ELEC3106 Electronics. Lab 4: EMI simulations with SPICE. Objective. Material. Simulations

Size: px
Start display at page:

Download "ELEC3106 Electronics. Lab 4: EMI simulations with SPICE. Objective. Material. Simulations"

Transcription

1 ELEC3106 Electronics Lab 4: EMI simulations with SPICE Objective The objective of this laboratory session is to give the students a good understanding of the possibilities a circuit simulator (as SPICE) offer for modelling electrical phenomena; in particular in relation to power-supply related EMI. Readily available SPICE component models often do not model all the electrical properties that are relevant for good circuit performance; however used correctly, SPICE can be a very powerful tool to model any circuit phenomena of relevance. These notes include a very brief step-by-step guide to running LTSpice; students are strongly encouraged to obtain their own copy of LTSPice and play around with circuit simulation in their own time. LTSpice is available for free from Linear Technology s website; it runs under Windows or Linux (using Wine). It is assumed for this laboratory session that the student is proficient in the use of Windows based PCs. Material For this laboratory exercise, you will need 1 PC with LTSpice installed lab-book Simulations Carry out the simulations in this section during your laboratory session in pairs of two students. Make sure that you show your result to the laboratory demonstrator, and that both of you record everything neatly in your lab-book. A diode-like element LTSpice has a good built-in voltage controlled switch, see Figure 1(a) which can have either hysteresis of a smooth transition between on- and off-states. This is a very useful component for analysis in the absence of suitable diode parameters, for instance, the switch can be used to model a diode-like element. To start LTSpice under Windows, simply choose LTSpice in the Start menu. Build the schematic shown in Figure 1(b) to simulate the model of the diode-like element implemented with a switch: In the LTSpice main menu, choose Edit - Component, find sw in the dialog box, click OK and place the element (i.e. the switch) on your schematic; this should be labelled S1. Right-click on the switch to change its attribute alue to this is the name of TL/lab4/May 16, 2016 ELEC3106/lab4 p. 1/5 School of Electrical Engineering and Telecommunication

2 the switch model the simulator use. To specify the switch model, choose Edit - SPICE Directive, enter.model SW(RON=1 ROFF=1e6 T=0.6 H= 0.1) in the dialog box, click OK and place the text anywhere convenient on your schematic. Remember the. in.model. Now place the DC voltage source 1 on the schematic by choosing Edit - Component in the menu, select voltage in the dialog blox, click OK and place the element on your schematic; right-click on the voltage source and change its DC value to 1. Also remember a ground in the schematic by choosing Edit - Place GND and place it on your schematic. Your schematic should now start to resemble Figure 1(b). To wire up your schematic, choose Edit - Draw Wire and make the required connections. To simulate the I/ characteristic of the diode-like element, set up a DC simulation: in the menu choose Simulate - Edit Simulation Cmd, click on the DC sweep tab and choose as the 1st Source to sweep 1 from 0 to 1 with an increment of 0.01 and place the command text anywhere convenient on your schematic. 1 Now, save 2 your schematic, and choose in the menu Simulate - Run to simulate the element; a window should pop up ready to show currents and voltages as function of the (independent) sweep variable, 1. To plot a node voltage, simply click on the node in the schematic; to plot a device current, click on the device (devices with more than two pins may have multiple currents associated with them click on the device near a pin to plot the current flowing into that pin). You can zoom in on the displayed waveform, place cursors on waveforms, and do all sorts of helpful things in the waveform display window (for more advanced waveform processing, you can export the waveform data and read them into Matlab or Python). Comment on the simulation result; will this work as a diode? How can you change its forward voltage? Make sure that you print the schematic for your report (choose File - Print... in the menu when the schematic sub-window is selected) as well as the simulation waveform (choose File - Print... when the simulation subwindow is selected)..model SW(RON=1 ROFF=1e6 T=0.6 H= 0.1) i S R OFF v S i S H 1 v C v S R ON T v C (a) 1 I S1.dc (b) Figure 1: LTSpice switch model (a). Diode simulation using switch; simulation setup (b). Modelling a nand gate A 74LS00 TTL nand gate can be modelled using switches and a resistor as shown in Figure 2(a). S1, S2, S4 and S5 are the diode-like elements from above, while S3 and S6 use different models 1 Remember that SPICE uses SI units; the units may be entered after the value, but is ignored; unit pre-fixed may be used but are case insensitive (usual gotcha: M means milli-; MEG means mega-; U means micro-). For example, 5µF could be entered as: 50e-7, 5u, 5UF, or 5uXQW. 2 Spice uses spaces and other exotic characters as part of its syntax structure for this reason such characters should never be used in names, including filenames restrict names to alphanumeric characters (including underscores). ELEC3106/lab4 p. 2/5

