Non Stationary Bistatic Synthetic Aperture Radar Processing: Assessment of Frequency Domain Processing from Simulated and Real Signals

Size: px
Start display at page:

Download "Non Stationary Bistatic Synthetic Aperture Radar Processing: Assessment of Frequency Domain Processing from Simulated and Real Signals"

Transcription

1 PIERS ONLINE, VOL. 5, NO. 2, Non Stationary Bistatic Synthetic Aperture Radar Processing: Assessment of Frequency Domain Processing from Simulated and Real Signals Hubert M. J. Cantalloube Office National d Études et Recherches Aérospatiales, France Abstract Bistatic synthetic aperture radar (SAR) imaging from very asymmetric configuration is a promising technique for both military and civilian issues. Indeed, an illuminating radar standing off at a safe distance may be combined with a low cost, possibly unmanned air vehicle using a passive radar receiver operating at closer range. Practical civilian application could be high resolution remote sensing of dangerous disaster areas (fire, chemical or radioactive hazard) with small unmanned aircrafts. Military application could be SAR imaging in the forward direction for a missile guidance without signalling the sensor by its transmitted radiation. However, such configurations are strongly non-stationary in the sense that the transmitter to receiver distance and relative orientation varies. This severely harden the task of frequency domain processing and especially its motion compensation. We tested frequency domain processing and motion compensation for both simulated and real signal for identical asymmetric configurations. The SAR processor may provide self-testing before image synthesis and forecast phase errors in the resulting image depending on terrain elevation features. Error maps provided may be used for illustrating the motion compensation and the frequency domain processing in a didactic way. Opportunistic air-to-air ISAR imaging (of the receiver plane) was successfully experimented, though bistatic imaging was mostly a failure due to local clock jitter. This crucial issue as well as the clock drifting issue will be addressed. 1. INTRODUCTION Following the first airborne bistatic campaign [1] conducted by the German DLR and the French ONERA in 2003, which successfully tested time invariant (same velocity on parallel tracks) configuration, we used the last two flights before decommissioning of our older airborne SAR system RAMSES (on October 21st and 25th 2008) for testing strongly time-varying configurations using as receiver our lightweight DRIVE system. Two representative configurations were selected with RAMSES (on board a Transall-C160, a large freighter aircraft) flying at 5000 feet/165 knots and illuminating at X-band from it right door and DRIVE as a receiver mounted on a pod under the right wind a small touring motor-glider (simulating an unmanned aircraft) flying at 3000 feet/85 knots with antenna squinted either 90 or 60 from the track. In the former case, the aircraft tracks are parallel and in the later case, their headings are separated by 30. In order to prepare this experiment, bistatic signal simulations for point-wise perfect reflectors were prepared using translated and rotated effective trajectories of the two aircrafts (recorded during independent monostatic acquisition campaigns) thus providing realistic motion compensation test data for our bistatic SAR processors. The first one used since 2003 is an accelerated temporal domain processor (a two-stage simpler and less efficient variant of the fast back projection algorithm [2]) the second one is an ω-k (frequency domain) processor derived from a motion compensated monostatic ω-k processor [3] and a bistatic processor prototype described in [4] and [5]. During this preparation stage, the idea of taking the opportunity to image the receiving aircraft itself and focusing its shadow was accepted for inclusion in the flight plan. 2. BISTATIC SAR PROCESSING ISSUES Our time-domain processor was already modified for bistatic configurations in 2003, and the time varying case adds but one complications: the integration time for a given range varies along track because the bistatic angle varies (the computation of it needed to be changed a first time in 2003 because in monostatic cases integration time is simply proportional to range, which is not the case in bistatic configurations with significantly separated parallel tracks). We did not implement this yet since our receiver system DRIVE can only record 16.5 second of signal, and this effect was not critical as the spectral envelop in azimuth is significantly degraded by the factoring of the back projection algorithm (even though it is limited to 2 stages in our implementation).

2 PIERS ONLINE, VOL. 5, NO. 2, The frequency-domain processor was simplified compared to the organisation described in [5]. Mainly, the motion-compensation parameters are computed in a preparation step and stored instead of being computed on the fly. The increase in required storage is traded against three advantages: First the motion/algorithmic compensation parameters are assessed before starting the time-consuming image synthesis, which allows for aborting the computation in case of insufficient values are detected. Second, the α-δ control loop during slow-time re-sampling (pre-integration) is replaced by a simple computation from the azimuth migration. Last, all the terrain altitude computations are pre-computed in the target image coordinate using a z-buffer type of approach, thus avoiding switching between solutions in overlay area which strongly disturbed the motion compensation mechanisms downstream in the processor. 3. REAL SIGNAL PROCESSING While processing of the simulated signal (as well as that of the 2003 time-invariant acquisitions) gave satisfying results, SAR processing of the just acquired signal produced images cluttered with azimuth replica of the expected landscape image (Fig. 1 and Fig. 2). Figure 1: From left to right: time-domain processing of simulated & real data, altitude, azimuth migration, 0th, 1st and 2nd order quadratic phase maps, resulting frequency-domain computed images. Figure 2: Monostatic stripmap image (left) obtained by frequency domain processing, monostatic flashlook image (right) time-domain processed and bistatic flashlook image (bottom) also time-domain processed. Illuminator trajectory is in red (light red not transmitting and dark red integration time for the flashlook images) and the trajectory of receiver only aircraft is in blue (light blue not receiving, dark blue integration time for the bistatic flashlook image).

