Radar-Verfahren und -Signalverarbeitung

Size: px
Start display at page:

Download "Radar-Verfahren und -Signalverarbeitung"

Transcription

1 Radar-Verfahren und -Signalverarbeitung - Lesson 2: RADAR FUNDAMENTALS I Hon.-Prof. Dr.-Ing. Joachim Ender Head of Fraunhoferinstitut für Hochfrequenzphysik and Radartechnik FHR Neuenahrer Str. 20, Wachtberg joachim.ender@fhr.fraunhofer.de

2 Coherent radar - quadrature modulator and demodulator Figure: Quadrature modulator Figure: Quadrature demodulator The QM transfers the complex baseband signal to a real valued RF signal

3 Coherent radar - complex envelope Reference frequency (RF) Real valued RF signal Complex envelope, base band signal Figure: Bypass of quadrature modulator and demodulator The QDM performs the inverse operation to that of the QM. The real valued RF-signal may be regarded as a carrier of the base band-signal s(t), able to be transmitted as RF waves over long ranges

4 Coherent radar - generic radar system r * Point target Antenna T/R Switch r c 0 t N(t) s(t;r) a Distance to a point scatterer Velocity of light Traveling time White noise Received waveform complex amplitude QM QDM f 0 Traveling time s(t) as(t;r) N(t) Traveling distance Received signal Z(t) Figure: Radar system with baseband signals - 4 -

5 - 5 - RADAR FUNDAMENTALS I Coherent radar - received waveform Complex envelope Received waveform Wave length and wave number: R k R c R f f t k f c

6 Coherent radar - Fourier transform of the received waveform Fourier transform: Reference frequency Baseband frequency RF frequency Wave number in range direction - 6 -

7 Coherent radar - optimum receive filter f 0 as(t;r) QDM N(t) Y(t) h(t) Z(t) i.e

8 Coherent radar - matched filter The pulse response of the optimum filter is equal to the time-inverted, complex conjugated signal The maximum SNR is. This filter is called matched filter. Received signal Replica Response of matched filter - 8 -

9 Coherent radar - correlation with the transmit signal - 9 -

10 Coherent radar - point spread function

11 Coherent radar - matched filter, point spread function Matched filtering means correlation with the transmit signal. The point spread function is the reaction of the receive filter to the transmit signal. The point spread function is equal to the autocorrelation of the transmit signal, if a matched filter is used. In this case it is the Fourier back transform of the magnitude-squared of the signal spectrum. Point spread function Reflectivity of three point targets Output of the matched filter

12 Definitions of resolution c r t 2 r Rayleigh c 2b Figure: Definitions of resolution

13 Pulse compression The solution is to expand the bandwidth by modulation of the pulse. The Rayleigh range resolution of a waveform with a rectangular spectrum S(f) of bandwidth b is given by without direct dependence on the pulse length

14 Pulse compression For the range resolution the bandwidth of the transmitted waveform is decisive:. The gain in range resolution with respect to a rectangular pulse of same duration is called compression rate, which is equal to the time-bandwidth product. Two different waveforms s(t) and s RF (t) effect the same point spread function for matched filtering, if s RF (t) is generated by s(t) by passing it through a filter with a transfer function of magnitude

15 Generation of high bandwidth signals Re Im Analogue Phase modulation with phase shifter Frequency modulation by a VCO SAW filter Frequency multiples (non-linear devices, extraction of higher harmonics) Digital Arbitrary wave form generator (AWG) Direct digital synthesizer (DDS) VCO coupled to DDS D/A D/A deglitch deglitch AWG principle Memory (writeable, fast read out) Clock (e.g. 1 GHz) Filter

16 Memory slow read out (e.g. 50 MHz) RADAR FUNDAMENTALS I Generation of high bandwidth signals cos sin fast accumulator (mod 2) read pointer Look-up table (fast read out) Fast logic (e.g. GaAs) D/A D/A deglitch deglitch Clock (e.g. 1 GHz) Filter DDS principle