3 as shown on the figure. Using the 74LS00 data-sheet, find, and enter, suitable values for R1 and the RON model parameters for S3 and S6. Explain how the model works, and build the circuit in the schematic editor. To functionally test the model, embed the nand gate in the functional simulation setup (test bench) shown in Figure 2(b). 2 and 3 are pulse voltage sources: for 2 place a voltage element; right-click on this and click on the Advanced button; in the pop-up window under Functions click PULSE(...) and fill in the values in the dialog box: initial=0.2, on=3.5, Tdelay=0, Trise=10n, Tfall=10n, Ton=2u Tperiod=4u (the different voltage Functions are used in transient simulations). For 3 you need Ton=1u and Tperiod=2u. Prepare for running a transient simulation by in the menu choosing Simulate - Edit Simulation Cmd, click on the Transient tab and choose a Stop Time of 5µs. Run the simulation and plot the nand gate input and output voltages as well as the supply current; print the schematic and the simulation waveforms. Does the circuit work as a nand gate? what are rise- and fall-times, propagation delays and transient supply currents? Are these realistic values?.model SW(RON=1 ROFF=1e6 T=0.6 H= 0.1).model PUSW SW(RON=... ROFF=1e6 T=3.5 H= 0.5).model P SW(RON=... ROFF=1e6 T=2.5 H= 0.5) + PUSW R1 S3 A B symbol B A S1 + Y S2 S4 S5 P S6 Y (a) 1 I 5 C p PULSE( n 10n 2u 4u) PULSE( n 10n 1u 2u).tran 5us (b) Figure 2: Model of 74LS00 nand gate (a). Functional simulation setup (b). Simulating power supply noise and decoupling Power supply noise can be simulated by explicitly including supply line inductance in your schematic. Modify your simulation schematic as shown in Figure 3 (do not include C2 yet). L1 and L2 are the power supply inductances; L3 and L4 are the inductance in leads and tracks leading to the decoupling capacitor C2; L5 is the inductance leading to the load capacitance. Carry out the transient simulation again, but also make sure to plot the power supply pin voltages on the nand gate; print the schematic and the simulation waveforms. Does these supply pin voltages look reasonable compared with what what you know from previous labs? What is ELEC3106/lab4 p. 3/5

4 the peak supply voltage dip on the gate, and how does this compare with simple calculations when the gate rise/fall time is assumed to be unchanged from the previous simulation? Has the rise and fall time changed compared with the previous simulation? Now add a decoupling capacitor C2 of 5 nf, and carry out the transient simulation again; print the simulation waveforms. Has the supply voltage dip reduced to the expected level? What else do you observe (this is a real phenomena that can well happen due to the LC resonances; it is rectified by including a resistance (say 2Ω) in series with 1 try this)? L1 30n C2 L3 5n 1 5 I 3 PULSE(...) L4 5n L2 30n L5 10n C1 100p Figure 3: Nand gate power supply decoupling simulation setup. Going further A few hints for keen students that might want to play around with the simulation software (it is a great tool to get to understand electronics; do use it!). The Edit - Component component library has a number of useful component models already there; the components in the library are the ones available from Linear Technology, but component models from other vendors can easily be included in the simulations using SPICE directives (look at vendor websites for SPICE models of their components). The library also have many diodes (diode), transistors (npn and pnp) and other discrete components; simply right-click on the component and select Pick New Transistor (say) to choose your desired part. You can also create your own component models with parameters of your choice in the same manner as was done for the switch. Look in the program documentation for more things to do. Lab extension Create a circuit schematic that model some EMI effect observed in laboratory session 3, PCB EMI measurements (for instance the coupling of digital supply noise into the analogue circuit); simulate the circuit and compare with measurements obtained in laboratory session 3. It is possible to create meaningful simulations using just passive components and switches, but use of other components are welcome. It is left to the student to decide upon an appropriate circuit, which EMI effect to model and which simulations to carry out. Report A short report (5 pages max) on the laboratory exercise must be prepared and uploaded as a.pdf-file on the course Moodle site by Friday the week after the lab finishes. The report should ELEC3106/lab4 p. 4/5

5 include answers to all questions asked above, and brief comments on the results. Submit one report per two-student group and make sure that both students names and student ID appear clearly on the report. Plots of relevant simulations must be included in the report. If done, a 1 page full schematic of the optional extension simulation must be included in the report, not counting towards the page limit. ELEC3106/lab4 p. 5/5

ELEC3106 Electronics. Lab 3: PCB EMI measurements. Objective. Components. Set-up

ELEC3106 Electronics. Lab 3: PCB EMI measurements. Objective. Components. Set-up ELEC3106 Electronics Lab 3: PCB EMI measurements Objective The objective of this laboratory session is to give the students a good understanding of critical PCB level Electromagnetic Interference phenomena

