation Awareness Enhancement Prototype Introduction The Project ADVISE-PRO

DLR Project ADVISE-PRO Advanced Visual System for Situation Awareness Enhancement Prototype Introduction The Project ADVISE-PRO DLR Project ADVISE-PRO Advanced Visual System for Situation Awareness Enhancement Prototype Dr. Bernd Korn DLR, Institute of Flight Guidance Lilienthalplatz 7 38108 Braunschweig Bernd.Korn@dlr.de phone

More information

RIEGL VQ -780i NEW. Airborne Laser Scanning. Waveform Processing Airborne Laser Scanner for Ultra Wide Area Mapping and High Productivity.

RIEGL VQ -780i NEW. Airborne Laser Scanning. Waveform Processing Airborne Laser Scanner for Ultra Wide Area Mapping and High Productivity. Waveform Processing Airborne Laser Scanner for Ultra Wide Area Mapping and High Productivity. NEW RIEGL VQ -78i online waveform processing as well as smart and full waveform recording excellent multiple

More information

NEW. Airborne Laser Scanning. Waveform Processing Airborne Laser Scanner for Wide Area Mapping and High Productivity. visit our website

NEW. Airborne Laser Scanning. Waveform Processing Airborne Laser Scanner for Wide Area Mapping and High Productivity. visit our website Waveform Processing Airborne Laser Scanner for Wide Area Mapping and High Productivity. NEW RIEGL VQ -780i online waveform processing as well as smart and full waveform recording excellent multiple target

More information

AIRBORNE LASER SCANNER FOR FULL WAVEFORM ANALYSIS. visit our webpage

AIRBORNE LASER SCANNER FOR FULL WAVEFORM ANALYSIS.  visit our webpage AIRBORNE LASER SCANNER LMS-Q560 FOR FULL WAVEFORM ANALYSIS The RIEGL LMS-Q560 is a revolutionary D laser scanner using the latest state-of-the-art digital signal processing, which meets the most challenging

More information

IGI Ltd. Serving the Aerial Survey Industry for more than 20 Years

IGI Ltd. Serving the Aerial Survey Industry for more than 20 Years 'Photogrammetric Week 05' Dieter Fritsch, Ed. Wichmann Verlag, Heidelberg 2005. Kremer 33 IGI Ltd. Serving the Aerial Survey Industry for more than 20 Years JENS KREMER, Kreuztal ABSTRACT Since 1982 IGI

More information

EE Chapter 14 Communication and Navigation Systems

EE Chapter 14 Communication and Navigation Systems EE 2145230 Chapter 14 Communication and Navigation Systems Two way radio communication with air traffic controllers and tower operators is necessary. Aviation electronics or avionics: Avionic systems cover

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

AERIAL SURVEYS COMPANY PROFILE

AERIAL SURVEYS COMPANY PROFILE AERIAL SURVEYS COMPANY PROFILE Aerial Surveys, previously known as GeoSmart, is an innovative aerial photography and geospatial mapping service provider Our services enable customers to make better business

More information

Heterogeneous Control of Small Size Unmanned Aerial Vehicles

Heterogeneous Control of Small Size Unmanned Aerial Vehicles Magyar Kutatók 10. Nemzetközi Szimpóziuma 10 th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics Heterogeneous Control of Small Size Unmanned Aerial Vehicles

More information

NAVIGATION AND REMOTE SENSING PAYLOADS AND METHODS OF THE SARVANT UNMANNED AERIAL SYSTEM

NAVIGATION AND REMOTE SENSING PAYLOADS AND METHODS OF THE SARVANT UNMANNED AERIAL SYSTEM NAVIGATION AND REMOTE SENSING PAYLOADS AND METHODS OF THE SARVANT UNMANNED AERIAL SYSTEM P. Molina, P. Fortuny, I. Colomina Institute of Geomatics -- Castelldefels (ES) M. Remy, K.A.C. Macedo, Y.R.C. Zúnigo,

More information

AN/APN-242 Color Weather & Navigation Radar

AN/APN-242 Color Weather & Navigation Radar AN/APN-242 Color Weather & Navigation Radar Form, Fit and Function Replacement for the APN-59 Radar Previous Configuration: APN-59 Antenna Stabilization Data Generator Antenna Subsystem Radar Receiver

