System analysis and signal processing

Size: px
Start display at page:

Download "System analysis and signal processing"

Transcription

1 System analysis and signal processing with emphasis on the use of MATLAB PHILIP DENBIGH University of Sussex ADDISON-WESLEY Harlow, England Reading, Massachusetts Menlow Park, California New York Don Mills, Ontario Amsterdam Bonn Sydney Singapore Tokyo # Madrid San Juan : Milan Mexico City Seoul Taipei

2 1. Getting started in MATLAB and an introduction to systems and signal processing Preview Getting started in MATLAB Variables Sequences, arrays and vectors Generating vectors Addressing vectors Array mathematics Multiple commands on one line and comments Element indexing and time indexing Augmenting a vector with zeros to correspond with an extended timing index vector Linear algebra and matrix operations Plotting data values Hardcopy Transfer of a figure to a word processor document M-files Some signals and systems terminology Some examples of analogue systems and analogue signal processing Some examples of digital systems and digital signal processing Justification for the digital processing of signals Some signals of special importance Summary Problems Impulse functions, impulse responses and convolution Preview The unit sample function (or discrete-time unit impulse function) Discrete-time impulse responses and the convolution sum Alternative forms and interpretations of the convolution sum Convolution using MATLAB Continuous-time impulse functions Continuous-time impulse responses and the convolution integral A graphical interpretation of the convolution integral Convolution of analogue signals using MATLAB Some examples of convolution not related to networks 50 V

3 vi Contents 2.11 Some properties of convolution Deconvolution Summary Problems The steady state response of analogue networks to cosinusoids and to the complex exponential e >cot Preview The properties of network elements The difficulty of solving network equations The use of the complex exponential waveform exp(jwt) Impedance functions Inductance Resistance Capacitance Admittance functions Elements in series and in parallel Frequency transfer functions and Bode plots Summary Problems Phasors Preview Vector representation of cosinusoids Phasors and phasor diagrams Phasors in network analysis The use of phasors in power calculations The application of MATLAB to network analysis Phasors not related to network analysis Contra-rotating phasors Summary Problems Line spectra and the Fourier series Preview One-sided frequency domain descriptions of sinusoids and cosinusoids Two-sided frequency domain descriptions of cosinusoids Negative frequencies Periodic signals and the trigonometric Fourier series The exponential Fourier series Plotting line spectra using MATLAB Further properties and examples of Fourier series Summary Problems Spectral density functions and the Fourier transform Preview Energy signals and power signals 110

4 vii 6.3 The Fourier transform of an aperiodic energy signal The Fourier transform of a rectangular pulse The Fourier transform of an impulse Symmetry in Fourier transforms Some physical insight into the evaluation of Fourier transforms The inverse Fourier transform Reconstruction of a waveform from its Fourier transform Fourier transforms of power signals Fourier transforms of periodic signals Cyclic frequency versus radian frequency Signal transmission through linear networks The importance of the Fourier transform in network analysis The energy density spectrum Power spectral density (PSD) The equivalence of convolution in one domain to multiplication in the other domain Some other properties of Fourier transforms Superposition Duality Compression and expansion The effect of a time shift on the Fourier transform The effect of a frequency shift on the inverse Fourier transform Differentiation and integration A selection of some important Fourier transforms Summary, Problems The sampling and digitization of signals Preview Overview of sampling and digitization Binary codes Analogue to digital and digital to analogue converters The 'flash'adc The weighted-resistor-network DAC The «-2«DAC The successive-approximation ADC Distortion due to sampling, and the sampling theorem Ideal sampling and the Fourier transform approach to the spectra of sampled signals Anti-aliasing filters The effect of holding sample amplitudes Dynamic range and quantization errors An introduction to the sampling of bandpass signals Summary Problems The discrete Fourier transform Preview An introduction to basis functions 167

5 8.3 Alternative sets of basis functions and orthogonality Trigonometric basis functions for discrete signals Digital frequency The inverse discrete Fourier transform Notation and symbols Evaluating the coefficients of complex exponential basis functions The discrete Fourier transform The discrete Fourier transform pair Interpretation of the DFT Differences in the definitions of the continuous and discrete Fourier transforms The effect of sampling and windowing the waveform The effect of sampling and windowing the spectrum Summary of the relationship between the DFT and the continuous Fourier transform Reordering of DFT coefficients An alternative interpretation scheme Summary Problems The fast Fourier transform and some applications Preview Computational demands of the discrete Fourier transform Computational demands of the fast Fourier transform Spectral analysis Window functions for improving spectral estimates Zero-padding Spectrograms Linear convolution and periodic (or circular) convolution using the FFT Summary Problems The steady state response of analogue systems by consideration of the excitation e st Preview Impedance and admittance when the excitation is e 5t Transfer functions Further justification for the use of e 5t Pole-zero plots Frequency response from the pole-zero plot Frequency response using MATLAB The order of a transfer function, some examples of second-order systems, and Q Conjugate pole and conjugate zero pairs Impedance functions for non-electrical components and systems Transfer functions for electromechanical components and systems Summary Problems 258