More information

Using LTSPICE to Analyze Circuits

Using LTSPICE to Analyze Circuits Using LTSPICE to Analyze Circuits Overview: LTSPICE is circuit simulation software that automatically constructs circuit equations using circuit element models (built in or downloadable). In its modern

More information

Introduction to PSpice

Introduction to PSpice Electric Circuit I Lab Manual 4 Session # 5 Introduction to PSpice 1 PART A INTRODUCTION TO PSPICE Objective: The objective of this experiment is to be familiar with Pspice (learn how to connect circuits,

More information

Using LTspice a Short Intro with Examples

Using LTspice a Short Intro with Examples Using LTspice a Short Intro with Examples LTspice, also called SwitcherCAD, is a powerful and easy to use schematic capture program and SPICE engine, which is a general-purpose circuit simulation program

More information

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE Objective: To learn to use a circuit simulator package for plotting the response of a circuit in the time domain. Preliminary: Revise laboratory 8 to

More information

EECS 312: Digital Integrated Circuits Lab Project 1 Introduction to Schematic Capture and Analog Circuit Simulation

EECS 312: Digital Integrated Circuits Lab Project 1 Introduction to Schematic Capture and Analog Circuit Simulation EECS 312: Digital Integrated Circuits Lab Project 1 Introduction to Schematic Capture and Analog Circuit Simulation Teacher: Robert Dick GSI: Shengshuo Lu Assigned: 5 September 2013 Due: 17 September 2013

More information

TTL LOGIC and RING OSCILLATOR TTL

TTL LOGIC and RING OSCILLATOR TTL ECE 2274 TTL LOGIC and RING OSCILLATOR TTL We will examine two digital logic inverters. The first will have a passive resistor pull-up output stage. The second will have an active transistor and current

More information

Introduction to SwitcherCAD

Introduction to SwitcherCAD Introduction to SwitcherCAD 1 PREFACE 1.1 What is SwitcherCAD? SwitcherCAD III is a new Spice based program that was developed for modelling board level switching regulator systems. The program consists

More information

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit

EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab. Prelab Part I: RC Circuit EE 2274 RC and Op Amp Circuit Completed Prior to Coming to Lab Prelab Part I: RC Circuit 1. Design a high pass filter (Fig. 1) which has a break point f b = 1 khz at 3dB below the midband level (the -3dB

More information

Xcircuit and Spice. February 26, 2007

Xcircuit and Spice. February 26, 2007 Xcircuit and Spice February 26, 2007 This week we are going to start with a new tool, namely Spice. Spice is a circuit simulator. The variant of spice we will use here is called Spice-Opus, and is a combined

More information

An Introductory Guide to Circuit Simulation using NI Multisim 12

An Introductory Guide to Circuit Simulation using NI Multisim 12 School of Engineering and Technology An Introductory Guide to Circuit Simulation using NI Multisim 12 This booklet belongs to: This document provides a brief overview and introductory tutorial for circuit

More information

EE 210 Lab Exercise #3 Introduction to PSPICE

EE 210 Lab Exercise #3 Introduction to PSPICE EE 210 Lab Exercise #3 Introduction to PSPICE Appending 4 in your Textbook contains a short tutorial on PSPICE. Additional information, tutorials and a demo version of PSPICE can be found at the manufacturer

More information

ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE

ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE Version 1.1 1 of 33 BEFORE YOU BEGIN PREREQUISITE LABS Resistive Circuits EXPECTED KNOWLEDGE ECE 201 LAB 6 INTRODUCTION TO SPICE/PSPICE Ohm's Law: v = ir Node Voltage and Mesh Current Methods of Circuit

More information

EXPERIMENT 9 Problem Solving: First-order Transient Circuits

EXPERIMENT 9 Problem Solving: First-order Transient Circuits EXPERIMENT 9 Problem Solving: First-order Transient Circuits I. Introduction In transient analyses, we determine voltages and currents as functions of time. Typically, the time dependence is demonstrated

More information

Lab 3: Very Brief Introduction to Micro-Cap SPICE

Lab 3: Very Brief Introduction to Micro-Cap SPICE Lab 3: Very Brief Introduction to Micro-Cap SPICE Starting Micro-Cap SPICE Micro-Cap SPICE is available on CoE machines under the Spectrum Software menu: Programs Spectrum Software Micro-Cap 10 Evaluation

More information

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill

Engineering 3821 Fall Pspice TUTORIAL 1. Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill Engineering 3821 Fall 2003 Pspice TUTORIAL 1 Prepared by: J. Tobin (Class of 2005) B. Jeyasurya E. Gill 2 INTRODUCTION The PSpice program is a member of the SPICE (Simulation Program with Integrated Circuit