3 PIERS ONLINE, VOL. 5, NO. 2, In order to explain the presence of azimuth image replica, we recorded, on the ground after the flights, the transmitted signal with the bistatic receiver (Fig. 3). Although the low frequency phase drift is comparable to the one dealt with during the DLR-ONERA campaign (the drift is about 5 time more slowly), there is an almost periodic higher (200 Hz) frequency component of yet undetermined origin. Figure 3: Phase drift measured by recording on the ground the transmitted signal of RAMSES with the DRIVE receiver. Phase history on 400 pulses (left) and the corresponding spectrum (right). Compensated bistatic flashlook image (bottom). 4. AIR TO AIR SAR IMAGING Knowing the receiver aircraft trajectory, its SAR imaging is performed by first registering the monostatic range profiles to its successive positions (Fig. 7) Optional low-pass filtering allows for important reduction of the data rate and increase of the target to clutter ratio which may be usefull in case range to target is less accurate than in our experiment. Range profile around the target centre are then processed by polar format algorithm using the radar trajectory in the coordinate space of the target aircraft. Unlike the classical surface-to-air or air-to-surface ISAR, air-to-air relative trajectory shows more elevation angle variation and uneven target rotation rate mostly because of target own rotations on the yaw axis (see on Fig. 4 the rotation rate inverts sometimes during the acquisition). Once these two phenomena are corrected (illustrated on simulated signal of 4 point-like reflectors on Fig. 4 and Fig. 5) it is possible to obtain coarse ISAR images of the real target, providing integration time is sufficiently low. Relative trajectory is then adjusted by the classical framedrift technique: The drift of successive images in the azimuth direction (measured by correlating detected images) is compensated for as radial velocity biases, then interpolated velocity correction is used to synthesize higher resolution images (Fig. 8). Figure 4: Apparent elevation (left) versus heading of the illuminating radar seem from the target aircraft during the true acquisition. Image (right) of a simulated point-wise echo without compensating for elevation angle fluctuations. Phase is colour-coded on the Fourier domain (right half of the windows) and shows in the former case fluctuations ruining azimuth (Doppler axis) resolution.

4 PIERS ONLINE, VOL. 5, NO. 2, Figure 5: Image of a simulated point-wise echo taking into account elevation angle fluctuations hence no phase error occurs. Without (left) compensation of the angular velocity fluctuations, uneven azimuth weighting increases the side-lobes. With (right) compensation, the image focusing is correct. Figure 6: Monostatic image of the last RAMSES acquisition (left) and the corresponding ground map (right). The true ground trajectory of the receiver aircraft is indicated as a fat blue line. Radar illumination is from the top of the illustration, moving from left (South) to right (North). Receiver trajectory is from the bottom-right (North-East) to the top-left (South-West). Further research will be to try focussing on the shadow of the target aircraft (as it is less altered by her attitude variations than her direct SAR image). Though it is relatively easy to compute the intersection with the digital terrain model (DTM) of the straight line joining illuminating and target aircrafts, hence the shadow position in range and Doppler (that of the ground at the shadow location), the SAR processor should be modified because unlike a real target, the Doppler is no more proportional to the first derivative of the range. Another axis of research is to try recovering attitude from tracking (may require ATI capability of imaging radar) through aircraft dynamics modelling. Figure 7: Range profiles centred on the target aircraft position (above: with normal rendering, below: with dynamic range increased to emphasize off clutter area. Top: genuine range profiles, bottom: low-pass filtered at 10% of the Doppler bandwidth). Times increases from left to right and range from top to bottom. Black area on the left corresponds to signal before the target enters the radar swath. The typical signature of the aircraft appears as horizontal trace at the bottom image.

5 PIERS ONLINE, VOL. 5, NO. 2, Figure 8: In flight SAR image (left) and optical image (middle) of the receiver aircraft, a Stemme touring motor glider, with a T shaped tail and the receiving radar under the right wing. Photo (right) on the ground of the receiver aircraft with the illuminating aircraft on the background. 5. CONCLUSIONS Though the experiment aim (SAR imaging in non stationary bistatic airborne configurations) was not attained, both the validation on simulated signal and the realisation of the first air-to-air radar imaging are promising results. The determination of the cause of failure (spectral purity of the receiver local oscillator, frequency multipliers, etc.) is also important as it will be a crucial point to check in the future bistatic system developments, especially in the receiver is a low-cost, possibly highly exposed to hazard or expendable system. ACKNOWLEDGMENT Author acknowledges funding and support from the DGA (French MoD research directorate) as well as kind cooperation from Istres test-range pilots and experimenters. REFERENCES 1. Dubois-Fernandez, P., et al., ONERA-DLR bistatic SAR campaign: Planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets, IEE Radar Sonar Navigation, Vol. 153, No. 3, , Ulander, L., H. Hellsten, and G. Stenstrom, Synthetic aperture radar processing using fast factorized back-projection, IEEE Trans. Aerosp. Electron. Syst., Vol. 39, , Cantalloube, H.-M. J and P. Dubois-Fernandez, Airborne X-band SAR imaging with 10 cm resolution Technical challenge and preliminary results, Proceedings of IGARSS Conference, , Toulouse, France, July Giroux, V., et al., An omega-k algorithm for SAR bistatic systems, Proceedings of IGARSS Conference, , Seoul, Korea, July Cherniakov, M., Bistatic Radar: Emerging Technology, Wiley, New York, 2007.