6 ix 11. Natural responses, transients and stability Preview Natural response The natural response of first-order systems The natural current response of a series RC network The natural current response of a series RL network The complete response Transients Relationship between the natural response and the system poles and zeros The natural response of second-order systems The natural response of hybrid electrical and mechanical systems Stability Summary Problems The Laplace transform Preview The bilateral Laplace transform The unilateral Laplace transform Convergence A physical interpretation of the Laplace transform Applications of the Laplace transform to system analysis justification of the Laplace transform and a comparison with the Fourier transform s-plane plots and some more Laplace transforms The step function The exponentially decaying step function The ramp function At Sine and cosine functions Functions modified by an exponential decay Exponentially decaying sines and cosines Delayed functions Inverse Laplace transformation Interpreting signal waveforms from pole-zero plots The step function response of first-order systems The step function response of second-order systems System responses using MATLAB An introduction to automatic control Laplace transforms used directly for the solution of differential equations Laplace transforms used directly for the solution of integro-differential equations A comparison of Laplace transforms and phasors for system analysis Summary Problems Synthesis of analogue filters Preview Basic approach to filter design 323

7 13.3 Amplitude and delay distortion Selecting a frequency response Transfer functions and frequency responses of analogue filters using MATLAB Obtaining the transfer function corresponding to a desired frequency response Translating a transfer function into a filter design Design of passive lowpass filters using tables Impedance scaling Frequency scaling of lowpass filters Lowpass to bandpass transformation Lowpass to highpass transformation Passive bandstop filters Active lowpass filters Active highpass filters Active bandpass filters Delay equalizers Summary Problems An introduction to digital networks and the z transform Preview Structure of digital networks and the difference equation The impulse responses of digital networks - FIR and HR systems Other configurations of digital networks The hardware realization of digital networks An s-plane treatment of digital networks A z-plane treatment of digital networks Mapping between the s-plane and the z-plane The frequency response of a digital network from a geometrical interpretation of z-plane poles and zeros An analytical approach to the frequency response of a digital network Frequency responses and pole-zero plots using MATLAB The z transform Some important z transforms The unit step function The unit ramp The decaying exponential The damped cosinusoid f The damped sinusoid A direct derivation of the z transfer function The inverse z transform Discrete-time convolution using the z transform The responses of digital systems using MATLAB Transfer functions of sampled analogue systems An introduction to digital control systems The relationship between the z transform, the Fourier transform and the DFT 394

8 xi Summary Problems Synthesis of digital filters Preview Filter design by pole-zero placement Design of recursive digital filters based on the frequency response characteristics of analogue filters The impulse invariant technique The bilinear transformation technique Highpass, bandpass and bandstop filters Designing recursive digital filters with MATLAB Effect of coefficient quantization inmr filters Cascading low-order IIR filters for improved stability Design of non-recursive digital filters The Fourier (or window) method The design of optimal linear phase FIR filters Summary Problems Correlation Preview Covariance and the correlation coefficient The cross-correlation function for finite-duration signals Correlation using MATLAB The cross-correlation function for power signals Autocorrelation functions Some applications of cross-correlation and autocorrelation Determination of time delays System identification Pattern recognition Detection of signals in noise by cross-correlation Detection of signals in noise by autocorrelation The chirp pulse Time domain correlators and matched filters Frequency domain correlation The output waveform from a matched filter, and the processing gain Doppler effects in correlators Summary Problems Processing techniques for bandpass signals Preview Bandpass signals Baseband representations of bandpass signals and the complex envelope Generation of in-phase and quadrature components 478

9 17.5 Envelope detection using quadrature components An example of quadrature channels for measuring Doppler shifts in radar An example of quadrature channels in narrowband FFT beamforming Filtering bandpass signals with lowpass filters Correlators for bandpass signals The physical reality of complex envelopes Analytic signals Summary Problems 496 Appendix A Listings of selected MATLAB programs 498 Bibliography 504 Index 505 Trademark notice The following are trademarks or registered trademarks of their respective companies: Macintosh MATLAB Windows Apple Computer, Inc. The Mathworks, Inc. Microsoft Corporation