More information

Introduction to LT Spice IV with Examples

Introduction to LT Spice IV with Examples Introduction to LT Spice IV with Examples 400D - Fall 2015 Purpose Part of Electronics & Control Division Technical Training Series by Nicholas Lombardo The purpose of this document is to give a basic

More information

Class #7: Experiment L & C Circuits: Filters and Energy Revisited

Class #7: Experiment L & C Circuits: Filters and Energy Revisited Class #7: Experiment L & C Circuits: Filters and Energy Revisited In this experiment you will revisit the voltage oscillations of a simple LC circuit. Then you will address circuits made by combining resistors

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey Homework #1: Circuit Simulation EECS 141 Due Friday, January 29, 5pm, box in 240

More information

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006

SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY. Modified February 2006 SIMULATIONS WITH THE BUCK-BOOST TOPOLOGY EE562: POWER ELECTRONICS I COLORADO STATE UNIVERSITY Modified February 2006 Page 1 of 13 PURPOSE: The purpose of this lab is to simulate the Buck-Boost converter

More information

Lab 3: Circuit Simulation with PSPICE

Lab 3: Circuit Simulation with PSPICE Page 1 of 11 Laboratory Goals Introduce text-based PSPICE as a design tool Create transistor circuits using PSPICE Simulate output response for the designed circuits Introduce the Curve Tracer functionality.

More information

Lab #2 First Order RC Circuits Week of 27 January 2015

Lab #2 First Order RC Circuits Week of 27 January 2015 ECE214: Electrical Circuits Laboratory Lab #2 First Order RC Circuits Week of 27 January 2015 1 Introduction In this lab you will investigate the magnitude and phase shift that occurs in an RC circuit

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011

SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011 SIMULATION WITH THE BOOST TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY Modified in Fall 2011 ECE 562 Boost Converter (NL5 Simulation) Laboratory 2 Page 1 PURPOSE: The purpose of this

More information

Using HVOUT Simulator Utility to Estimate MOSFET Ramp Times

Using HVOUT Simulator Utility to Estimate MOSFET Ramp Times November 2005 Using HVOUT Simulator Utility to HVOUT Simulator Calculates The Actual Power Supply Ramp Rate Application Note AN6070 Several Power Manager devices from Lattice incorporate charge-pump gate-driver

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #6 Current-Voltage Characteristics of Electronic Devices By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Wired Diode OR Gate LTspice use 1N4002 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design

More information

ECE 2274 Diode Basics and a Rectifier Completed Prior to Coming to Lab

ECE 2274 Diode Basics and a Rectifier Completed Prior to Coming to Lab ECE 2274 Diode Basics and a Rectifier Completed Prior to Coming to Lab Perlab: Part I I-V Characteristic Curve for the 1. Construct the circuit shown in figure 1. Using a DC Sweep, simulate in LTspice

More information

PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS. for the Orcad PSpice Release 9.2 Lite Edition

PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS. for the Orcad PSpice Release 9.2 Lite Edition PSPICE T UTORIAL P ART I: INTRODUCTION AND DC ANALYSIS for the Orcad PSpice Release 9.2 Lite Edition INTRODUCTION The Simulation Program with Integrated Circuit Emphasis (SPICE) circuit simulation tool

More information

LT Spice Getting Started Very Quickly. First Get the Latest Software!

LT Spice Getting Started Very Quickly. First Get the Latest Software! LT Spice Getting Started Very Quickly First Get the Latest Software! 1. After installing LT Spice, run it and check to make sure you have the latest version with respect to the latest version available

More information

ETIN25 Analogue IC Design. Laboratory Manual Lab 2

ETIN25 Analogue IC Design. Laboratory Manual Lab 2 Department of Electrical and Information Technology LTH ETIN25 Analogue IC Design Laboratory Manual Lab 2 Jonas Lindstrand Martin Liliebladh Markus Törmänen September 2011 Laboratory 2: Design and Simulation

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

FAMILIARIZATION WITH DIGITAL PULSE AND MEASUREMENTS OF THE TRANSIENT TIMES

FAMILIARIZATION WITH DIGITAL PULSE AND MEASUREMENTS OF THE TRANSIENT TIMES EXPERIMENT 1 FAMILIARIZATION WITH DIGITAL PULSE AND MEASUREMENTS OF THE TRANSIENT TIMES REFERENCES Analysis and Design of Digital Integrated Circuits, Hodges and Jackson, pages 6-7 Experiments in Microprocessors

More information

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS OBJECTIVES : 1. To interpret data sheets supplied by the manufacturers

More information

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS

ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS ENGINEERING TRIPOS PART II A ELECTRICAL AND INFORMATION ENGINEERING TEACHING LABORATORY EXPERIMENT 3B2-B DIGITAL INTEGRATED CIRCUITS OBJECTIVES : 1. To interpret data sheets supplied by the manufacturers

More information

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program.

Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice Analysis Since transmission lines can be modeled using PSpice, you can do your analysis by downloading the student version of this excellent program. PSpice can be downloaded from the following

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER Issued 10/27/2008 Report due in Lecture 11/10/2008 Introduction In this lab you will characterize a 2N3904 NPN

More information

Introduction to Pspice

Introduction to Pspice 1. Objectives Introduction to Pspice The learning objectives for this laboratory are to give the students a brief introduction to using Pspice as a tool to analyze circuits and also to demonstrate the

More information

SPICE 4: Diodes. Chris Winstead. ECE Spring, Chris Winstead SPICE 4: Diodes ECE Spring, / 28

SPICE 4: Diodes. Chris Winstead. ECE Spring, Chris Winstead SPICE 4: Diodes ECE Spring, / 28 SPICE 4: Diodes Chris Winstead ECE 3410. Spring, 2015. Chris Winstead SPICE 4: Diodes ECE 3410. Spring, 2015. 1 / 28 Preparing for the Exercises In this session, we will simulate several diode configurations

More information

EE 221 L CIRCUIT II. Learn to use LTspice to run circuit simulations for voltage, current, etc.

EE 221 L CIRCUIT II. Learn to use LTspice to run circuit simulations for voltage, current, etc. EE 221 L CIRCUIT II LABORATORY 3: LTSPICE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE Learn to use LTspice to run circuit simulations for voltage, current,

More information

FPGA SI Tutorial - Simulating the Reflection Characteristics

FPGA SI Tutorial - Simulating the Reflection Characteristics FPGA SI Tutorial - Simulating the Reflection Characteristics Old Content - visit altium.com/documentation Modified by Admin on Sep 13, 2017 Now that things are setup we can simulate the reflection characteristics

More information

EE 105 MICROELECTRONIC DEVICES & CIRCUITS FALL 2018 C. Nguyen. Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises

EE 105 MICROELECTRONIC DEVICES & CIRCUITS FALL 2018 C. Nguyen. Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises Laboratory 2: Characterization of the 741 Op Amp Preliminary Exercises This lab will characterize an actual 741 operational amplifier with emphasis on its non-ideal properties, such as finite gain and

More information

LTSpice Basic Tutorial

LTSpice Basic Tutorial Index: I. Opening LTSpice II. Drawing the circuit A. Making Sure You Have a GND B. Getting the Parts C. Placing the Parts D. Connecting the Circuit E. Changing the Name of the Part F. Changing the Value

More information

Experiment 2 Introduction to PSpice

Experiment 2 Introduction to PSpice Experiment 2 Introduction to PSpice W.T. Yeung and R.T. Howe UC Berkeley EE 105 Fall 2004 1.0 Objective One of the CAD tools you will be using as a circuit designer is SPICE, a Berkeleydeveloped industry-standard

More information

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment P45: LRC Circuit (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P45-1 Experiment P45: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh file Windows file circuits 30 m 700 P45 P45_LRCC.SWS EQUIPMENT NEEDED

More information

In this experiment you will study the characteristics of a CMOS NAND gate.

In this experiment you will study the characteristics of a CMOS NAND gate. Introduction Be sure to print a copy of Experiment #12 and bring it with you to lab. There will not be any experiment copies available in the lab. Also bring graph paper (cm cm is best). Purpose In this

More information

Class #8: Experiment Diodes Part I

Class #8: Experiment Diodes Part I Class #8: Experiment Diodes Part I Purpose: The objective of this experiment is to become familiar with the properties and uses of diodes. We used a 1N914 diode in two previous experiments, but now we

More information

Introduction to NI Multisim & Ultiboard Software version 14.1

Introduction to NI Multisim & Ultiboard Software version 14.1 School of Engineering and Applied Science Electrical and Computer Engineering Department Introduction to NI Multisim & Ultiboard Software version 14.1 Dr. Amir Aslani August 2018 Parts Probes Tools Outline

More information

EEC 116 Fall 2011 Lab #2: Analog Simulation Tutorial

EEC 116 Fall 2011 Lab #2: Analog Simulation Tutorial EEC 116 Fall 2011 Lab #2: Analog Simulation Tutorial Dept. of Electrical and Computer Engineering University of California, Davis Issued: September 28, 2011 Due: October 12, 2011, 4PM Reading: Rabaey Chapters

More information

Lab 2: Diode Characteristics and Diode Circuits

Lab 2: Diode Characteristics and Diode Circuits 1. Learning Outcomes Lab 2: Diode Characteristics and Diode Circuits At the end of this lab, the students should be able to compare the experimental data to the theoretical curve of the diodes. The students

More information

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab Part I I-V Characteristic Curve ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab 1. Construct the circuit shown in figure 4-1. Using a DC Sweep, simulate

More information

Chapter 12: Electronic Circuit Simulation and Layout Software

Chapter 12: Electronic Circuit Simulation and Layout Software Chapter 12: Electronic Circuit Simulation and Layout Software In this chapter, we introduce the use of analog circuit simulation software and circuit layout software. I. Introduction So far we have designed

More information

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1.