More information

CATEGORY 7 - NAVIGATION AND AVIONICS A. SYSTEMS, EQUIPMENT AND COMPONENTS

CATEGORY 7 - NAVIGATION AND AVIONICS A. SYSTEMS, EQUIPMENT AND COMPONENTS Commerce Control List Supplement No. 1 to Part 774 Category 7 page 1 CATEGORY 7 - NAVIGATION AND AVIONICS A. SYSTEMS, EQUIPMENT AND COMPONENTS N.B.1: For automatic pilots for underwater vehicles, see Category

More information

Dual Channel Waveform Processing Airborne LiDAR Scanning System for High Point Density and Ultra Wide Area Mapping

Dual Channel Waveform Processing Airborne LiDAR Scanning System for High Point Density and Ultra Wide Area Mapping Dual Channel Waveform Processing Airborne LiDAR Scanning System for High Point Density and Ultra Wide Area Mapping RIEGL VQ-156i high laser pulse repetition rate: up to 2 MHz up to 1.33 million measurements

More information

Flood modelling and management. Glasgow University. 8 September Paul Shaw - GeoVision

Flood modelling and management. Glasgow University. 8 September Paul Shaw - GeoVision Flood modelling and management Glasgow University 8 September 2004 Paul Shaw - GeoVision How important are heights in flood modelling? Comparison of data collection technologies GPS - Global Positioning

More information

Revolutionizing 2D measurement. Maximizing longevity. Challenging expectations. R2100 Multi-Ray LED Scanner

Revolutionizing 2D measurement. Maximizing longevity. Challenging expectations. R2100 Multi-Ray LED Scanner Revolutionizing 2D measurement. Maximizing longevity. Challenging expectations. R2100 Multi-Ray LED Scanner A Distance Ahead A Distance Ahead: Your Crucial Edge in the Market The new generation of distancebased

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony K. Jacobsen, G. Konecny, H. Wegmann Abstract The Institute for Photogrammetry and Engineering Surveys

More information

Hardware Modeling and Machining for UAV- Based Wideband Radar

Hardware Modeling and Machining for UAV- Based Wideband Radar Hardware Modeling and Machining for UAV- Based Wideband Radar By Ryan Tubbs Abstract The Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas is currently implementing wideband

More information

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 Jacobsen, Karsten University of Hannover Email: karsten@ipi.uni-hannover.de

More information

An NDVI image provides critical crop information that is not visible in an RGB or NIR image of the same scene. For example, plants may appear green

An NDVI image provides critical crop information that is not visible in an RGB or NIR image of the same scene. For example, plants may appear green Normalized Difference Vegetation Index (NDVI) Spectral Band calculation that uses the visible (RGB) and near-infrared (NIR) bands of the electromagnetic spectrum NDVI= + An NDVI image provides critical

More information

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing)

Aerial photography and Remote Sensing. Bikini Atoll, 2013 (60 years after nuclear bomb testing) Aerial photography and Remote Sensing Bikini Atoll, 2013 (60 years after nuclear bomb testing) Computers have linked mapping techniques under the umbrella term : Geomatics includes all the following spatial

More information

Configuration, Capabilities, Limitations, and Examples

Configuration, Capabilities, Limitations, and Examples FUGRO EARTHDATA, Inc. Introduction to the New GeoSAR Interferometric Radar Sensor Bill Sharp GeoSAR Regional Director - Americas Becky Morton Regional Manager Configuration, Capabilities, Limitations,

More information

Boeing MultiScan ThreatTrack Weather Radar Frequently Asked Questions. The next generation moving map (Cover Tag Line) and cabin flight system

Boeing MultiScan ThreatTrack Weather Radar Frequently Asked Questions. The next generation moving map (Cover Tag Line) and cabin flight system Boeing MultiScan ThreatTrack Weather Radar Frequently Asked Questions The next generation moving map (Cover Tag Line) and cabin flight system Boeing MultiScan WXR ThreatTrack Frequently Asked Questions

More information

PRODUCT OVERVIEW FOR THE. Corona 350 II FLIR SYSTEMS POLYTECH AB

PRODUCT OVERVIEW FOR THE. Corona 350 II FLIR SYSTEMS POLYTECH AB PRODUCT OVERVIEW FOR THE Corona 350 II FLIR SYSTEMS POLYTECH AB Table of Contents Table of Contents... 1 Introduction... 2 Overview... 2 Purpose... 2 Airborne Data Acquisition and Management Software (ADAMS)...