Signals and Systems Using MATLAB

Signals and Systems Using MATLAB Signals and Systems Using MATLAB Second Edition Luis F. Chaparro Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh, PA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Fourth Edition John G. Proakis Department of Electrical and Computer Engineering Northeastern University Boston, Massachusetts Dimitris G. Manolakis MIT Lincoln Laboratory Lexington,

More information

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI

ELECTRIC CIRCUITS. Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI ELECTRIC CIRCUITS Third Edition JOSEPH EDMINISTER MAHMOOD NAHVI Includes 364 solved problems --fully explained Complete coverage of the fundamental, core concepts of electric circuits All-new chapters

More information

McGraw-Hill Irwin DIGITAL SIGNAL PROCESSING. A Computer-Based Approach. Second Edition. Sanjit K. Mitra

McGraw-Hill Irwin DIGITAL SIGNAL PROCESSING. A Computer-Based Approach. Second Edition. Sanjit K. Mitra DIGITAL SIGNAL PROCESSING A Computer-Based Approach Second Edition Sanjit K. Mitra Department of Electrical and Computer Engineering University of California, Santa Barbara Jurgen - Knorr- Kbliothek Spende

More information

Qäf) Newnes f-s^j^s. Digital Signal Processing. A Practical Guide for Engineers and Scientists. by Steven W. Smith

Qäf) Newnes f-s^j^s. Digital Signal Processing. A Practical Guide for Engineers and Scientists. by Steven W. Smith Digital Signal Processing A Practical Guide for Engineers and Scientists by Steven W. Smith Qäf) Newnes f-s^j^s / *" ^"P"'" of Elsevier Amsterdam Boston Heidelberg London New York Oxford Paris San Diego

More information

Bibliography. Practical Signal Processing and Its Applications Downloaded from

Bibliography. Practical Signal Processing and Its Applications Downloaded from Bibliography Practical Signal Processing and Its Applications Downloaded from www.worldscientific.com Abramowitz, Milton, and Irene A. Stegun. Handbook of mathematical functions: with formulas, graphs,

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing System Analysis and Design Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro CAMBRIDGE UNIVERSITY PRESS Preface page xv Introduction

More information

Introduction to Digital Signal Processing Using MATLAB

Introduction to Digital Signal Processing Using MATLAB Introduction to Digital Signal Processing Using MATLAB Second Edition Robert J. Schilling and Sandra L. Harris Clarkson University Potsdam, NY... CENGAGE l.earning: Australia Brazil Japan Korea Mexico

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

2. Pre-requisites - CGS 2425 and MAC 2313; Corequisite - MAP 2302 and one of: EEL 3105, MAS 3114 or MAS 4105

2. Pre-requisites - CGS 2425 and MAC 2313; Corequisite - MAP 2302 and one of: EEL 3105, MAS 3114 or MAS 4105 EEL 3135 Introduction to Signals and Systems 1. Catalog Description (3 credits) Continuous-time and discrete-time signal analysis including Fourier series and transforms; sampling; continuous-time and

More information

DIGITAL SIGNAL PROCESSING WITH VHDL

DIGITAL SIGNAL PROCESSING WITH VHDL DIGITAL SIGNAL PROCESSING WITH VHDL GET HANDS-ON FROM THEORY TO PRACTICE IN 6 DAYS MODEL WITH SCILAB, BUILD WITH VHDL NUMEROUS MODELLING & SIMULATIONS DIRECTLY DESIGN DSP HARDWARE Brought to you by: Copyright(c)

More information

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts Instruction Manual for Concept Simulators that accompany the book Signals and Systems by M. J. Roberts March 2004 - All Rights Reserved Table of Contents I. Loading and Running the Simulators II. Continuous-Time

More information

MULTIRATE DIGITAL SIGNAL PROCESSING

MULTIRATE DIGITAL SIGNAL PROCESSING AT&T MULTIRATE DIGITAL SIGNAL PROCESSING RONALD E. CROCHIERE LAWRENCE R. RABINER Acoustics Research Department Bell Laboratories Murray Hill, New Jersey Prentice-Hall, Inc., Upper Saddle River, New Jersey

More information

Phase-Locked Loops. Roland E. Best. Me Graw Hill. Sixth Edition. Design, Simulation, and Applications

Phase-Locked Loops. Roland E. Best. Me Graw Hill. Sixth Edition. Design, Simulation, and Applications Phase-Locked Loops Design, Simulation, and Applications Roland E. Best Sixth Edition Me Graw Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

Lecture 3 Complex Exponential Signals

Lecture 3 Complex Exponential Signals Lecture 3 Complex Exponential Signals Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/3/1 1 Review of Complex Numbers Using Euler s famous formula for the complex exponential The

More information

Signals. Continuous valued or discrete valued Can the signal take any value or only discrete values?