17 Digital pulse compression in the frequency domain Receive signal z e A/D The reference signal can be the designed (wanted) signal the measured signal in a calibration mode Z e FFT Z a S * S reference complex conj. FFT signal s FFT z a This part is performed only during calibration

18 Pulse compression in the time and in the frequency domain t t Raw data T Compression filter Range compressed data T For each range line h(t)=s*(-t) t f Raw data T For each range line Range FFT T H(f)=S*(f) Range compressed data t T Range IFFT f T Figure: Range compression with the matched filter. Left: direct convolution, right: processing in the frequency domain

19 Pulse compression - Anatomy of a chirp I Rectangular chirp t s( t) rect exp jt t s f ( t) t Instantaneous frequency: R{s(t)} 2 Frequency span (= bandwidth for large ): Time-bandwidth product: f b t s bt 2 s t s t f=t t -t s /2 t s /2 -t s /2 t s /2-19 -

20 Pulse compression - Anatomy of a chirp I Fourier transform of a rectangular chirp

21 Pulse compression - Anatomy of a chirp I Figure: Magnitude of the Fourier transforms of chirps with growing time basis

22 Pulse compression - Anatomy of a chirp I Fourier transform of a rectangular chirp The magnitude of the Fourier transform of a rectangular chirp with rate has the approximate shape of a rectangular function with bandwidth close to the frequency span t s. For infinite duration the Fourier transform is again a chirp with rate -1/

23 Pulse compression - Compression of a chirp Chirp Compression result t t ac t F F -1 Spectrum f t. 2 Power Spectrum f

24 De-ramping

25 Spatial interpretation of the radar signal and the receive filter From the viewpoint of focusing to images (SAR), the spatial domain is the primary one. We transform the temporal signals into spatial signals, dependent on the spatial variable R = 2r via t -> R = c 0 t. We will use the symbols s, h, p as functions of R. Signal spectrum (wave number domain) Transfer function (wave number domain) Point spread function (wave number domain) For the matched filter we get The point spread function for matched filtering in the range domain is given by the inverse Fourier transform of the power of the signal spectrum in the wave number domain

26 Matched filter / inverse filter / robustified filter We regard a receive filter with transfer function

27 Matched filter / inverse filter / robustified filter Figure: Robustified inverse filter

28 The k-set

29 The k-set For the application of the inverse filter, the point spread function is equal to the Fourier back transform of the indicator function of the carrier of the signal spectrum (k-set)

30 Pre-processing to the normal form (inverse filter) We regard a noise-free signal of a point scatterer at R=R 0 :

31 Coherent radar Pulse repetition frequency: PRF (~ 100 Hz khz) Intrapulse sampling frequency: f s (~ 10 MHz... 1 GHz) F f s s PRF 1 t 1 T T= 1ms: Covered range =150 km t= 1ns: Range sampling = 15 cm Figure: Two time scales for pulse radar

32 Pre-processing to the normal form (inverse filter) Figure: Pre-processing in the k-domain

33 Doppler effect Basic component of the Doppler frequency: Resolution of the waveform in spectral components:

34 Doppler effect Object motion negligible during the wave's travelling time (stop and go approximation):

35 Doppler effect Exact expression The Doppler frequency of a moving target is given by For the stop-and-go approximation this is simplified to

36 Doppler effect Effects caused by target motion Phase rotation from pulse to pulse Range migration Phase modulation during one pulse Intra-pulse time stretch / compression Christian Andreas Doppler (29 November March 1853) was an Austrian mathematician and physicist. He is most famous for describing what is now called the Doppler effect, which is the apparent change in frequency and wavelength of a wave as perceived by an observer moving relative to the wave's source

37 Doppler effect - modulation and time expansion

38 Doppler effect - in the two-times domain slow time fast time Figure: Doppler-effect for a pulse train

39 Range-Doppler processing Pre-processed k r data T Slow-time FFT k r Double frequency data F Range-Doppler processing with subsequent pulse compression and Doppler filtering Range IFFT Range- R Doppler data F Range-Doppler processing via the double frequency domain