Towards a Polarimetric SAR Processor for Airborne Sensor

Towards a Polarimetric SAR Processor for Airborne Sensor PIERS ONLINE, VOL. 6, NO. 5, 2010 465 Towards a Polarimetric SAR Processor for Airborne Sensor H. M. J. Cantalloube 1, B. Fromentin-Denoziere 1, and C. E. Nahum 2 1 ONERA (Office National d Études et Recherches

More information

Towards a polarimetric SAR processor for airborne sensor

Towards a polarimetric SAR processor for airborne sensor 1 Towards a polarimetric SAR processor for airborne sensor H. M.J. Cantalloube 1, B. Fromentin-Denoziere 1, and C. E. Nahum 2 1 ONERA (Office National d Études et Recherches Aérospatiales) Palaiseau, France

More information

UAV Detection and Localization Using Passive DVB-T Radar MFN and SFN

UAV Detection and Localization Using Passive DVB-T Radar MFN and SFN UAV Detection and Localization Using Passive DVB-T Radar MFN and SFN Dominique Poullin ONERA Palaiseau Chemin de la Hunière BP 80100 FR-91123 PALAISEAU CEDEX FRANCE Dominique.poullin@onera.fr ABSTRACT

More information

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR 3 nd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry POLinSAR 2007 January 25, 2007 ESA/ESRIN Frascati, Italy MULTI-CHANNEL SAR EXPERIMENTS FROM THE

More information

Synthetic Aperture Radar

Synthetic Aperture Radar Synthetic Aperture Radar Picture 1: Radar silhouette of a ship, produced with the ISAR-Processor of the Ocean Master A Synthetic Aperture Radar (SAR), or SAR, is a coherent mostly airborne or spaceborne

More information

Detection of traffic congestion in airborne SAR imagery

Detection of traffic congestion in airborne SAR imagery Detection of traffic congestion in airborne SAR imagery Gintautas Palubinskas and Hartmut Runge German Aerospace Center DLR Remote Sensing Technology Institute Oberpfaffenhofen, 82234 Wessling, Germany

More information

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR Svetlana Bachmann 1, 2, Victor DeBrunner 3, Dusan Zrnic 2 1 Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma

More information

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology

Principles of Space- Time Adaptive Processing 3rd Edition. By Richard Klemm. The Institution of Engineering and Technology Principles of Space- Time Adaptive Processing 3rd Edition By Richard Klemm The Institution of Engineering and Technology Contents Biography Preface to the first edition Preface to the second edition Preface

More information

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London

Synthetic Aperture Radar. Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London Synthetic Aperture Radar Hugh Griffiths THALES/Royal Academy of Engineering Chair of RF Sensors University College London CEOI Training Workshop Designing and Delivering and Instrument Concept 15 March

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

Bistatic experiment with the UWB-CARABAS sensor - first results and prospects of future applications

Bistatic experiment with the UWB-CARABAS sensor - first results and prospects of future applications Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2009 Bistatic experiment with the UWB-CARABAS sensor - first results and prospects

More information

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds

More information

Bistatic SAR image formation

Bistatic SAR image formation Bistatic SAR image formation G. Yates, A.M. Horne, A.P. Blake and R. Middleton Abstract: Synthetic aperture radar (SAR) allows all-weather, day-and-night surface surveillance and has the ability to detect,

More information

Sensor set stabilization system for miniature UAV

Sensor set stabilization system for miniature UAV Sensor set stabilization system for miniature UAV Wojciech Komorniczak 1, Tomasz Górski, Adam Kawalec, Jerzy Pietrasiński Military University of Technology, Institute of Radioelectronics, Warsaw, POLAND

More information

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2)

Remote Sensing. Ch. 3 Microwaves (Part 1 of 2) Remote Sensing Ch. 3 Microwaves (Part 1 of 2) 3.1 Introduction 3.2 Radar Basics 3.3 Viewing Geometry and Spatial Resolution 3.4 Radar Image Distortions 3.1 Introduction Microwave (1cm to 1m in wavelength)

More information

Executive Summary. Development of a Functional Model

Executive Summary. Development of a Functional Model Development of a Functional Model Deutsches Zentrum für Luft- und Raumfahrt e.v. Institut für Hochfrequenztechnik und Radarsysteme Oberpfaffenhofen, Germany January 2001 Page 1 of 17 Contents 1 Introduction

