Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

Size: px
Start display at page:

Download "Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System"

Transcription

1 Lecture Topics Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System 1

2 Remember that: An EM wave is a function of both space and time e.g. The electric field strength E(x, y, z, t) v = f = v / f v = 3 x 10 8 m/s v : is in metre/second f : is in cycle/second : is? f metre second second cycle metre cycle An EM wave will go through one cycle in a distance equal to one wavelength 2

3 Interpretation As an example, for a frequency f = 900 MHz, the wavelength = 1/3 m, and the period T = 1.11 x 10-9 sec. t 1 m The wave will travel 1/3 m per cycle 3

4 Phasor Representation A (t) Imaginary A i Real t ( t) ( ) d 0 i 0 4

5 Instantaneous Frequency Taking the derivatives of both side of the equation: the result is: ( t) ( ) d d i dt t 0 i (t) 0 The instantaneous frequency of a sinusoidal signal is given by the time derivative of its phase. 5

6 Fixed and Moving Objects (straight line) Moving Object R 3 R 2 R 1 R 1 R 2 R 3 Fixed Object 6

7 Fixed and Moving Objects (circular path) Moving Object R 3 R 2 R 1 R 1 = R 2 = R 3 Fixed Object 7

8 Doppler CW Radar (Simplified) f t CW Tx f t Dup Dup f t + f r f t - f r f r Frequency Counter f d Amp f d Det CW: Continuous wave 8

9 Characteristics of CW Radar Transmit unmodulated continuous sinusoidal carrier. Echoes will also be unmodulated continuous sinusoidal carrier. Time difference between the transmitted and returned echoes cannot be detected. Echoed radio energy from a moving target differs in frequency from that transmitted by the radar producing a beat frequency that can be detected. CW Radar Utilise Doppler Frequency Shift for detecting and measuring the radial velocity of moving targets. 9

10 Doppler Frequency The total number of wavelengths of the two-way path between the Radar and Target is given by: 2R / Since a wavelength correspond to an angular excursion of 2 radians, the returned echo will have a phase difference given by: = (2R / ) 2 4 R / radians Substituting c / f t for = 4 R f t / c radians Where f t is the radar transmitted frequency, and c the speed of radio waves. 10

11 Angular Frequency For a moving target, R and are functions of time. t = 4 R(t) f t /c radians Differentiating R and with respect to time, but, d dt d dt = 4 f t /c dr dt (a) d = 2 f d (b) angular Doppler frequency and dr dt = v r (c) target relative velocity 11

12 Equation of Doppler Frequency Substituting (b) and (c) in (a) and rearranging: 2 f d = (4 f t / c) v r f d = 2 v r f t / c f d v r f t c : Doppler Frequency : Target relative velocity : Radar transmit frequency : 300 x 10 6 m/s 12

13 Bandwidth Consideration A wide bandwidth amplifier is required for the expected range of Doppler frequencies. Receiver noise increases with bandwidth, resulting in decrease of receiver sensitivity. Use of multiple narrowband filters at the baseband or IF frequencies. Use of Phase-Locked-Loop to keep track of the varying Doppler frequency. 13

14 IF Doppler Filter Bank Filter No.1 Filter No.1 Det. Det. Filter No.2 Filter No.2 Det Det Mixer Mixer IF Amp IF Amp Filter No.3 Filter No.3 Det Det Indicator Filter No.4 Filter No.4 Det Det Filter No.n Filter No.n Det Det 14

15 Frequency Response Characteristics IF bandwidth Response f 1 f 2 f 3 f 4 fn Frequency 15

16 Radial Velocity Sign Detection Transmit Antenna f t CW Trans. 2 Channel A Receive Antenna f t + f d f t - f d Mix A Mix B LPF LPF Synch Motor Indicator Channel B 16

17 Spectra of Received Signals No Doppler shift Amplitude f t Frequency Approaching target Amplitude f t f d Frequency Receding target Amplitude f d f t Frequency 17

18 Signal Representation Let the transmitted signal be: E t = E o cos o t For an approaching target, the echo signal will be: E r = k 1 E o cos [( o + d )t] For a receding target, the echo signal will be: E r = k 1 E o cos [( o - d )t] Note: k 1 is a scaling factor 18

19 Signal Analysis The output of the Mixer is obtained by multiplying the transmitted and echo signals and using the following trigonometric identity. cos A cos B = 0.5 cos (A-B) cos (A+B) 19

20 Mixer Output (the answer) If the target is approaching, the output of channels A and B: E A = k 2 E o cos ( ( d t) E B = k 2 E o cos ( ( d t + /2 ) Velocity Direction If the target is receding, the output of channels A and B: E A = k 2 E o cos ( ( d t) E B = k 2 E o cos ( ( d t - /2 ) Velocity Direction 20

21 Calculations Echo Signal For an approaching target, E r = k 1 E o cos [( o + d )t] E r = k 1 E o cos [( o + d )t] For a receding target, E r = k 1 E o cos [( o - d )t] E r = k 1 E o cos [( o - d )t] x x x x Local Oscillator E t = E o cos o t E t = E o cos( o t - /2) E t = E o cos o t E t = E o cos( o t - /2) 21