More information

UNERSITY OF NAIROBI UNIT: PRICIPLES AND APPLICATIONS OF REMOTE SENSING AND APLLIED CLIMATOLOGY

UNERSITY OF NAIROBI UNIT: PRICIPLES AND APPLICATIONS OF REMOTE SENSING AND APLLIED CLIMATOLOGY UNERSITY OF NAIROBI DEPARTMENT OF METEOROLOGY UNIT: PRICIPLES AND APPLICATIONS OF REMOTE SENSING AND APLLIED CLIMATOLOGY COURSE CODE: SMR 308 GROUP TWO: SENSORS MEMBERS OF GROUP TWO 1. MUTISYA J.M I10/2784/2006

More information

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures Background Keith Morris Lockheed Martin Space Systems Company Chris Rice Lockheed Martin Space Systems Company

More information

Sampling the World in 3D by Airborne LIDAR Assessing the Information Content of LIDAR Point Clouds

Sampling the World in 3D by Airborne LIDAR Assessing the Information Content of LIDAR Point Clouds Sampling the World in 3D by Airborne LIDAR Assessing the Information Content of LIDAR Point Clouds PhoWo 2013 September 11 th, 2013 Stuttgart, Germany Andreas Ullrich RIEGL LMS GmbH sequential data acquisition

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

3-D Imaging of Partly Concealed Targets by Laser Radar

3-D Imaging of Partly Concealed Targets by Laser Radar Dietmar Letalick, Tomas Chevalier, and Håkan Larsson Swedish Defence Research Agency (FOI) PO Box 1165, Olaus Magnus väg 44 SE-581 11 Linköping SWEDEN e-mail: dielet@foi.se ABSTRACT Imaging laser radar

More information

A New Capability for Crash Site Documentation

A New Capability for Crash Site Documentation A New Capability for Crash Site Documentation By Major Adam Cybanski, Directorate of Flight Safety, Ottawa Major Adam Cybanski is the officer responsible for helicopter investigation (DFS 2-4) at the Canadian

More information

Jager UAVs to Locate GPS Interference

Jager UAVs to Locate GPS Interference JIFX 16-1 2-6 November 2015 Camp Roberts, CA Jager UAVs to Locate GPS Interference Stanford GPS Research Laboratory and the Stanford Intelligent Systems Lab Principal Investigator: Sherman Lo, PhD Area

More information

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas PEGASUS : a future tool for providing near real-time high resolution data for disaster management Lewyckyj Nicolas nicolas.lewyckyj@vito.be http://www.pegasus4europe.com Overview Vito in a nutshell GI

More information

PROGRESS ON THE SIMULATOR AND EYE-TRACKER FOR ASSESSMENT OF PVFR ROUTES AND SNI OPERATIONS FOR ROTORCRAFT

PROGRESS ON THE SIMULATOR AND EYE-TRACKER FOR ASSESSMENT OF PVFR ROUTES AND SNI OPERATIONS FOR ROTORCRAFT PROGRESS ON THE SIMULATOR AND EYE-TRACKER FOR ASSESSMENT OF PVFR ROUTES AND SNI OPERATIONS FOR ROTORCRAFT 1 Rudolph P. Darken, 1 Joseph A. Sullivan, and 2 Jeffrey Mulligan 1 Naval Postgraduate School,

More information

RADAR CHAPTER 3 RADAR

RADAR CHAPTER 3 RADAR RADAR CHAPTER 3 RADAR RDF becomes Radar 1. As World War II approached, scientists and the military were keen to find a method of detecting aircraft outside the normal range of eyes and ears. They found

More information

SECOND OPEN SKIES REVIEW CONFERENCE (OSRC) 2010

SECOND OPEN SKIES REVIEW CONFERENCE (OSRC) 2010 OSCC.RC/40/10 9 June 2010 Open Skies Consultative Commission ENGLISH only US Chair of the OSCC Review Conference SECOND OPEN SKIES REVIEW CONFERENCE (OSRC) 2010 7 to 9 June 2010 Working Session 2 Exploring