More information

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems

INTRODUCTION. Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems Tracking Radar H.P INTRODUCTION Basic operating principle Tracking radars Techniques of target detection Examples of monopulse radar systems 2 RADAR FUNCTIONS NORMAL RADAR FUNCTIONS 1. Range (from pulse

More information

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR PASSIVE RADAR FOR SMALL UAS PLANAR MONOLITHICS INDUSTRIES, INC. East Coast: 7311F GROVE ROAD, FREDERICK, MD 21704 USA PHONE: 301-662-5019 FAX: 301-662-2029 West Coast: 4921 ROBERT J. MATHEWS PARKWAY, SUITE

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

The Potential of Synthetic Aperture Sonar in seafloor imaging

The Potential of Synthetic Aperture Sonar in seafloor imaging The Potential of Synthetic Aperture Sonar in seafloor imaging CM 2000/T:12 Ron McHugh Heriot-Watt University, Department of Computing and Electrical Engineering, Edinburgh, EH14 4AS, Scotland, U.K. Tel:

More information

WIDE-SWATH imaging and high azimuth resolution pose

WIDE-SWATH imaging and high azimuth resolution pose 260 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL 1, NO 4, OCTOBER 2004 Unambiguous SAR Signal Reconstruction From Nonuniform Displaced Phase Center Sampling Gerhard Krieger, Member, IEEE, Nicolas Gebert,

More information

Using Emulated Bistatic Radar in Highly Coherent Applications: Overview of Results

Using Emulated Bistatic Radar in Highly Coherent Applications: Overview of Results Using Emulated Bistatic Radar in Highly Coherent Applications: Overview of Results James Palmer 1,2, Marco Martorella 3, Brad Littleton 4, and John Homer 1 1 The School of ITEE, The University of Queensland,

More information

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes Tobias Rommel, German Aerospace Centre (DLR), tobias.rommel@dlr.de, Germany Gerhard Krieger, German Aerospace Centre (DLR),

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information

Introduction to Imaging Radar INF-GEO 4310

Introduction to Imaging Radar INF-GEO 4310 Introduction to Imaging Radar INF-GEO 4310 22.9.2011 Literature Contact: yoann.paichard@ffi.no Suggested readings: Fundamentals of Radar Signal Processing, M.A. Richards, McGraw-Hill, 2005 High Resolution

More information

Helicopter Aerial Laser Ranging

Helicopter Aerial Laser Ranging Helicopter Aerial Laser Ranging Håkan Sterner TopEye AB P.O.Box 1017, SE-551 11 Jönköping, Sweden 1 Introduction Measuring distances with light has been used for terrestrial surveys since the fifties.

More information

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing GMAT 9600 Principles of Remote Sensing Week 4 Radar Background & Surface Interactions Acknowledgment Mike Chang Natural Resources Canada Process of Atmospheric Radiation Dr. Linlin Ge and Prof Bruce Forster

More information

A SAR Conjugate Mirror

A SAR Conjugate Mirror A SAR Conjugate Mirror David Hounam German Aerospace Center, DLR, Microwaves and Radar Institute Oberpfaffenhofen, D-82234 Wessling, Germany Fax: +49 8153 28 1449, E-Mail: David.Hounam@dlr.de Abstract--

More information

Small UAV Radiocommunication Channel Characterization

Small UAV Radiocommunication Channel Characterization Small UAV Radiocommunication Channel Characterization Jordi Romeu, Albert Aguasca, Javier Alonso, Sebastián Blanch, Ricardo R. Martins AntennaLab, Dpt. Signal Theory and Communications. Universitat Politecnica

More information

POINTING ERROR CORRECTION FOR MEMS LASER COMMUNICATION SYSTEMS

POINTING ERROR CORRECTION FOR MEMS LASER COMMUNICATION SYSTEMS POINTING ERROR CORRECTION FOR MEMS LASER COMMUNICATION SYSTEMS Baris Cagdaser, Brian S. Leibowitz, Matt Last, Krishna Ramanathan, Bernhard E. Boser, Kristofer S.J. Pister Berkeley Sensor and Actuator Center

More information

RANGE resolution and dynamic range are the most important

RANGE resolution and dynamic range are the most important INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 2, PP. 135 140 Manuscript received August 17, 2011; revised May, 2012. DOI: 10.2478/v10177-012-0019-1 High Resolution Noise Radar

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

Fundamental Concepts of Radar

Fundamental Concepts of Radar Fundamental Concepts of Radar Dr Clive Alabaster & Dr Evan Hughes White Horse Radar Limited Contents Basic concepts of radar Detection Performance Target parameters measurable by a radar Primary/secondary

More information

EE 529 Remote Sensing Techniques. Introduction

EE 529 Remote Sensing Techniques. Introduction EE 529 Remote Sensing Techniques Introduction Course Contents Radar Imaging Sensors Imaging Sensors Imaging Algorithms Imaging Algorithms Course Contents (Cont( Cont d) Simulated Raw Data y r Processing

More information

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band

Potential interference from spaceborne active sensors into radionavigation-satellite service receivers in the MHz band Rec. ITU-R RS.1347 1 RECOMMENDATION ITU-R RS.1347* Rec. ITU-R RS.1347 FEASIBILITY OF SHARING BETWEEN RADIONAVIGATION-SATELLITE SERVICE RECEIVERS AND THE EARTH EXPLORATION-SATELLITE (ACTIVE) AND SPACE RESEARCH