Signals. Continuous valued or discrete valued Can the signal take any value or only discrete values? Signals Continuous time or discrete time Is the signal continuous or sampled in time? Continuous valued or discrete valued Can the signal take any value or only discrete values? Deterministic versus random

More information

CIRCUITS, SYSTEMS, AND SIGNALS FOR BIOENGINEERS: A MATLAB-BASED INTRODUCTION

CIRCUITS, SYSTEMS, AND SIGNALS FOR BIOENGINEERS: A MATLAB-BASED INTRODUCTION CIRCUITS, SYSTEMS, AND SIGNALS FOR BIOENGINEERS: A MATLAB-BASED INTRODUCTION John L. Semmlow ELSEVIER ACAUEMIC PRFSS AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE

More information

FUNDAMENTALS OF SIGNALS AND SYSTEMS

FUNDAMENTALS OF SIGNALS AND SYSTEMS FUNDAMENTALS OF SIGNALS AND SYSTEMS LIMITED WARRANTY AND DISCLAIMER OF LIABILITY THE CD-ROM THAT ACCOMPANIES THE BOOK MAY BE USED ON A SINGLE PC ONLY. THE LICENSE DOES NOT PERMIT THE USE ON A NETWORK (OF

More information

EE 470 Signals and Systems

EE 470 Signals and Systems EE 470 Signals and Systems 9. Introduction to the Design of Discrete Filters Prof. Yasser Mostafa Kadah Textbook Luis Chapparo, Signals and Systems Using Matlab, 2 nd ed., Academic Press, 2015. Filters

More information

Adaptive Filters Application of Linear Prediction

Adaptive Filters Application of Linear Prediction Adaptive Filters Application of Linear Prediction Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Electrical Engineering and Information Technology Digital Signal Processing

More information

PRINCIPLES OF COMMUNICATIONS

PRINCIPLES OF COMMUNICATIONS PRINCIPLES OF COMMUNICATIONS Systems, Modulation, and Noise SIXTH EDITION INTERNATIONAL STUDENT VERSION RODGER E. ZIEMER University of Colorado at Colorado Springs WILLIAM H. TRANTER Virginia Polytechnic

More information

Digital Control of Dynamic Systems

Digital Control of Dynamic Systems Second Edition Digital Control of Dynamic Systems Gene F. Franklin Stanford University J. David Powell Stanford University Michael L. Workman IBM Corporation TT ADDISON-WESLEY PUBLISHING COMPANY Reading,

More information

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003

CG401 Advanced Signal Processing. Dr Stuart Lawson Room A330 Tel: January 2003 CG40 Advanced Dr Stuart Lawson Room A330 Tel: 23780 e-mail: ssl@eng.warwick.ac.uk 03 January 2003 Lecture : Overview INTRODUCTION What is a signal? An information-bearing quantity. Examples of -D and 2-D

More information

Teaching Plan - Dr Kavita Thakur

Teaching Plan - Dr Kavita Thakur Teaching Plan - Dr Kavita Thakur Semester Date Day Paper Paper/Unit Topic to be covered Topic Covered : 25/02/2016 Waveform Synthesis Standard signals, Unit Step Function, Ramp, Impulse Function, Voltage/Current

More information

Circuit Systems with MATLAB and PSpice

Circuit Systems with MATLAB and PSpice Circuit Systems with MATLAB and PSpice Won Y. Yang and Seung C. Lee Chung-Ang University, South Korea BICENTENNIAL 9 I CE NTE NNIAL John Wiley & Sons(Asia) Pte Ltd Contents Preface Limits of Liability

More information

Communication Systems Modelling and Simulation

Communication Systems Modelling and Simulation Communication Systems Modelling and Simulation Using MATLAB and Simulink К С Raveendranathan Professor and Head Department of Electronics & Communication Engineering Government Engineering College Barton

More information

EE202 Circuit Theory II , Spring

EE202 Circuit Theory II , Spring EE202 Circuit Theory II 2018-2019, Spring I. Introduction & Review of Circuit Theory I (3 Hrs.) Introduction II. Sinusoidal Steady-State Analysis (Chapter 9 of Nilsson - 9 Hrs.) (by Y.Kalkan) The Sinusoidal

More information

INTRODUCTION TO DIGITAL SIGNAL PROCESSING AND FILTER DESIGN

INTRODUCTION TO DIGITAL SIGNAL PROCESSING AND FILTER DESIGN INTRODUCTION TO DIGITAL SIGNAL PROCESSING AND FILTER DESIGN INTRODUCTION TO DIGITAL SIGNAL PROCESSING AND FILTER DESIGN B. A. Shenoi A JOHN WILEY & SONS, INC., PUBLICATION Copyright 2006 by John Wiley