More information

Dual Channel Waveform Processing Airborne LiDAR Scanning System for High-Point Density and Ultra-Wide Area Mapping

Dual Channel Waveform Processing Airborne LiDAR Scanning System for High-Point Density and Ultra-Wide Area Mapping Dual Channel Waveform Processing Airborne LiDAR Scanning System for High-Point Density and Ultra-Wide Area Mapping RIEGL VQ-156i high laser pulse repetition rate up to 2 MHz up to 1.33 million measurements

More information

MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA

MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA MODULE 7 LECTURE NOTES 3 SHUTTLE RADAR TOPOGRAPHIC MISSION DATA 1. Introduction Availability of a reasonably accurate elevation information for many parts of the world was once very much limited. Dense

More information

Surveying in the Year 2020

Surveying in the Year 2020 Surveying in the Year 2020 Johannes Schwarz Leica Geosystems My first toys 2 1 3 Questions Why is a company like Leica Geosystems constantly developing new surveying products and instruments? What surveying

More information

Unmanned Aerial Vehicle Data Acquisition for Damage Assessment in. Hurricane Events

Unmanned Aerial Vehicle Data Acquisition for Damage Assessment in. Hurricane Events Unmanned Aerial Vehicle Data Acquisition for Damage Assessment in Hurricane Events Stuart M. Adams a Carol J. Friedland b and Marc L. Levitan c ABSTRACT This paper examines techniques for data collection

More information

MMW sensors for Industrial, safety, Traffic and security applications

MMW sensors for Industrial, safety, Traffic and security applications MMW sensors for Industrial, safety, Traffic and security applications Philip Avery Director, Navtech Radar Ltd. Overview Introduction to Navtech Radar and what we do. A brief explanation of how FMCW radars

More information

An Introduction to Airline Communication Types

An Introduction to Airline Communication Types AN INTEL COMPANY An Introduction to Airline Communication Types By Chip Downing, Senior Director, Aerospace & Defense WHEN IT MATTERS, IT RUNS ON WIND RIVER EXECUTIVE SUMMARY Today s global airliners use

More information

NovAtel SPAN and Waypoint GNSS + INS Technology

NovAtel SPAN and Waypoint GNSS + INS Technology NovAtel SPAN and Waypoint GNSS + INS Technology SPAN Technology SPAN provides real-time positioning and attitude determination where traditional GNSS receivers have difficulties; in urban canyons or heavily

More information

Airborne Laser Scanning. Lightweight Airborne Laser Scanner with Online Waveform Processing. visit our website

Airborne Laser Scanning. Lightweight Airborne Laser Scanner with Online Waveform Processing. visit our website Lightweight Airborne Laser Scanner with Online Waveform Processing RIEGL VUX-1LR 15 mm survey-grade accuracy scan speed up to 2 scans / second measurement rate up to 75, meas./sec operating flight altitude

More information

NEW. Airborne Laser Scanning. Dual Wavelength Waveform Processing Airborne LiDAR Scanning System for High-Point Density Mapping Applications

NEW. Airborne Laser Scanning. Dual Wavelength Waveform Processing Airborne LiDAR Scanning System for High-Point Density Mapping Applications Dual Wavelength Waveform Processing Airborne LiDAR Scanning System for High-Point Density Mapping Applications NEW RIEGL VQ-156i-DW enhanced target characterization based upon simultaneous measurements

More information

RIEGL VUX-1UAV. Unmanned Laser Scanning. Lightweight UAV Laser Scanner with Online Waveform Processing. visit our website

RIEGL VUX-1UAV. Unmanned Laser Scanning. Lightweight UAV Laser Scanner with Online Waveform Processing. visit our website Lightweight UAV Laser Scanner with Online Waveform Processing RIEGL VUX-1UAV 1 mm survey-grade accuracy scan speed up to 2 scans / second measurement rate up to 5, meas./sec (@ 55 khz PRR & 33 FOV) operating

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

Airborne Laser Scanning. Topo-Hydrographic Airborne Laser Scanning System with Online Waveform Processing and Full Waveform Recording

Airborne Laser Scanning. Topo-Hydrographic Airborne Laser Scanning System with Online Waveform Processing and Full Waveform Recording Topo-Hydrographic Airborne Laser Scanning System with Online Waveform Processing and Full Waveform Recording RIEGL VQ-880-GH designed for combined topographic and hydrographic airborne survey high accuracy