More information

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation Progress In Electromagnetics Research M, Vol. 48, 37 44, 216 A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation Jia-Bing Yan *, Ying Liang, Yong-An Chen, Qun Zhang, and Li

More information

Synthetic Aperture Radar (SAR) Imaging using Global Back Projection (GBP) Algorithm For Airborne Radar Systems

Synthetic Aperture Radar (SAR) Imaging using Global Back Projection (GBP) Algorithm For Airborne Radar Systems Proc. of Int. Conf. on Current Trends in Eng., Science and Technology, ICCTEST Synthetic Aperture Radar (SAR) Imaging using Global Back Projection (GBP) Algorithm For Airborne Radar Systems Kavitha T M

More information

Target Classification in Forward Scattering Radar in Noisy Environment

Target Classification in Forward Scattering Radar in Noisy Environment Target Classification in Forward Scattering Radar in Noisy Environment Mohamed Khala Alla H.M, Mohamed Kanona and Ashraf Gasim Elsid School of telecommunication and space technology, Future university

More information

Miniature UAV Radar System April 28th, Developers: Allistair Moses Matthew J. Rutherford Michail Kontitsis Kimon P.

Miniature UAV Radar System April 28th, Developers: Allistair Moses Matthew J. Rutherford Michail Kontitsis Kimon P. Miniature UAV Radar System April 28th, 2011 Developers: Allistair Moses Matthew J. Rutherford Michail Kontitsis Kimon P. Valavanis Background UAV/UAS demand is accelerating Shift from military to civilian

More information

The Influence of Multipath on the Positioning Error

The Influence of Multipath on the Positioning Error The Influence of Multipath on the Positioning Error Andreas Lehner German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany andreas.lehner@dlr.de Co-Authors: Alexander Steingaß, German Aerospace

More information

Passive Radar Imaging

Passive Radar Imaging J.L. Garry*, C.J. Baker*, G.E. Smith* and R.L. Ewing + * Electrical and Computer Engineering Ohio State University Columbus USA ABSTRACT baker@ece.osu.edu + Sensors Directorate Air Force research labs

More information

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications Atindra Mitra Joe Germann John Nehrbass AFRL/SNRR SKY Computers ASC/HPC High Performance Embedded Computing

More information

A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation

A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation A High-Resolution, Four-Band SAR Testbed with Real-Time Image Formation Bruce Walker, Grant Sander, Marty Thompson, Bryan Burns, Rick Fellerhoff, and Dale Dubbert Sandia National Laboratories, P. O. Box

More information

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team

UAVSAR in Africa. Quality Assurance and Preliminary Results. Brian Hawkins, UAVSAR Team Photo by Sassan Saatchi UAVSAR in Africa Quality Assurance and Preliminary Results Brian Hawkins, UAVSAR Team CEOS SAR Cal/Val Workshop 2016 Copyright 2016 California Institute of Technology. Government

More information

ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets

ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets P. Dubois-Fernandez, H. Cantalloube, B. Vaizan, G. Krieger,

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

Measuring GALILEOs multipath channel

Measuring GALILEOs multipath channel Measuring GALILEOs multipath channel Alexander Steingass German Aerospace Center Münchnerstraße 20 D-82230 Weßling, Germany alexander.steingass@dlr.de Co-Authors: Andreas Lehner, German Aerospace Center,

More information

Radar-Verfahren und -Signalverarbeitung

Radar-Verfahren und -Signalverarbeitung Radar-Verfahren und -Signalverarbeitung - Lesson 2: RADAR FUNDAMENTALS I Hon.-Prof. Dr.-Ing. Joachim Ender Head of Fraunhoferinstitut für Hochfrequenzphysik and Radartechnik FHR Neuenahrer Str. 20, 53343

More information

Inverse Synthetic Aperture Imaging using a 40 khz Ultrasonic Laboratory Sonar

Inverse Synthetic Aperture Imaging using a 40 khz Ultrasonic Laboratory Sonar Inverse Synthetic Aperture Imaging using a 40 Ultrasonic Laboratory Sonar A. J. Wilkinson, P. K. Mukhopadhyay, N. Lewitton and M. R. Inggs Radar Remote Sensing Group Department of Electrical Engineering

More information

SkyRadar Modular Radar Training System PSR Simulators Pulse, CW and FMCW

SkyRadar Modular Radar Training System PSR Simulators Pulse, CW and FMCW SkyRadar Modular Radar Training System PSR Simulators Pulse, CW and FMCW For details please contact: The SkyRadar Consortium www.skyradar.com info@skyradar.com Imprint The SkyRadar Consortium www.skyradar.com

More information

3. give specific seminars on topics related to assigned drill problems

3. give specific seminars on topics related to assigned drill problems HIGH RESOLUTION AND IMAGING RADAR 1. Prerequisites Basic knowledge of radar principles. Good background in Mathematics and Physics. Basic knowledge of MATLAB programming. 2. Course format and dates The