1. Hand Calculations (in a manner suitable for submission) For the circuit in Fig. 1 with f = 7.2 khz and a source vin () t 1. Objectives The purpose of this laboratory project is to introduce to equipment, measurement techniques, and simulations commonly used in AC circuit analysis. In this laboratory session, each student will:

More information

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis.

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis. Islamic University of Gaza Faculty of Engineering Electrical Engineering department Digital Electronics Lab (EELE 3121) Eng. Mohammed S. Jouda Eng. Amani S. abu reyala Experiment 1 Introduction to OrCAD

More information

Schematic and Layout Simulation Exercise

Schematic and Layout Simulation Exercise University of California, Berkeley EE141 Fall 2009 Laboratory Exercise 4 Schematic and Layout Simulation Exercise The objective of this laboratory exercise is to walk you through the process of simulating

More information

Digital Applications of the Operational Amplifier

Digital Applications of the Operational Amplifier Lab Procedure 1. Objective This project will show the versatile operation of an operational amplifier in a voltage comparator (Schmitt Trigger) circuit and a sample and hold circuit. 2. Components Qty

More information

Lab 2: Basic Boolean Circuits. Brittany Duffy EE 330- Integrated Electronics Lab Section B Professor Randy Geiger 1/31/13

Lab 2: Basic Boolean Circuits. Brittany Duffy EE 330- Integrated Electronics Lab Section B Professor Randy Geiger 1/31/13 Lab 2: Basic Boolean Circuits Brittany Duffy EE 330- Integrated Electronics Lab Section B Professor Randy Geiger 1/31/13 Introduction The main goal of this lab was to become familiarized with the methods

More information

Introduction to LTSpice

Introduction to LTSpice Usage of Introduction to Department of EECS Jacobs University Bremen Instructors - Dr. Mathias Bode and - e-mail - m.bode@jacobs-university.de tel.: +49 421 200-3139 - u.pagel@jacobs-university.de tel.:

More information

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz Department of Electrical & Computer Engineering Technology EET 3086C Circuit Analysis Laboratory Experiments Masood Ejaz Experiment # 1 DC Measurements of a Resistive Circuit and Proof of Thevenin Theorem

More information

Lab 1 Power electronics

Lab 1 Power electronics 5--24 (5) Lab Power electronics Contents Introduction... Initial setup... 2 Starting the software... 2 Notes on the schematics... 2 Simulating the design... 2 Existing simulation variables... 3 Extra measurement

More information

LAB 8: Activity P52: LRC Circuit

LAB 8: Activity P52: LRC Circuit LAB 8: Activity P52: LRC Circuit Equipment: Voltage Sensor 1 Multimeter 1 Patch Cords 2 AC/DC Electronics Lab (100 μf capacitor; 10 Ω resistor; Inductor Coil; Iron core; 5 inch wire lead) The purpose of

More information

Experiment Number 2. Revised: Fall 2018 PLECS RC, RL, and RLC Simulations

Experiment Number 2. Revised: Fall 2018 PLECS RC, RL, and RLC Simulations Experiment Number 2 Revised: Fall 2018 PLECS RC, RL, and RLC Simulations Preface: Experiment number 2 will be held in CLC room 105, 106, or 107. Your TA will let you know Preliminary exercises are to be

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

Experiment Number 2. Revised: Summer 2013 PLECS RC, RL, and RLC Simulations

Experiment Number 2. Revised: Summer 2013 PLECS RC, RL, and RLC Simulations Preface: Experiment Number 2 Revised: Summer 2013 PLECS RC, RL, and RLC Simulations Preliminary exercises are to be done and submitted individually Laboratory simulation exercises are to be done individually

More information

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type:

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type: UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences HW #1: Circuit Simulation NTU IC541CA (Spring 2004) 1 Objective The objective of this homework

More information

A Brief Handout for Introduction to

A Brief Handout for Introduction to A Brief Handout for Introduction to Electric cal Engineering Course This handout is a compilation of PSPICE, A Brief Primer, Department of Electrical and Systems Engineering, University of Pennsylvania