More information

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR Svetlana Bachmann 1, 2, Victor DeBrunner 3, Dusan Zrnic 2 1 Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma

More information

Chapter 10 Navigation

Chapter 10 Navigation Chapter 10 Navigation Table of Contents VHF Omnidirectional Range (VOR) VOR Orientation Course Determination VOR Airways VOR Receiver Check Points Automatic Direction Finder (ADF) Global Positioning System

More information

SMARTSCAN Smart Pushbroom Imaging System for Shaky Space Platforms

SMARTSCAN Smart Pushbroom Imaging System for Shaky Space Platforms SMARTSCAN Smart Pushbroom Imaging System for Shaky Space Platforms Klaus Janschek, Valerij Tchernykh, Sergeij Dyblenko SMARTSCAN 1 SMARTSCAN Smart Pushbroom Imaging System for Shaky Space Platforms Klaus

More information

PHOTOGRAMMETRIC RESECTION DIFFERENCES BASED ON LABORATORY vs. OPERATIONAL CALIBRATIONS

PHOTOGRAMMETRIC RESECTION DIFFERENCES BASED ON LABORATORY vs. OPERATIONAL CALIBRATIONS PHOTOGRAMMETRIC RESECTION DIFFERENCES BASED ON LABORATORY vs. OPERATIONAL CALIBRATIONS Dean C. MERCHANT Topo Photo Inc. Columbus, Ohio USA merchant.2@osu.edu KEY WORDS: Photogrammetry, Calibration, GPS,

More information

DEVELOPMENT OF PASSIVE SURVEILLANCE RADAR

DEVELOPMENT OF PASSIVE SURVEILLANCE RADAR DEVELOPMENT OF PASSIVE SURVEILLANCE RADAR Kakuichi Shiomi* and Shuji Aoyama** *Electronic Navigation Research Institute, Japan **IRT Corporation, Japan Keywords: Radar, Passive Radar, Passive Surveillance

More information

Assessment of Unmanned Aerial Vehicle for Management of Disaster Information

Assessment of Unmanned Aerial Vehicle for Management of Disaster Information Journal of the Korea Academia-Industrial cooperation Society Vol. 16, No. 1 pp. 697-702, 2015 http://dx.doi.org/10.5762/kais.2015.16.1.697 ISSN 1975-4701 / eissn 2288-4688 Assessment of Unmanned Aerial

More information

OBSTACLE DETECTION AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SENSORS FOR AN AUTONOMOUS QUADROCOPTER

OBSTACLE DETECTION AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SENSORS FOR AN AUTONOMOUS QUADROCOPTER OBSTACLE DETECTION AND COLLISION AVOIDANCE USING ULTRASONIC DISTANCE SENSORS FOR AN AUTONOMOUS QUADROCOPTER Nils Gageik, Thilo Müller, Sergio Montenegro University of Würzburg, Aerospace Information Technology

More information

SPECIAL EFFECTS OF THE REGIONAL SATELLITE AUGMENTATION SYSTEM (RSAS)

SPECIAL EFFECTS OF THE REGIONAL SATELLITE AUGMENTATION SYSTEM (RSAS) St. D. Ilcev (Mangosuthu University of Technology (MUT) South Africa) SPECIAL EFFECTS OF THE REGIONAL SATELLITE AUGMENTATION SYSTEM (RSAS) This paper introduces the special effects of the new developed

More information

By Pierre Olivier, Vice President, Engineering and Manufacturing, LeddarTech Inc.

By Pierre Olivier, Vice President, Engineering and Manufacturing, LeddarTech Inc. Leddar optical time-of-flight sensing technology, originally discovered by the National Optics Institute (INO) in Quebec City and developed and commercialized by LeddarTech, is a unique LiDAR technology

More information

LMS-Q780. Airborne Laser Scanning. Full Waveform Digitizing Airborne Laser Scanner for Wide Area Mapping. Preliminary Datasheet

LMS-Q780. Airborne Laser Scanning. Full Waveform Digitizing Airborne Laser Scanner for Wide Area Mapping. Preliminary Datasheet Full Waveform Digitizing Airborne Laser Scanner for Wide Area Mapping LMS-Q78 l up to 66 measurements/sec on the ground even from a typical operating altitude of 67 ft l multiple time around processing:

More information

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band Recommendation ITU-R M.2008 (03/2012) Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band 13.25-13.40 GHz M Series Mobile, radiodetermination,

More information

Evaluation of Highway Mapping, Location and Design: Light Detection and Ranging (LDR)

Evaluation of Highway Mapping, Location and Design: Light Detection and Ranging (LDR) Evaluation of Highway Mapping, Location and Design: Light Detection and Ranging (LDR) Amit Kumar Assistant Professor Department of Civil Engineering UIET, MDU, Rohtak (HR) ABSTRACT: Surface terrain information

More information

39N6E KASTA-2E2 Low-Altitude 3D All-Round Surveillance Radar

39N6E KASTA-2E2 Low-Altitude 3D All-Round Surveillance Radar 39N6E KASTA-2E2 Low-Altitude 3D All-Round Surveillance Radar The Kasta-2E2 low-altitude 3D all-round surveillance radar is designed to control airspace and to perform automatic detection, range/azimuth/altitude

More information

Profiling Radiometer for Atmospheric and Cloud Observations PRACO

Profiling Radiometer for Atmospheric and Cloud Observations PRACO Profiling Radiometer for Atmospheric and Cloud Observations PRACO Boulder Environmental Sciences and Technology BEST Small startup company, established in 2006 Focused on radiometry ground based and airborne

More information

Lesson 4: Photogrammetry

Lesson 4: Photogrammetry This work by the National Information Security and Geospatial Technologies Consortium (NISGTC), and except where otherwise Development was funded by the Department of Labor (DOL) Trade Adjustment Assistance

More information

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful?

Brainstorm. In addition to cameras / Kinect, what other kinds of sensors would be useful? Brainstorm In addition to cameras / Kinect, what other kinds of sensors would be useful? How do you evaluate different sensors? Classification of Sensors Proprioceptive sensors measure values internally

More information

A Nuclear Plume Detection and Tracking Model for the Advanced Airborne Early Warning Surveillance Aircraft

A Nuclear Plume Detection and Tracking Model for the Advanced Airborne Early Warning Surveillance Aircraft A Nuclear Plume Detection and Tracking Model for e Advanced Airborne Early Warning Surveillance Aircraft Buddy H. Jeun *, John Younker * and Chih-Cheng Hung! * Lockheed Martin Aeronautical System Marietta,

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Detection of traffic congestion in airborne SAR imagery

Detection of traffic congestion in airborne SAR imagery Detection of traffic congestion in airborne SAR imagery Gintautas Palubinskas and Hartmut Runge German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen, 82234 Wessling, Germany

More information

Ghazanfar A. Khattak National Centre of Excellence in Geology University of Peshawar

Ghazanfar A. Khattak National Centre of Excellence in Geology University of Peshawar INTRODUCTION TO REMOTE SENSING Ghazanfar A. Khattak National Centre of Excellence in Geology University of Peshawar WHAT IS REMOTE SENSING? Remote sensing is the science of acquiring information about

More information

9/13/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/13/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 DIGITAL TERRAIN MODELS Introduction Michiel Damen (April 2011) damen@itc.nl 1 Digital Elevation and Terrain Models

More information

Cooperative navigation: outline

Cooperative navigation: outline Positioning and Navigation in GPS-challenged Environments: Cooperative Navigation Concept Dorota A Grejner-Brzezinska, Charles K Toth, Jong-Ki Lee and Xiankun Wang Satellite Positioning and Inertial Navigation

More information

Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS.

Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS. Sub-system and System Level Testing and Calibration of Space Altimeters and LIDARS. Haris Riris, Pete Liiva, Xiaoli Sun, James Abshire Laser Remote Sensing Branch Goddard Space Flight Center, Greenbelt,

More information

Airborne Laser Scanning. Lightweight Airborne Laser Scanner with Online Waveform Processing. visit our website

Airborne Laser Scanning. Lightweight Airborne Laser Scanner with Online Waveform Processing. visit our website Lightweight Airborne Laser Scanner with Online Waveform Processing RIEGL VUX-1LR 15 mm survey-grade accuracy scan speed up to 2 scans / second measurement rate up to 75, meas./sec operating flight altitude