40 Ambiguity function Ambiguity function = response of a matched filter to a signal shifted in time and Doppler frequency Figure: Ambiguity function of a rectangular pulse

41 Ambiguity function Figure: Ambiguity function of a chirp with Gaussian envelope

42 Doppler tolerance of a chirp f Doppler shifted signal f 0 + f 0 time of best fit t Matched filter for f 0 Area of phase match time shift t 0 -t t 0 t

43 Doppler tolerance of a chirp Obviously, for the chirp waveform there is an ambiguity between Doppler and range. If one of the two is known, the other variable can be measured with high accuracy. The Doppler frequency may be measured over a sequence of pulses and used for a correction of range. The chirp wave form is Doppler tolerant, i.e. a Doppler shift of the echo with respect to the reference chirp leads only to a moderate SNR loss corresponding to the nonoverlapping part of the signal spectra. A time shift is effected which is proportional to the Doppler shift

44 Ambiguity function Figure: Ambiguity function of a train of 5 rectangular pulses

45 Ambiguity of range and Doppler Doppler ambiguity: F Fr 1 PRF modes: T c 0 2 Range ambiguity: r c0 2 T PRF Area of ambiguity rectangle: Low PRF: unambiguous range, ambiguous Doppler High PRF: ambiguous range, unambiguous Doppler Medium PRF: in between For a pulse train repeated with T, the product of temporal and frequency ambiguity is equal to 1. The product of range ambiguity and Doppler ambiguity is equal to c 0 /2. The product of range ambiguity and radial velocity ambiguity is c 0 / = f

46

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1 Remember that: An EM wave is a function of both space and time e.g.

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

Modern radio techniques

Modern radio techniques Modern radio techniques for probing the ionosphere Receiver, radar, advanced ionospheric sounder, and related techniques Cesidio Bianchi INGV - Roma Italy Ionospheric properties related to radio waves

More information

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function.

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. 1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. Matched-Filter Receiver: A network whose frequency-response function maximizes

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

9.4 Temporal Channel Models

9.4 Temporal Channel Models ECEn 665: Antennas and Propagation for Wireless Communications 127 9.4 Temporal Channel Models The Rayleigh and Ricean fading models provide a statistical model for the variation of the power received

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Time and Frequency Domain Windowing of LFM Pulses Mark A. Richards

Time and Frequency Domain Windowing of LFM Pulses Mark A. Richards Time and Frequency Domain Mark A. Richards September 29, 26 1 Frequency Domain Windowing of LFM Waveforms in Fundamentals of Radar Signal Processing Section 4.7.1 of [1] discusses the reduction of time

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

Radar Systems Engineering Lecture 12 Clutter Rejection

Radar Systems Engineering Lecture 12 Clutter Rejection Radar Systems Engineering Lecture 12 Clutter Rejection Part 1 - Basics and Moving Target Indication Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Block Diagram of Radar System Transmitter

More information

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR David G. Long, Bryan Jarrett, David V. Arnold, Jorge Cano ABSTRACT Synthetic Aperture Radar (SAR) systems are typically very complex and expensive.

More information

Analysis of Processing Parameters of GPS Signal Acquisition Scheme

Analysis of Processing Parameters of GPS Signal Acquisition Scheme Analysis of Processing Parameters of GPS Signal Acquisition Scheme Prof. Vrushali Bhatt, Nithin Krishnan Department of Electronics and Telecommunication Thakur College of Engineering and Technology Mumbai-400101,

More information

Wireless Channel Propagation Model Small-scale Fading

Wireless Channel Propagation Model Small-scale Fading Wireless Channel Propagation Model Small-scale Fading Basic Questions T x What will happen if the transmitter - changes transmit power? - changes frequency? - operates at higher speed? Transmit power,