More information

Signal Processing Techniques for Software Radio

Signal Processing Techniques for Software Radio Signal Processing Techniques for Software Radio Behrouz Farhang-Boroujeny Department of Electrical and Computer Engineering University of Utah c 2007, Behrouz Farhang-Boroujeny, ECE Department, University

More information

Electrical and Telecommunication Engineering Technology NEW YORK CITY COLLEGE OF TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK

Electrical and Telecommunication Engineering Technology NEW YORK CITY COLLEGE OF TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK NEW YORK CITY COLLEGE OF TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT: Electrical and Telecommunication Engineering Technology SUBJECT CODE AND TITLE: DESCRIPTION: REQUIRED TCET 4202 Advanced

More information

ECE 429 / 529 Digital Signal Processing

ECE 429 / 529 Digital Signal Processing ECE 429 / 529 Course Policy & Syllabus R. N. Strickland SYLLABUS ECE 429 / 529 Digital Signal Processing SPRING 2009 I. Introduction DSP is concerned with the digital representation of signals and the

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for communication

More information

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 1 2.1 BASIC CONCEPTS 2.1.1 Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal. 2 Time Scaling. Figure 2.4 Time scaling of a signal. 2.1.2 Classification of Signals

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu Concordia University Discrete-Time Signal Processing Lab Manual (ELEC442) Course Instructor: Dr. Wei-Ping Zhu Fall 2012 Lab 1: Linear Constant Coefficient Difference Equations (LCCDE) Objective In this

More information

10. Introduction and Chapter Objectives

10. Introduction and Chapter Objectives Real Analog - Circuits Chapter 0: Steady-state Sinusoidal Analysis 0. Introduction and Chapter Objectives We will now study dynamic systems which are subjected to sinusoidal forcing functions. Previously,

More information

AN INTRODUCTION TO THE ANALYSIS AND PROCESSING OF SIGNALS

AN INTRODUCTION TO THE ANALYSIS AND PROCESSING OF SIGNALS AN INTRODUCTION TO THE ANALYSIS AND PROCESSING OF SIGNALS Other titles in Electrical and Electronic Engineering G. B. Clayton: Data Converters J. C. Cluley: Electronic Equipment Reliability, second edition

More information

COMMUNICATION SYSTEMS

COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 4TH EDITION Simon Hayhin McMaster University JOHN WILEY & SONS, INC. Ш.! [ BACKGROUND AND PREVIEW 1. The Communication Process 1 2. Primary Communication Resources 3 3. Sources of

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 3 FIR Filters Written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 19, 2015 Objectives:

More information

SYLLABUS. For B.TECH. PROGRAMME ELECTRONICS & COMMUNICATION ENGINEERING

SYLLABUS. For B.TECH. PROGRAMME ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS For B.TECH. PROGRAMME In ELECTRONICS & COMMUNICATION ENGINEERING INSTITUTE OF TECHNOLOGY UNIVERSITY OF KASHMIR ZAKURA CAMPUS SRINAGAR, J&K, 190006 Course No. Lect Tut Prac ECE5117B Digital Signal

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam Date: December 18, 2017 Course: EE 313 Evans Name: Last, First The exam is scheduled to last three hours. Open

More information

DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014)

DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014) Course Code : EEEB363 DIGITAL SIGNAL PROCESSING (Date of document: 6 th May 2014) Course Status : Core for BEEE and BEPE Level : Degree Semester Taught : 6 Credit : 3 Co-requisites : Signals and Systems

More information

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP

DIGITAL FILTERS. !! Finite Impulse Response (FIR) !! Infinite Impulse Response (IIR) !! Background. !! Matlab functions AGC DSP AGC DSP DIGITAL FILTERS!! Finite Impulse Response (FIR)!! Infinite Impulse Response (IIR)!! Background!! Matlab functions 1!! Only the magnitude approximation problem!! Four basic types of ideal filters with magnitude

More information

Brief Introduction to Signals & Systems. Phani Chavali

Brief Introduction to Signals & Systems. Phani Chavali Brief Introduction to Signals & Systems Phani Chavali Outline Signals & Systems Continuous and discrete time signals Properties of Systems Input- Output relation : Convolution Frequency domain representation

More information

MATLAB^/Simulink for Digital Communication

MATLAB^/Simulink for Digital Communication /n- i-.1 MATLAB^/Simulink for Digital Communication Won Y. Yang, Yong S. Cho, Won G. Jeon, Jeong W. Lee, Jong H. Paik Jae K. Kim, Mi-Hyun Lee, Kyu I. Lee, Kyung W. Park, Kyung S. Woo V Table of j Contents