More information

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

More information

.dc Vcc Ib 0 50uA 5uA

.dc Vcc Ib 0 50uA 5uA EE 2274 BJT Biasing PreLab: 1. Common Emitter (CE) Transistor Characteristics curve Generate the characteristics curves for a 2N3904 in LTspice by plotting Ic by sweeping Vce over a set of Ib steps. Label

More information

1.2Vdc 1N4002. Anode V+

1.2Vdc 1N4002. Anode V+ ECE 2274 Pre-Lab for MOSFET Night Light and Voltmeter 1. Night Light The purpose of this part of experiment is to use the switching characteristics of the MOSFET to design a Night Light using a LED, MOSFET,

More information

Experiment Number 1. Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface:

Experiment Number 1. Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface: Experiment Number 1 Revised: Fall 2018 Introduction to MATLAB Simulink and Simulink Resistor Simulations Preface: Experiment number 1 will be held in CLC room 105, 106, or 107. Your TA will let you know

More information

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB

More information

SIMULATION WITH THE CUK TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011

SIMULATION WITH THE CUK TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY. Modified in Fall 2011 SIMULATION WITH THE CUK TOPOLOGY ECE562: Power Electronics I COLORADO STATE UNIVERSITY Modified in Fall 2011 ECE 562 Cuk Converter (NL5 Simulation) Laboratory Page 1 PURPOSE: The purpose of this lab is

More information

Week 9: Series RC Circuit. Experiment 14

Week 9: Series RC Circuit. Experiment 14 Week 9: Series RC Circuit Experiment 14 Circuit to be constructed It is good practice to short the unused pin on the trimpot when using it as a variable resistor Velleman function generator Shunt resistor

More information

Revised: Summer 2010

Revised: Summer 2010 EE 2274 PRE-LAB EXPERIMENT 5 DIODE OR GATE & CLIPPING CIRCUIT COMPLETE PRIOR TO COMING TO LAB Part I: 1. Design a diode, Figure 1 OR gate in which the maximum input current,, Iin is less than 5mA. Show

More information

LABORATORY 7 v2 BOOST CONVERTER

LABORATORY 7 v2 BOOST CONVERTER University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 7 v2 BOOST CONVERTER In many situations circuits require a different

More information

Activity P52: LRC Circuit (Voltage Sensor)

Activity P52: LRC Circuit (Voltage Sensor) Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) AC circuits P52 LRC Circuit.DS (See end of activity) (See end of activity) Equipment Needed Qty

More information

ELEC 330 Electronic Circuits I Tutorial and Simulations for Micro-Cap IV by Adam Zielinski (posted at:

ELEC 330 Electronic Circuits I Tutorial and Simulations for Micro-Cap IV by Adam Zielinski (posted at: Tutorial 1.1 ELEC 330 Electronic Circuits I Tutorial and Simulations for Micro-Cap IV by Adam Zielinski (posted at: http://www.ece.uvic.ca/~adam/) This manual is written for the Micro-Cap IV Electronic

More information

Electric Circuit Fall 2015 Pingqiang Zhou. ShanghaiTech University. School of Information Science and Technology. Professor Pingqiang Zhou

Electric Circuit Fall 2015 Pingqiang Zhou. ShanghaiTech University. School of Information Science and Technology. Professor Pingqiang Zhou ShanghaiTech University School of Information Science and Technology Professor Pingqiang Zhou LABORATORY 2 CAD Tools Guide Practical circuit design occurs in three stages: 1. Design of an appropriate circuit

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs Introduction to Arduino EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Labs 10-11 Introduction to Arduino In this lab we will introduce the idea of using a microcontroller as a tool for controlling

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #3 Operational Amplifier Application Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

More information

build info nonlinearcircuits

build info nonlinearcircuits It s 555 resonator build info nonlinearcircuits BOM BC547 10 npn marked n on PCB see notes BC557 10 pnp- marked p on PCB see notes 555 IC 5 TL072 2 TL074 1 power connector 0.156 1 Molex 3 pin 100k pots

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

EXPERIMENT 2. NMOS AND BJT INVERTING CIRCUITS

EXPERIMENT 2. NMOS AND BJT INVERTING CIRCUITS EXPERIMENT 2. NMOS AND BJT INVERTING CIRCUITS I. Introduction I.I Objectives In this experiment, you will analyze and compare the voltage transfer characteristics (VTC) and the dynamic response of the

More information

MultiSim and Analog Discovery 2 Manual

MultiSim and Analog Discovery 2 Manual MultiSim and Analog Discovery 2 Manual 1 MultiSim 1.1 Running Windows Programs Using Mac Obtain free Microsoft Windows from: http://software.tamu.edu Set up a Windows partition on your Mac: https://support.apple.com/en-us/ht204009