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

FM cw Radar. FM cw Radar is a low cost technique, often used in shorter range applications"

FM cw Radar. FM cw Radar is a low cost technique, often used in shorter range applications 11: FM cw Radar 9. FM cw Radar 9.1 Principles 9.2 Radar equation 9.3 Equivalence to pulse compression 9.4 Moving targets 9.5 Practical considerations 9.6 Digital generation of wideband chirp signals FM

More information

Mobile Radio Propagation: Small-Scale Fading and Multi-path

Mobile Radio Propagation: Small-Scale Fading and Multi-path Mobile Radio Propagation: Small-Scale Fading and Multi-path 1 EE/TE 4365, UT Dallas 2 Small-scale Fading Small-scale fading, or simply fading describes the rapid fluctuation of the amplitude of a radio

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell Introduction to Radar Systems Clutter Rejection MTI and Pulse Doppler Processing Radar Course_1.ppt ODonnell 10-26-01 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs

More information

3/26/18. Lecture 3 EITN STRUCTURE OF A WIRELESS COMMUNICATION LINK

3/26/18. Lecture 3 EITN STRUCTURE OF A WIRELESS COMMUNICATION LINK Lecture 3 EITN75 208 STRUCTURE OF A WIRELESS COMMUNICATION LINK 2 A simple structure Speech Data A/D Speech encoder Encrypt. Chann. encoding Modulation Key Speech D/A Speech decoder Decrypt. Chann. decoding

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station Fading Lecturer: Assoc. Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (ARWiC

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Modulation and Demodulation Introduction A communication system

More information

Digital Communications over Fading Channel s

Digital Communications over Fading Channel s over Fading Channel s Instructor: Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office),

More information

THE UTILITY OF SYNTHETIC APERTURE SONAR IN SEAFLOOR IMAGING MARCIN SZCZEGIELNIAK

THE UTILITY OF SYNTHETIC APERTURE SONAR IN SEAFLOOR IMAGING MARCIN SZCZEGIELNIAK THE UTILITY OF SYNTHETIC APERTURE SONAR IN SEAFLOOR IMAGING MARCIN SZCZEGIELNIAK University of Technology and Agriculture in Bydgoszcz 7 Kalisky Ave, 85-79 Bydgoszcz, Poland e-mail: marcinszczegielniak@poczta.onet.pl

More information

3. give specific seminars on topics related to assigned drill problems

3. give specific seminars on topics related to assigned drill problems HIGH RESOLUTION AND IMAGING RADAR 1. Prerequisites Basic knowledge of radar principles. Good background in Mathematics and Physics. Basic knowledge of MATLAB programming. 2. Course format and dates The

More information

Multi-Path Fading Channel

Multi-Path Fading Channel Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

Communications IB Paper 6 Handout 2: Analogue Modulation

Communications IB Paper 6 Handout 2: Analogue Modulation Communications IB Paper 6 Handout 2: Analogue Modulation Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk Lent Term c Jossy

More information

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar)

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) FM-CW radar (Frequency-Modulated Continuous Wave radar = FMCW radar) is a special type of radar sensor which radiates continuous transmission power

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

A new fully-digital HF radar system for oceanographical remote sensing

A new fully-digital HF radar system for oceanographical remote sensing LETTER IEICE Electronics Express, Vol.10, No.14, 1 6 A new fully-digital HF radar system for oceanographical remote sensing Yingwei Tian 1a), Biyang Wen 1b),JianTan 1,KeLi 1, Zhisheng Yan 2, and Jing Yang

More information

EITN90 Radar and Remote Sensing Lab 2

EITN90 Radar and Remote Sensing Lab 2 EITN90 Radar and Remote Sensing Lab 2 February 8, 2018 1 Learning outcomes This lab demonstrates the basic operation of a frequency modulated continuous wave (FMCW) radar, capable of range and velocity