More information

ECE : Circuits and Systems II

ECE : Circuits and Systems II ECE 202-001: Circuits and Systems II Spring 2019 Instructor: Bingsen Wang Classroom: NRB 221 Office: ERC C133 Lecture hours: MWF 8:00 8:50 am Tel: 517/355-0911 Office hours: M,W 3:00-4:30 pm Email: bingsen@egr.msu.edu

More information

COMBO ONLINE TEST SERIES GATE 2019 SCHEDULE: ELECTRONICS & COMMUNICATION ENGINEERING Syllabus Test Date Test Type [ EB-Engineering Branch ; EM- No. of Engineering Mathematics; GA- General Question Marks

More information

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido The Discrete Fourier Transform Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido CCC-INAOE Autumn 2015 The Discrete Fourier Transform Fourier analysis is a family of mathematical

More information

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

More information

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming by Nasser Kehtarnavaz University of Texas at Dallas With laboratory contributions by Namjin Kim and Qingzhong Peng 1111» AMSTERDAM

More information

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7 5.5 Series and Parallel Combinations of 246 Complex Impedances 5.6 Steady-State AC Node-Voltage 247 Analysis 5.7 AC Power Calculations 256 5.8 Using Power Triangles 258 5.9 Power-Factor Correction 261

More information

ENGINEERING CIRCUIT ANALYSIS

ENGINEERING CIRCUIT ANALYSIS ENGINEERING CIRCUIT ANALYSIS EIGHTH EDITION William H. Hayt, Jr. (deceased) Purdue University Jack E. Kemmerly (deceased) California State University Steven M. Durbin University at Buffalo The State University

More information

Signals, Sound, and Sensation

Signals, Sound, and Sensation Signals, Sound, and Sensation William M. Hartmann Department of Physics and Astronomy Michigan State University East Lansing, Michigan Л1Р Contents Preface xv Chapter 1: Pure Tones 1 Mathematics of the

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 Introduction... 6. Mathematical models for communication channels...

More information

DFT: Discrete Fourier Transform & Linear Signal Processing

DFT: Discrete Fourier Transform & Linear Signal Processing DFT: Discrete Fourier Transform & Linear Signal Processing 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Textbooks... 3 Recommended

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY Type of course: Compulsory GUJARAT TECHNOLOGICAL UNIVERSITY SUBJECT NAME: Digital Signal Processing SUBJECT CODE: 2171003 B.E. 7 th SEMESTER Prerequisite: Higher Engineering Mathematics, Different Transforms

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

Simple AC Circuits. Introduction

Simple AC Circuits. Introduction Simple AC Circuits Introduction Each problem in this problem set involves the steady state response of a linear, time-invariant circuit to a single sinusoidal input. Such a response is known to be sinusoidal

More information

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation

SECTION 7: FREQUENCY DOMAIN ANALYSIS. MAE 3401 Modeling and Simulation SECTION 7: FREQUENCY DOMAIN ANALYSIS MAE 3401 Modeling and Simulation 2 Response to Sinusoidal Inputs Frequency Domain Analysis Introduction 3 We ve looked at system impulse and step responses Also interested

More information

UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends.

UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends. UNIT 1 CIRCUIT ANALYSIS 1 What is a graph of a network? When all the elements in a network is replaced by lines with circles or dots at both ends. 2 What is tree of a network? It is an interconnected open

More information

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 1 Introduction

More information

Department of Electronics &Electrical Engineering

Department of Electronics &Electrical Engineering Department of Electronics &Electrical Engineering Question Bank- 3rd Semester, (Network Analysis & Synthesis) EE-201 Electronics & Communication Engineering TWO MARKS OUSTIONS: 1. Differentiate between

More information

Basic Signals and Systems

Basic Signals and Systems Chapter 2 Basic Signals and Systems A large part of this chapter is taken from: C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H. W. Schüssler: Computer-based exercises for

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Theory, Analysis and Digital-filter Design B. Somanathan Nair DIGITAL SIGNAL PROCESSING Theory, Analysis and Digital-filter Design B. SOMANATHAN NAIR Principal SHM Engineering

More information

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises

Digital Video and Audio Processing. Winter term 2002/ 2003 Computer-based exercises Digital Video and Audio Processing Winter term 2002/ 2003 Computer-based exercises Rudolf Mester Institut für Angewandte Physik Johann Wolfgang Goethe-Universität Frankfurt am Main 6th November 2002 Chapter

More information

ECE Digital Signal Processing

ECE Digital Signal Processing University of Louisville Instructor:Professor Aly A. Farag Department of Electrical and Computer Engineering Spring 2006 ECE 520 - Digital Signal Processing Catalog Data: Office hours: Objectives: ECE

More information

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer.