More information

SHIP DETECTION AND SEA CLUTTER CHARACTERISATION USING X&L BAND FULL-POLARIMETRIC AIRBORNE SAR DATA

SHIP DETECTION AND SEA CLUTTER CHARACTERISATION USING X&L BAND FULL-POLARIMETRIC AIRBORNE SAR DATA SHIP DETECTION AND SEA CLUTTER CHARACTERISATION USING X&L BAND FULL-POLARIMETRIC AIRBORNE SAR DATA S. Angelliaume, Ph. Martineau (ONERA) Ph. Durand, T. Cussac (CNES) Context CNES/ONERA study of Space System

More information

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti Lecture 1 INTRODUCTION 1 Radar Introduction. A brief history. Simplified Radar Block Diagram. Two basic Radar Types. Radar Wave Modulation. 2 RADAR The term radar is an acronym for the phrase RAdio Detection

More information

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS

SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS SIGNAL PROCESSING ALGORITHMS FOR HIGH-PRECISION NAVIGATION AND GUIDANCE FOR UNDERWATER AUTONOMOUS SENSING SYSTEMS Daniel Doonan, Chris Utley, and Hua Lee Imaging Systems Laboratory Department of Electrical

More information

Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p.

Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p. Preface p. xi Acknowledgments p. xvii Introduction Objective and Scope p. 1 Generic Requirements p. 2 Basic Requirements p. 3 Surveillance System p. 3 Content of the Book p. 4 References p. 6 Maritime

More information

Lecture 3 SIGNAL PROCESSING

Lecture 3 SIGNAL PROCESSING Lecture 3 SIGNAL PROCESSING Pulse Width t Pulse Train Spectrum of Pulse Train Spacing between Spectral Lines =PRF -1/t 1/t -PRF/2 PRF/2 Maximum Doppler shift giving unambiguous results should be with in

More information

The Challenge: Increasing Accuracy and Decreasing Cost

The Challenge: Increasing Accuracy and Decreasing Cost Solving Mobile Radar Measurement Challenges By Dingqing Lu, Keysight Technologies, Inc. Modern radar systems are exceptionally complex, encompassing intricate constructions with advanced technology from

More information

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment UNCLASSIFIED /UNLIMITED Mr. Joachim Flacke and Mr. Ryszard Bil EADS Defence & Security Defence Electronics Naval Radar Systems (OPES25) Woerthstr 85 89077 Ulm Germany joachim.flacke@eads.com / ryszard.bil@eads.com

More information

ACTIVE SENSORS RADAR

ACTIVE SENSORS RADAR ACTIVE SENSORS RADAR RADAR LiDAR: Light Detection And Ranging RADAR: RAdio Detection And Ranging SONAR: SOund Navigation And Ranging Used to image the ocean floor (produce bathymetic maps) and detect objects

More information

Radar Signatures and Relations to Radar Cross Section. Mr P E R Galloway. Roke Manor Research Ltd, Romsey, Hampshire, United Kingdom

Radar Signatures and Relations to Radar Cross Section. Mr P E R Galloway. Roke Manor Research Ltd, Romsey, Hampshire, United Kingdom Radar Signatures and Relations to Radar Cross Section Mr P E R Galloway Roke Manor Research Ltd, Romsey, Hampshire, United Kingdom Philip.Galloway@roke.co.uk Abstract This paper addresses a number of effects

More information

Nadir Margins in TerraSAR-X Timing Commanding

Nadir Margins in TerraSAR-X Timing Commanding CEOS SAR Calibration and Validation Workshop 2008 1 Nadir Margins in TerraSAR-X Timing Commanding S. Wollstadt and J. Mittermayer, Member, IEEE Abstract This paper presents an analysis and discussion of

More information

Effects of snaking for a towed sonar array on an AUV

Effects of snaking for a towed sonar array on an AUV Lorentzen, Ole J., Effects of snaking for a towed sonar array on an AUV, Proceedings of the 38 th Scandinavian Symposium on Physical Acoustics, Geilo February 1-4, 2015. Editor: Rolf J. Korneliussen, ISBN

More information

Active and passive radio frequency imaging using a swarm of SUAS

Active and passive radio frequency imaging using a swarm of SUAS Active and passive radio frequency imaging using a swarm of SUAS 7 th - 8 th June 2016 NATO SET 222 Dr Claire Stevenson Dstl cmstevenson@dstl.gov.uk 1 Contents 1.Motivation 2.Radio Frequency Imaging 3.Bistatic

More information

Multi Band Passive Forward Scatter Radar

Multi Band Passive Forward Scatter Radar Multi Band Passive Forward Scatter Radar S. Hristov, A. De Luca, M. Gashinova, A. Stove, M. Cherniakov EESE, University of Birmingham Birmingham, B15 2TT, UK m.cherniakov@bham.ac.uk Outline Multi-Band

More information

3D radar imaging based on frequency-scanned antenna

3D radar imaging based on frequency-scanned antenna LETTER IEICE Electronics Express, Vol.14, No.12, 1 10 3D radar imaging based on frequency-scanned antenna Sun Zhan-shan a), Ren Ke, Chen Qiang, Bai Jia-jun, and Fu Yun-qi College of Electronic Science