More information

Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR

Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR Ambiguity Function Analysis of SFCW and Comparison of Impulse GPR and SFCW GPR Shrikant Sharma, Paramananda Jena, Ramchandra Kuloor Electronics and Radar Development Establishment (LRDE), Defence Research

More information

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU Instructor: Prof. Dr. Noor M. Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (Lab) Fax: +9

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

Coded excitations NINE. 9.1 Temporal coding

Coded excitations NINE. 9.1 Temporal coding CHAPTER NINE Coded excitations One of the major problems of all synthetic aperture imaging techniques is the signal-to-noise ratio. The signal level decreases not only due to the tissue attenuation but

More information

Spread spectrum. Outline : 1. Baseband 2. DS/BPSK Modulation 3. CDM(A) system 4. Multi-path 5. Exercices. Exercise session 7 : Spread spectrum 1

Spread spectrum. Outline : 1. Baseband 2. DS/BPSK Modulation 3. CDM(A) system 4. Multi-path 5. Exercices. Exercise session 7 : Spread spectrum 1 Spread spectrum Outline : 1. Baseband 2. DS/BPSK Modulation 3. CDM(A) system 4. Multi-path 5. Exercices Exercise session 7 : Spread spectrum 1 1. Baseband +1 b(t) b(t) -1 T b t Spreading +1-1 T c t m(t)

More information

RANGE resolution and dynamic range are the most important

RANGE resolution and dynamic range are the most important INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 2, PP. 135 140 Manuscript received August 17, 2011; revised May, 2012. DOI: 10.2478/v10177-012-0019-1 High Resolution Noise Radar

More information

Development of Broadband Radar and Initial Observation

Development of Broadband Radar and Initial Observation Development of Broadband Radar and Initial Observation Tomoo Ushio, Kazushi Monden, Tomoaki Mega, Ken ichi Okamoto and Zen-Ichiro Kawasaki Dept. of Aerospace Engineering Osaka Prefecture University Osaka,

More information

8.1. Time-Bandwidth Product

8.1. Time-Bandwidth Product Chapter 8 Pulse Compression Range resolution for a given radar can be significantly improved by using very short pulses. Unfortunately, utilizing short pulses decreases the average transmitted power, hence

More information

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications DIGITAL COMMUNICATIONS SYSTEMS MSc in Electronic Technologies and Communications Bandpass binary signalling The common techniques of bandpass binary signalling are: - On-off keying (OOK), also known as

More information

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz

Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Interference of Chirp Sequence Radars by OFDM Radars at 77 GHz Christina Knill, Jonathan Bechter, and Christian Waldschmidt 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must

More information

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Amplitude Modulation Pages 306-309 309 The analytical signal for double sideband, large carrier amplitude modulation

More information

Automated Measurements of 77 GHz FMCW Radar Signals

Automated Measurements of 77 GHz FMCW Radar Signals Application Note Dr. Steffen Heuel 4.2014-1EF88_0e Automated Measurements of 77 GHz FMCW Radar Signals Application Note Products: R&S FSW R&S FS-Z90 Frequency Modulated Continuous Wave (FMCW) radar signals

More information

Optical Signal Processing

Optical Signal Processing Optical Signal Processing ANTHONY VANDERLUGT North Carolina State University Raleigh, North Carolina A Wiley-Interscience Publication John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto

More information

Principles of Baseband Digital Data Transmission

Principles of Baseband Digital Data Transmission Principles of Baseband Digital Data Transmission Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) / 3 Overview Baseband Digital Data Transmission

More information

Objectives. Presentation Outline. Digital Modulation Lecture 03

Objectives. Presentation Outline. Digital Modulation Lecture 03 Digital Modulation Lecture 03 Inter-Symbol Interference Power Spectral Density Richard Harris Objectives To be able to discuss Inter-Symbol Interference (ISI), its causes and possible remedies. To be able

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

EE228 Applications of Course Concepts. DePiero

EE228 Applications of Course Concepts. DePiero EE228 Applications of Course Concepts DePiero Purpose Describe applications of concepts in EE228. Applications may help students recall and synthesize concepts. Also discuss: Some advanced concepts Highlight

More information

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar Simulation the Hybrid Combinations of 4GHz and 77GHz Automotive Radar Yahya S. H. Khraisat Electrical and Electronics Department Al-Huson University College/ Al-Balqa' AppliedUniversity P.O. Box 5, 5,

More information

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING Instructor: Dr. Narayan Mandayam Slides: SabarishVivek Sarathy A QUICK RECAP Why is there poor signal reception in urban clutters?