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer. Sampling of Continuous-Time Signals Reference chapter 4 in Oppenheim and Schafer. Periodic Sampling of Continuous Signals T = sampling period fs = sampling frequency when expressing frequencies in radians

More information

TABLE OF CONTENTS TOPIC NUMBER NAME OF THE TOPIC 1. OVERVIEW OF SIGNALS & SYSTEMS 2. ANALYSIS OF LTI SYSTEMS- Z TRANSFORM 3. ANALYSIS OF FT, DFT AND FFT SIGNALS 4. DIGITAL FILTERS CONCEPTS & DESIGN 5.

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

EE 470 BIOMEDICAL SIGNALS AND SYSTEMS. Active Learning Exercises Part 2

EE 470 BIOMEDICAL SIGNALS AND SYSTEMS. Active Learning Exercises Part 2 EE 47 BIOMEDICAL SIGNALS AND SYSTEMS Active Learning Exercises Part 2 29. For the system whose block diagram presentation given please determine: The differential equation 2 y(t) The characteristic polynomial

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

More information

The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D.

The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Home The Book by Chapters About the Book Steven W. Smith Blog Contact Book Search Download this chapter in PDF

More information

The Fundamentals of Mixed Signal Testing

The Fundamentals of Mixed Signal Testing The Fundamentals of Mixed Signal Testing Course Information The Fundamentals of Mixed Signal Testing course is designed to provide the foundation of knowledge that is required for testing modern mixed

More information

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN DISCRETE FOURIER TRANSFORM AND FILTER DESIGN N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 03 Spectrum of a Square Wave 2 Results of Some Filters 3 Notation 4 x[n]

More information

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM

SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM SARDAR RAJA COLLEGES SARDAR RAJA COLLEGE OF ENGINEERING ALANGULAM DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MICRO LESSON PLAN SUBJECT NAME SUBJECT CODE SEMESTER YEAR : SIGNALS AND SYSTEMS

More information

Advanced Digital Signal Processing Part 5: Digital Filters

Advanced Digital Signal Processing Part 5: Digital Filters Advanced Digital Signal Processing Part 5: Digital Filters Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical and Information Engineering Digital Signal

More information

Figure Derive the transient response of RLC series circuit with sinusoidal input. [15]

Figure Derive the transient response of RLC series circuit with sinusoidal input. [15] COURTESY IARE Code No: R09220205 R09 SET-1 B.Tech II Year - II Semester Examinations, December-2011 / January-2012 NETWORK THEORY (ELECTRICAL AND ELECTRONICS ENGINEERING) Time: 3 hours Max. Marks: 80 Answer

More information

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals 16 3. SPEECH ANALYSIS 3.1 INTRODUCTION TO SPEECH ANALYSIS Many speech processing [22] applications exploits speech production and perception to accomplish speech analysis. By speech analysis we extract

More information

DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015

DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015 DIGITAL SIGNAL PROCESSING CCC-INAOE AUTUMN 2015 Fourier Transform Properties Claudia Feregrino-Uribe & Alicia Morales Reyes Original material: Rene Cumplido "The Scientist and Engineer's Guide to Digital

More information

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals

Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Advanced Digital Signal Processing Part 2: Digital Processing of Continuous-Time Signals Gerhard Schmidt Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical Engineering

More information

Linear Algebra, Calculus, Differential Equations and Vector Analysis. Complex Anaysis, Numerical Methods and Probability and Statistics.

Linear Algebra, Calculus, Differential Equations and Vector Analysis. Complex Anaysis, Numerical Methods and Probability and Statistics. Test No Topic code Topic EC-01 GEM (Engineering Mathematics) Topic wise Tests Each test carries 25 marks and 45 minutes duration Test consists of 5 one mark questions and 10 two marks questions Tests will

More information

Lecture 17 z-transforms 2

Lecture 17 z-transforms 2 Lecture 17 z-transforms 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/3 1 Factoring z-polynomials We can also factor z-transform polynomials to break down a large system into

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

(i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods Tools and Applications Chapter Intended Learning Outcomes: (i) Understanding the basic concepts of signal modeling, correlation, maximum likelihood estimation, least squares and iterative numerical methods