More information

GUIDED WEAPONS RADAR TESTING

GUIDED WEAPONS RADAR TESTING GUIDED WEAPONS RADAR TESTING by Richard H. Bryan ABSTRACT An overview of non-destructive real-time testing of missiles is discussed in this paper. This testing has become known as hardware-in-the-loop

More information

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000

Special Projects Office. Mr. Lee R. Moyer Special Projects Office. DARPATech September 2000 Mr. Lee R. Moyer DARPATech 2000 6-8 September 2000 1 CC&D Tactics Pose A Challenge to U.S. Targeting Systems The Challenge: Camouflage, Concealment and Deception techniques include: Masking: Foliage cover,

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25-30, 2017, Trondheim, Norway

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25-30, 2017, Trondheim, Norway Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25-30, 2017, Trondheim, Norway OMAE2017-61264 A UAV SAR PROTOTYPE FOR MARINE AND ARCTIC

More information

4-10 Development of the CRL Okinawa Bistatic Polarimetric Radar

4-10 Development of the CRL Okinawa Bistatic Polarimetric Radar 4-10 Development of the CRL Okinawa Bistatic Polarimetric Radar NAKAGAWA Katsuhiro, HANADO Hiroshi, SATOH Shinsuke, and IGUCHI Toshio Communications Research Laboratory (CRL) has developed a new C-band

More information

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target Moving Target Indicator 1 Objectives Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target velocity. Be able to

More information

Imaging Using Microwaves

Imaging Using Microwaves Imaging Using Microwaves Delivering Exceptional Service in the National Interest Data created by Interferometric Synthetic Aperture Radar Unclassified Unlimited Release Name/Org: _Judith A. Ruffner, _

More information

AIR ROUTE SURVEILLANCE 3D RADAR

AIR ROUTE SURVEILLANCE 3D RADAR AIR TRAFFIC MANAGEMENT AIR ROUTE SURVEILLANCE 3D RADAR Supplying ATM systems around the world for more than 30 years indracompany.com ARSR-10D3 AIR ROUTE SURVEILLANCE 3D RADAR ARSR 3D & MSSR Antenna Medium

More information

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm

Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Article Synthetic Aperture Radar (SAR) images features clustering using Fuzzy c- means (FCM) clustering algorithm Rashid Hussain Faculty of Engineering Science and Technology, Hamdard University, Karachi

More information

Radar Systems.

Radar Systems. www.aselsan.com.tr Radar Systems With extensive radar heritage exceeding 20 years, ASELSAN is a new generation manufacturer of indigenous, state-ofthe-art radar systems. ASELSAN s radar product portfolio

More information

Contents Preface Micro-Doppler Signatures Review, Challenges, and Perspectives Phenomenology of Radar Micro-Doppler Signatures

Contents Preface Micro-Doppler Signatures Review, Challenges, and Perspectives Phenomenology of Radar Micro-Doppler Signatures Contents Preface xi 1 Micro-Doppler Signatures Review, Challenges, and Perspectives 1 1.1 Introduction 1 1.2 Review of Micro-Doppler Effect in Radar 2 1.2.1 Micro-Doppler Signatures of Rigid Body Motion

More information

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton

Relative Navigation, Timing & Data. Communications for CubeSat Clusters. Nestor Voronka, Tyrel Newton Relative Navigation, Timing & Data Communications for CubeSat Clusters Nestor Voronka, Tyrel Newton Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100x678 voronka@tethers.com

More information

Introduction Active microwave Radar

Introduction Active microwave Radar RADAR Imaging Introduction 2 Introduction Active microwave Radar Passive remote sensing systems record electromagnetic energy that was reflected or emitted from the surface of the Earth. There are also

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

UHF/VHF Synthetic Aperture Radar (SAR) systems have

UHF/VHF Synthetic Aperture Radar (SAR) systems have 1148 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 8, AUGUST 1997 Moving Target Detection in Foliage Using Along Track Monopulse Synthetic Aperture Radar Imaging Mehrdad Soumekh, Member, IEEE Abstract

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

Low Frequency 3D Synthetic Aperture Radar for the Remote Intelligence of Building Interiors

Low Frequency 3D Synthetic Aperture Radar for the Remote Intelligence of Building Interiors Aperture Radar for the Remote Intelligence of Building Interiors D. Andre Centre for Electronic Warfare, Cyber and Information, Cranfield University UNITED KINGDOM d.andre@cranfield.ac.uk B. Faulkner Australian

More information

High Precision Antenna Characterisation for Broadband Synthetic Aperture Radar Processing

High Precision Antenna Characterisation for Broadband Synthetic Aperture Radar Processing High Precision Antenna Characterisation for Broadband Synthetic Aperture Radar Processing Marc Jäger, Bernd Gabler, Andreas Reigber Microwaves and Radar Institute, Department of SAR Technology, German

More information

ATS 351 Lecture 9 Radar

ATS 351 Lecture 9 Radar ATS 351 Lecture 9 Radar Radio Waves Electromagnetic Waves Consist of an electric field and a magnetic field Polarization: describes the orientation of the electric field. 1 Remote Sensing Passive vs Active