More information

INTRODUCTION TO RADAR PROCESSING

INTRODUCTION TO RADAR PROCESSING CHAPTER 10 INTRODUCTION TO RADAR PROCESSING This chapter explores some of the ways in which digital filtering and Fast Fourier Transforms are applied to radar signal processing. Radar signal processing

More information

Incoherent Scatter Experiment Parameters

Incoherent Scatter Experiment Parameters Incoherent Scatter Experiment Parameters At a fundamental level, we must select Waveform type Inter-pulse period (IPP) or pulse repetition frequency (PRF) Our choices will be dictated by the desired measurement

More information

Wave Sensing Radar and Wave Reconstruction

Wave Sensing Radar and Wave Reconstruction Applied Physical Sciences Corp. 475 Bridge Street, Suite 100, Groton, CT 06340 (860) 448-3253 www.aphysci.com Wave Sensing Radar and Wave Reconstruction Gordon Farquharson, John Mower, and Bill Plant (APL-UW)

More information

Staggered PRI and Random Frequency Radar Waveform

Staggered PRI and Random Frequency Radar Waveform Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences Staggered PRI and Random Frequency Radar Waveform Submitted as part of the requirements towards an M.Sc. degree in Physics School

More information

Nuove tecnologie per ecografia ad ultrasuoni: da 2D a 4D

Nuove tecnologie per ecografia ad ultrasuoni: da 2D a 4D DINFO Dipartimento di Ingegneria dell Informazione Department of Information Engineering Nuove tecnologie per ecografia ad ultrasuoni: da 2D a 4D Piero Tortoli Microelectronics Systems Design Lab 1 Introduction

More information

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging

200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Th7 Holman, K.W. 200-GHz 8-µs LFM Optical Waveform Generation for High- Resolution Coherent Imaging Kevin W. Holman MIT Lincoln Laboratory 244 Wood Street, Lexington, MA 02420 USA kholman@ll.mit.edu Abstract:

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

THE USE OF A FREQUENCY DOMAIN STEPPED FREQUENCY TECHNIQUE TO OBTAIN HIGH RANGE RESOLUTION ON THE CSIR X-BAND SAR SYSTEM

THE USE OF A FREQUENCY DOMAIN STEPPED FREQUENCY TECHNIQUE TO OBTAIN HIGH RANGE RESOLUTION ON THE CSIR X-BAND SAR SYSTEM THE USE OF A FREQUENCY DOMAIN STEPPED FREQUENCY TECHNIQUE TO OBTAIN HIGH RANGE RESOLUTION ON THE CSIR X-BAND SAR SYSTEM Willie Nel, CSIR Defencetek, Pretoria, South Africa Jan Tait, CSIR Defencetek, Pretoria,

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM)

SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM) Progress In Electromagnetics Research, PIER 98, 33 52, 29 SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM) Y. K. Chan, M. Y. Chua, and V. C. Koo Faculty of Engineering

More information

Coherent Marine Radar. Measurements of Ocean Wave Spectra and Surface Currents

Coherent Marine Radar. Measurements of Ocean Wave Spectra and Surface Currents Measurements of Ocean Wave Spectra and Surface Currents Dennis Trizna Imaging Science Research, Inc. dennis @ isr-sensing.com Presentation Outline: Introduction: Standard Marine Radar vs. Single Image