More information

Discrete-Time Signal Processing (DTSP) v14

Discrete-Time Signal Processing (DTSP) v14 EE 392 Laboratory 5-1 Discrete-Time Signal Processing (DTSP) v14 Safety - Voltages used here are less than 15 V and normally do not present a risk of shock. Objective: To study impulse response and the

More information

BANDPASS delta sigma ( ) modulators are used to digitize

BANDPASS delta sigma ( ) modulators are used to digitize 680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 10, OCTOBER 2005 A Time-Delay Jitter-Insensitive Continuous-Time Bandpass 16 Modulator Architecture Anurag Pulincherry, Michael

More information

Simulation Scenario For Digital Conversion And Line Encoding Of Data Transmission

Simulation Scenario For Digital Conversion And Line Encoding Of Data Transmission Simulation Scenario For Digital Conversion And Line Encoding Of Data Transmission Olutayo Ojuawo Department of Computer Science, The Federal Polytechnic, Ilaro, Ogun State, Nigeria Luis Binotto M.Sc in

More information

B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 DIGITAL SIGNAL PROCESSING (Common to ECE and EIE)

B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 DIGITAL SIGNAL PROCESSING (Common to ECE and EIE) Code: 13A04602 R13 B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 (Common to ECE and EIE) PART A (Compulsory Question) 1 Answer the following: (10 X 02 = 20 Marks)

More information

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10

Digital Signal Processing. VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Digital Signal Processing VO Embedded Systems Engineering Armin Wasicek WS 2009/10 Overview Signals and Systems Processing of Signals Display of Signals Digital Signal Processors Common Signal Processing

More information

CONTENTS. Cambridge University Press Vibration of Mechanical Systems Alok Sinha Table of Contents More information

CONTENTS. Cambridge University Press Vibration of Mechanical Systems Alok Sinha Table of Contents More information CONTENTS Preface page xiii 1 Equivalent Single-Degree-of-Freedom System and Free Vibration... 1 1.1 Degrees of Freedom 3 1.2 Elements of a Vibratory System 5 1.2.1 Mass and/or Mass-Moment of Inertia 5

More information

Chapter 2. Fourier Series & Fourier Transform. Updated:2/11/15

Chapter 2. Fourier Series & Fourier Transform. Updated:2/11/15 Chapter 2 Fourier Series & Fourier Transform Updated:2/11/15 Outline Systems and frequency domain representation Fourier Series and different representation of FS Fourier Transform and Spectra Power Spectral

More information

Optical Signal Processing

Optical Signal Processing Optical Signal Processing ANTHONY VANDERLUGT North Carolina State University Raleigh, North Carolina A Wiley-Interscience Publication John Wiley & Sons, Inc. New York / Chichester / Brisbane / Toronto

More information

Acoustics, signals & systems for audiology. Week 4. Signals through Systems

Acoustics, signals & systems for audiology. Week 4. Signals through Systems Acoustics, signals & systems for audiology Week 4 Signals through Systems Crucial ideas Any signal can be constructed as a sum of sine waves In a linear time-invariant (LTI) system, the response to a sinusoid

More information

Discrete-Time Signal Processing (DSP)

Discrete-Time Signal Processing (DSP) Discrete-Time Signal Processing (DSP) Chu-Song Chen Email: song@iis.sinica.du.tw Institute of Information Science, Academia Sinica Institute of Networking and Multimedia, National Taiwan University Fall

More information

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37 INF4420 Discrete time signals Jørgen Andreas Michaelsen Spring 2013 1 / 37 Outline Impulse sampling z-transform Frequency response Stability Spring 2013 Discrete time signals 2 2 / 37 Introduction More

More information

Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit

Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit Application Note 097 Designing Filters Using the NI LabVIEW Digital Filter Design Toolkit Introduction The importance of digital filters is well established. Digital filters, and more generally digital

More information

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Homework #1 Sinusoids, Transforms and Transfer Functions Assigned on Friday, February 2, 2018 Due on Friday, February 9, 2018, by

More information

Electronic Warfare Receivers. and Receiving Systems. Richard A. Poisel ARTECH HOUSE BOSTON LONDON. artechhouse.com

Electronic Warfare Receivers. and Receiving Systems. Richard A. Poisel ARTECH HOUSE BOSTON LONDON. artechhouse.com Electronic Warfare Receivers and Receiving Systems Richard A. Poisel ARTECH HOUSE BOSTON LONDON artechhouse.com Table of Contents Preface Chapter 1 Receiving Systems and Receiving System Architectures

More information

Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221

Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221 Continuous-Time Signal Analysis FOURIER Transform - Applications DR. SIGIT PW JAROT ECE 2221 Inspiring Message from Imam Shafii You will not acquire knowledge unless you have 6 (SIX) THINGS Intelligence

More information