More information

Detection and Velocity Estimation of Moving Vehicles in High-Resolution Spaceborne Synthetic Aperture Radar Data

Detection and Velocity Estimation of Moving Vehicles in High-Resolution Spaceborne Synthetic Aperture Radar Data Detection and Velocity Estimation of Moving Vehicles in High-Resolution Spaceborne Synthetic Aperture Radar Data Stefan Hinz, Diana Weihing, Steffen Suchandt, Richard Bamler Remote Sensing Technology,

More information

Through-Wall Detection and Imaging of a Vibrating Target Using Synthetic Aperture Radar

Through-Wall Detection and Imaging of a Vibrating Target Using Synthetic Aperture Radar Through-Wall Detection and Imaging of a Vibrating Target Using Synthetic Aperture Radar Mr. Brandon Corbett Dr. Daniel Andre Dr. Mark Finnis Helsinki NATO SET 247: 8/9 May 2017 www.cranfield.ac.uk Introduction

More information

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band Recommendation ITU-R M.2008 (03/2012) Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band 13.25-13.40 GHz M Series Mobile, radiodetermination,

More information

Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor

Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor Design and FPGA Implementation of a Modified Radio Altimeter Signal Processor A. Nasser, Fathy M. Ahmed, K. H. Moustafa, Ayman Elshabrawy Military Technical Collage Cairo, Egypt Abstract Radio altimeter

More information

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm Ma Yangwu *, Liang Di ** Center for Optical and Electromagnetic Research, State Key Lab of Modern Optical

More information

RADAR DEVELOPMENT BASIC CONCEPT OF RADAR WAS DEMONSTRATED BY HEINRICH. HERTZ VERIFIED THE MAXWELL RADAR.

RADAR DEVELOPMENT BASIC CONCEPT OF RADAR WAS DEMONSTRATED BY HEINRICH. HERTZ VERIFIED THE MAXWELL RADAR. 1 RADAR WHAT IS RADAR? RADAR (RADIO DETECTION AND RANGING) IS A WAY TO DETECT AND STUDY FAR OFF TARGETS BY TRANSMITTING A RADIO PULSE IN THE DIRECTION OF THE TARGET AND OBSERVING THE REFLECTION OF THE

More information

SS-BSAR WITH GNSS AND A STATIONARY RECEIVER EXPERIMENTAL RESULTS

SS-BSAR WITH GNSS AND A STATIONARY RECEIVER EXPERIMENTAL RESULTS Progress In Electromagnetics Research B, Vol. 48, 271 287, 2013 SS-BSAR WITH GNSS AND A STATIONARY RECEIVER EXPERIMENTAL RESULTS Zhangfan Zeng * Microwave Integrated System Lab, University of Birmingham,

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.2 MICROPHONE ARRAY

More information

DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR

DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR Progress In Electromagnetics Research C, Vol. 27, 143 156, 2012 DESIGN AND DEVELOPMENT OF A DUAL OPERAT- ING MODE MICROSTRIP PATCH ANTENNA FOR UN- MANNED AERIAL VEHICLE SYNTHETIC APERTURE RADAR P. N. Tan,

More information

SOPA version 2. Revised July SOPA project. September 21, Introduction 2. 2 Basic concept 3. 3 Capturing spatial audio 4

SOPA version 2. Revised July SOPA project. September 21, Introduction 2. 2 Basic concept 3. 3 Capturing spatial audio 4 SOPA version 2 Revised July 7 2014 SOPA project September 21, 2014 Contents 1 Introduction 2 2 Basic concept 3 3 Capturing spatial audio 4 4 Sphere around your head 5 5 Reproduction 7 5.1 Binaural reproduction......................

More information

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS

Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Govt. Engineering College Jhalawar Model Question Paper Subject- Remote Sensing & GIS Time: Max. Marks: Q1. What is remote Sensing? Explain the basic components of a Remote Sensing system. Q2. What is

More information

Adaptive SAR Results with the LiMIT Testbed

Adaptive SAR Results with the LiMIT Testbed Adaptive SAR Results with the LiMIT Testbed Gerald Benitz Adaptive Sensor Array Processing Workshop 7 June 2005 999999-1 Outline LiMIT collection platform SAR sidelobe recovery Electronic Protection (EP)

More information

Copyright Notice. William A. Skillman. March 12, 2011

Copyright Notice. William A. Skillman. March 12, 2011 Copyright Notice Environmental Effects on Airborne Radar Performance William A. Skillman March 12, 2011 Copyright IEEE 2011 Environmental Effects on Airborne Radar Performance William A. Skillman, Life

More information

THE modern airborne surveillance and reconnaissance

THE modern airborne surveillance and reconnaissance INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, VOL. 57, NO. 1, PP. 37 42 Manuscript received January 19, 2011; revised February 2011. DOI: 10.2478/v10177-011-0005-z Radar and Optical Images

More information

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Kristin Larson, Dave Gaylor, and Stephen Winkler Emergent Space Technologies and Lockheed Martin Space Systems 36

More information