More information

Lecture 3 SIGNAL PROCESSING

Lecture 3 SIGNAL PROCESSING Lecture 3 SIGNAL PROCESSING Pulse Width t Pulse Train Spectrum of Pulse Train Spacing between Spectral Lines =PRF -1/t 1/t -PRF/2 PRF/2 Maximum Doppler shift giving unambiguous results should be with in

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

Ocean current with DopSCA

Ocean current with DopSCA Ocean current with DopSCA New results, April 2018 Peter Hoogeboom, p.hoogeboom@tudelft.nl Ad Stofelen, Paco Lopez Dekker 1 Context ESA DopScat study 10 years ago suggested a dual chirp signal for ocean

More information

System analysis and signal processing

System analysis and signal processing System analysis and signal processing with emphasis on the use of MATLAB PHILIP DENBIGH University of Sussex ADDISON-WESLEY Harlow, England Reading, Massachusetts Menlow Park, California New York Don Mills,

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds

More information

Pulsed VNA Measurements:

Pulsed VNA Measurements: Pulsed VNA Measurements: The Need to Null! January 21, 2004 presented by: Loren Betts Copyright 2004 Agilent Technologies, Inc. Agenda Pulsed RF Devices Pulsed Signal Domains VNA Spectral Nulling Measurement

More information

Satellite Navigation Principle and performance of GPS receivers

Satellite Navigation Principle and performance of GPS receivers Satellite Navigation Principle and performance of GPS receivers AE4E08 GPS Block IIF satellite Boeing North America Christian Tiberius Course 2010 2011, lecture 3 Today s topics Introduction basic idea

More information

Data Acquisition Systems. Signal DAQ System The Answer?

Data Acquisition Systems. Signal DAQ System The Answer? Outline Analysis of Waveforms and Transforms How many Samples to Take Aliasing Negative Spectrum Frequency Resolution Synchronizing Sampling Non-repetitive Waveforms Picket Fencing A Sampled Data System

More information

Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration

Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration S. Kodituwakku and H.T. Tran National Security and ISR Division Defence Science and Technology Organisation DSTO

More information

A Comparison of Two Computational Technologies for Digital Pulse Compression

A Comparison of Two Computational Technologies for Digital Pulse Compression A Comparison of Two Computational Technologies for Digital Pulse Compression Presented by Michael J. Bonato Vice President of Engineering Catalina Research Inc. A Paravant Company High Performance Embedded

More information

Radarbook Graphical User Interface (RBK-GUI User Manual)

Radarbook Graphical User Interface (RBK-GUI User Manual) Radarbook Graphical User Interface (RBK-GUI User Manual) Inras GmbH Altenbergerstraße 69 4040 Linz, Austria Email: office@inras.at Phone: +43 732 2468 6384 Linz, July 2015 Contents 1 Document Version 2

More information

Doppler Ultrasound. Amanda Watson.

Doppler Ultrasound. Amanda Watson. Doppler Ultrasound Amanda Watson amanda.watson1@nhs.net Before we start Why does blood appear black on a B-mode image? B-mode echoes vs. Doppler echoes In B-Mode we are concerned with the position and

More information

Keysight Technologies

Keysight Technologies Keysight Technologies Generating Signals Basic CW signal Block diagram Applications Analog Modulation Types of analog modulation Block diagram Applications Digital Modulation Overview of IQ modulation

More information

Other Modulation Techniques - CAP, QAM, DMT

Other Modulation Techniques - CAP, QAM, DMT Other Modulation Techniques - CAP, QAM, DMT Prof. David Johns (johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns) slide 1 of 47 Complex Signals Concept useful for describing a pair of real signals Let

More information

Pulse Compression Time-Bandwidth Product. Chapter 5

Pulse Compression Time-Bandwidth Product. Chapter 5 Chapter 5 Pulse Compression Range resolution for a given radar can be significantly improved by using very short pulses. Unfortunately, utilizing short pulses decreases the average transmitted power, which