More information

Load Transient Tool User Manual

Load Transient Tool User Manual Figure 1: Richtek connections and functions The Richtek contains a micro controller that switches a MOSFET on and off with a certain duty-cycle. When connected to a voltage regulator output, the MOSFET

More information

RELEASE NOTES SIMETRIX 6.2 O VERVIEW WHAT S NEW GUI DVM SIMETRIX SIMULATOR SIMPLIS SIMULATOR SCRIPT LANGUAGE MODEL LIBRARY

RELEASE NOTES SIMETRIX 6.2 O VERVIEW WHAT S NEW GUI DVM SIMETRIX SIMULATOR SIMPLIS SIMULATOR SCRIPT LANGUAGE MODEL LIBRARY RELEASE NOTES SIMETRIX 6.2 O VERVIEW This document provides details of SIMetrix Version 6.2. WHAT S NEW GUI 1. Model selection by specification. Some types of library model can now be selected from their

More information

OBJECTIVE The purpose of this exercise is to design and build a pulse generator.

OBJECTIVE The purpose of this exercise is to design and build a pulse generator. ELEC 4 Experiment 8 Pulse Generators OBJECTIVE The purpose of this exercise is to design and build a pulse generator. EQUIPMENT AND PARTS REQUIRED Protoboard LM555 Timer, AR resistors, rated 5%, /4 W,

More information

LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits

LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits LABORATORY 2: Bridge circuits, Superposition, Thevenin Circuits, and Amplifier Circuits Note: If your partner is no longer in the class, please talk to the instructor. Material covered: Bridge circuits

More information

LAB1 WEBENCH SIMULATION EE562: POWER ELECTRONICS COLORADO STATE UNIVERSITY

LAB1 WEBENCH SIMULATION EE562: POWER ELECTRONICS COLORADO STATE UNIVERSITY LAB1 WEBENCH SIMULATION EE562: POWER ELECTRONICS COLORADO STATE UNIVERSITY PURPOSE: The purpose of this lab is to explore National Semiconductors WEBENCH, which is an online design and prototyping tool.

More information

IME-100 ECE. Lab 1. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 1. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 1 Electrical and Computer Engineering Department Kettering University 1-1 IME-100, ECE Lab1 Circuit Design, Simulation, and Layout In this laboratory exercise, you will do the following:

More information

Understanding, measuring, and reducing output noise in DC/DC switching regulators

Understanding, measuring, and reducing output noise in DC/DC switching regulators Understanding, measuring, and reducing output noise in DC/DC switching regulators Practical tips for output noise reduction Katelyn Wiggenhorn, Applications Engineer, Buck Switching Regulators Robert Blattner,

More information

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached.

Each individual is to report on the design, simulations, construction, and testing according to the reporting guidelines attached. EE 352 Design Project Spring 2015 FM Receiver Revision 0, 03-02-15 Interim report due: Friday April 3, 2015, 5:00PM Project Demonstrations: April 28, 29, 30 during normal lab section times Final report

More information

Exponential Waveforms

Exponential Waveforms ENGR 210 Lab 9 Exponential Waveforms Purpose: To measure the step response of circuits containing dynamic elements such as capacitors. Equipment Required: 1 - HP 54xxx Oscilloscope 1 - HP 33120A Function

More information

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates

Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Lecture Summary Module 1 Switching Algebra and CMOS Logic Gates Learning Outcome: an ability to analyze and design CMOS logic gates Learning Objectives: 1-1. convert numbers from one base (radix) to another:

More information

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis

LAB EXERCISE 3 FET Amplifier Design and Linear Analysis ADS 2012 Workspaces and Simulation Tools (v.1 Oct 2012) LAB EXERCISE 3 FET Amplifier Design and Linear Analysis Topics: More schematic capture, DC and AC simulation, more on libraries and cells, using

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #5 Lab Report Diode Applications and PSPICE Introduction Submission Date: 10/10/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By: Nick Haver & Alex

More information

Practical Assignment 1: Arduino interface with Simulink

Practical Assignment 1: Arduino interface with Simulink !! Department of Electrical Engineering Indian Institute of Technology Dharwad EE 303: Control Systems Practical Assignment - 1 Adapted from Take Home Labs, Oklahoma State University Practical Assignment

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Figure 1. Main window (Common Interface Window), CIW opens and from the pull down menus you can start your design. Figure 2.

Figure 1. Main window (Common Interface Window), CIW opens and from the pull down menus you can start your design. Figure 2. Running Cadence Once the Cadence environment has been setup you can start working with Cadence. You can run cadence from your directory by typing Figure 1. Main window (Common Interface Window), CIW opens

More information