More information

RIEGL VQ-580. Airborne Laser Scanning. Airborne Laser Scanner with Online Waveform Processing. visit our website

RIEGL VQ-580. Airborne Laser Scanning. Airborne Laser Scanner with Online Waveform Processing. visit our website Airborne Laser Scanner with Online Waveform Processing RIEGL VQ-580 especially designed to measure on snow & ice high-accuracy ranging based on echo digitization and online waveform processing high laser

More information

Nigerian Communications Satellite Ltd. (NIGCOMSAT)

Nigerian Communications Satellite Ltd. (NIGCOMSAT) OVERVIEW OF NIGERIAN SATELLITE AUGMENTATION SYSTEM COMMENCING WITH PILOT DEMONSTRATION TO VALIDATE NATIONAL WORK PLAN presented by Dr. Lawal Lasisi Salami, NIGERIAN COMMUNICATIONS SATELLITE LTD UNDER FEDERAL

More information

Unmanned Aerial Vehicles: A New Approach for Coastal Habitat Assessment

Unmanned Aerial Vehicles: A New Approach for Coastal Habitat Assessment Unmanned Aerial Vehicles: A New Approach for Coastal Habitat Assessment David Ryan Principal Marine Scientist WorleyParsons Western Operations 2 OUTLINE Importance of benthic habitat assessment. Common

More information

Development of a Compact, Pulsed, 2-Micron, Coherent- Detection, Doppler Wind Lidar Transceiver

Development of a Compact, Pulsed, 2-Micron, Coherent- Detection, Doppler Wind Lidar Transceiver Development of a Compact, Pulsed, 2-Micron, Coherent- Detection, Doppler Wind Lidar Transceiver Michael J. Kavaya, Upendra N. Singh, Grady J. Koch, Jirong Yu, Bo C. Trieu NASA Langley Research Center,

More information

Chapter 4 DGPS REQUIREMENTS AND EQUIPMENT SELECTION

Chapter 4 DGPS REQUIREMENTS AND EQUIPMENT SELECTION Chapter 4 DGPS REQUIREMENTS AND EQUIPMENT SELECTION 4.1 INTRODUCTION As discussed in the previous chapters, accurate determination of aircraft position is a strong requirement in several flight test applications

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

NAVIGATION (2) RADIO NAVIGATION

NAVIGATION (2) RADIO NAVIGATION 1 An aircraft is "homing" to a radio beacon whilst maintaining a relative bearing of zero. If the magnetic heading decreases, the aircraft is experiencing: A left drift B right drift C a wind from the

More information

Phase One 190MP Aerial System

Phase One 190MP Aerial System White Paper Phase One 190MP Aerial System Introduction Phase One Industrial s 100MP medium format aerial camera systems have earned a worldwide reputation for its high performance. They are commonly used

More information

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage

746A27 Remote Sensing and GIS. Multi spectral, thermal and hyper spectral sensing and usage 746A27 Remote Sensing and GIS Lecture 3 Multi spectral, thermal and hyper spectral sensing and usage Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Multi

More information

RECOMMENDATION ITU-R S.1340 *,**

RECOMMENDATION ITU-R S.1340 *,** Rec. ITU-R S.1340 1 RECOMMENDATION ITU-R S.1340 *,** Sharing between feeder links the mobile-satellite service and the aeronautical radionavigation service in the Earth-to-space direction in the band 15.4-15.7

More information

Rotary Wing DVE Solution Proof Of Concept Live Demonstration

Rotary Wing DVE Solution Proof Of Concept Live Demonstration Rotary Wing DVE Solution Proof Of Concept Live Demonstration Erez Nur, Flare Vision LTD. erez@flare.co.il Slide 1 Introduction What is the problem Environmental problem: degraded visual conditions Human

More information

What is a GPS How does GPS work? GPS Segments GPS P osition Position Position Accuracy Accuracy Accuracy GPS A pplications Applications Applications

What is a GPS How does GPS work? GPS Segments GPS P osition Position Position Accuracy Accuracy Accuracy GPS A pplications Applications Applications What is GPS? What is a GPS How does GPS work? GPS Segments GPS Position Accuracy GPS Applications What is GPS? The Global Positioning System (GPS) is a precise worldwide radio-navigation system, and consists

More information