More information

Complex Sounds. Reading: Yost Ch. 4

Complex Sounds. Reading: Yost Ch. 4 Complex Sounds Reading: Yost Ch. 4 Natural Sounds Most sounds in our everyday lives are not simple sinusoidal sounds, but are complex sounds, consisting of a sum of many sinusoids. The amplitude and frequency

More information

Lecture Fundamentals of Data and signals

Lecture Fundamentals of Data and signals IT-5301-3 Data Communications and Computer Networks Lecture 05-07 Fundamentals of Data and signals Lecture 05 - Roadmap Analog and Digital Data Analog Signals, Digital Signals Periodic and Aperiodic Signals

More information

Implementation of Orthogonal Frequency Coded SAW Devices Using Apodized Reflectors

Implementation of Orthogonal Frequency Coded SAW Devices Using Apodized Reflectors Implementation of Orthogonal Frequency Coded SAW Devices Using Apodized Reflectors Derek Puccio, Don Malocha, Nancy Saldanha Department of Electrical and Computer Engineering University of Central Florida

More information

Study on the Characteristics of LFM Signals, BC Signals and Their Mixed Modulation Signals

Study on the Characteristics of LFM Signals, BC Signals and Their Mixed Modulation Signals Int. J. Communications, Network and System Sciences, 7,, 96-5 http://www.scirp.org/journal/ijcns ISSN Online: 93-373 ISSN Print: 93-375 Study on the Characteristics of Signals, Signals and Their Mixed

More information

Executive Summary. Development of a Functional Model

Executive Summary. Development of a Functional Model Development of a Functional Model Deutsches Zentrum für Luft- und Raumfahrt e.v. Institut für Hochfrequenztechnik und Radarsysteme Oberpfaffenhofen, Germany January 2001 Page 1 of 17 Contents 1 Introduction

More information

Mobile Radio Propagation Channel Models

Mobile Radio Propagation Channel Models Wireless Information Transmission System Lab. Mobile Radio Propagation Channel Models Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction Propagation

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

Measurements 2: Network Analysis

Measurements 2: Network Analysis Measurements 2: Network Analysis Fritz Caspers CAS, Aarhus, June 2010 Contents Scalar network analysis Vector network analysis Early concepts Modern instrumentation Calibration methods Time domain (synthetic

More information

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Channel Characterization Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Systems - ISI Previous chapter considered CW (carrier-only) or narrow-band signals which do NOT

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems

Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems Waveform Multiplexing using Chirp Rate Diversity for Chirp-Sequence based MIMO Radar Systems Fabian Roos, Nils Appenrodt, Jürgen Dickmann, and Christian Waldschmidt c 218 IEEE. Personal use of this material

More information

Chapter 2 Direct-Sequence Systems

Chapter 2 Direct-Sequence Systems Chapter 2 Direct-Sequence Systems A spread-spectrum signal is one with an extra modulation that expands the signal bandwidth greatly beyond what is required by the underlying coded-data modulation. Spread-spectrum

More information

1 Introduction 2 Principle of operation

1 Introduction 2 Principle of operation Published in IET Radar, Sonar and Navigation Received on 13th January 2009 Revised on 17th March 2009 ISSN 1751-8784 New waveform design for magnetron-based marine radar N. Levanon Department of Electrical

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand ni.com Design and test of RADAR systems Agenda Radar Overview Tools Overview VSS LabVIEW PXI Design and Simulation

More information

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey GNSS Acquisition 25.1.2016 Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey Content GNSS signal background Binary phase shift keying (BPSK) modulation Binary offset carrier

More information

PN9000 PULSED CARRIER MEASUREMENTS

PN9000 PULSED CARRIER MEASUREMENTS The specialist of Phase noise Measurements PN9000 PULSED CARRIER MEASUREMENTS Carrier frequency: 2.7 GHz - PRF: 5 khz Duty cycle: 1% Page 1 / 12 Introduction When measuring a pulse modulated signal the

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at certain rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth requirement

More information