22 Output of A Mixer (approaching target) E r = k 1 E o cos [( o + d )t] Ignoring magnitude for now, E A = cos [( o + d )t] cos o t x E t = E o cos o t E A = 0.5 cos [( o + d - o )t] cos [( o + d + o )t] E A = 0.5 cos ( d t) cos [(2 o + d )t] The term cos [(2 o + d )t] is double the RF frequency and hence it is filtered out Then the out put of the mixer A is: E A = 0.5 cos ( d t) 22

23 Output of B Mixer (approaching target) E r = k 1 E o cos [( o + d )t] x E t = E o cos( o t - /2) E B = cos [( o + d )t] cos( o t - /2) E B = 0.5 cos [( o + d - o )t + /2] cos [( o + d + o )t - /2] E B = 0.5 cos [( d )t + /2] cos [(2 o + d )t - /2] The term cos [(2 o + d )t - /2] is double the RF frequency and hence it is filtered out Then the out put of the mixer A is: E B = 0.5 cos [( d )t + /2] 23

24 FM - CW Radar Systems 24

25 FM- CW Radar Systems CW Radar Systems do not give target range information. Doppler frequency is zero for stationary targets. A version of CW Radar provides range information by incorporating Frequency Modulation (FM) technique. FM-CW Radar can employ linear or non-linear frequency modulation. Linear Modulation is achieved by Triangular modulating waveform, while Non-Linear Modulation is achieved by Sinusoidal modulating waveform. 25

26 Frequency-Time Relationship Frequency f o transmitted f t = 2R/c received time The frequency Rate of Change:. f o = f t Hz / second 26

27 Linear Modulation. If the frequency is being increased linearly at the rate f o Hz/sec, then during the time t = 2R/c the transmitted frequency would have increased by:. f = f o t Substituting 2R/c for t and f b for f. f b = f o 2R/c 27

28 Range Calculation If the transmitted frequency is f t, then the received frequency is given by: f t + f b The difference between the transmitted and received frequencies is called the Beat Frequency f b. The range R is then given by: R = c f. b 2 f o where. f o = f t 28

29 Linear Modulation Waveform Frequency transmitted received f r t = 2R/c time Frequency f b time 29

30 Triangular Modulation Practically, the frequency cannot be increased indefinitely and the target may not be stationary. The modulating signal waveform used is Triangular, linearly increasing and decreasing (positive and negative slopes). Let the frequency of the triangular waveform be f m, and the peak-to-peak frequency deviation 2 f (FM modulation), then the transmitted frequency is linearly increasing and decreasing by the rate: f f f 0 4 m see FM theory 30

31 Frequency Rate of Change The modulating frequency f m = 1 / T Frequency f o T/4 f time T The frequency rate of change (slope) = f / t t = T / 4 = 1 / 4f m 31

32 Stationary Target The beat frequency is given by:. Substituting f o = 4 f m f. f b = f o 2 R / c f b = 8 f m f R / c The range is given by: R = c f b / ( 8 f m f ) 32

33 Stationary Target Waveform Frequency f o t = 2R c f time Frequency f b time 33

34 Moving Target When the target is moving Doppler Effect takes place and the frequency is shifted accordingly. f d Frequency f o time f d = 2 v r f t / c 34

35 Moving Target Waveform Frequency f o time Frequency f b time 35

36 Beat Frequency for Moving Target For a moving target, the beat frequency will now include an additional component due to Doppler frequency shift. The positive and negative frequency slopes will be: f up = f r -f d f down = f r + f d 36

37 Beat Frequency Waveform Frequency f r -f d f r + f d time 37

38 FM-CW Radar Block Diagram Transmit Antenna FM Transmitter Modulator Indicator Receive Antenna Mixer Amp Limiter Frequency Counter 38

39 MTI & Pulsed Doppler Radar System 39

40 Introduction So far we examined the functionality of a number of radar systems, Pulsed Radar, CW Radar, and FM-CW Radar Systems. Pulsed Radar System provides range (distance) information. Doppler CW Radar System provides the relative velocity of a moving object. FM-CW Radar System provides range information. Is it possible to obtain both range and velocity of a moving object using one radar system? 40

41 Waveform (Wide Pulse) CW Modulating Signal Pulsed CW Long enough to detect velocity! 41

42 Waveform (Narrow Pulse) CW Modulating Signal Pulsed CW Far enough to detect range! 42

43 Waveform (Medium Pulse) CW Modulating Signal Pulsed CW Good enough to detect both range and velocity! 43

44 MTI Radar (measures range) The purpose of MTI Radar is to reject signals from fixed or slow-moving unwanted targets and display signals from fast-moving wanted targets. Examples of slow-moving targets: buildings, hills, trees sea waves, and rainfall. A flying aircraft is an example of fast-moving targets. 44

45 Pulsed Doppler Radar (measures velocity) Optimised for speed measurement, the range need not be accurate. Pulsed Doppler Radar operates with unambiguous Doppler measurement but with ambiguous range measurement. 45

46 Purpose & Characteristics MTI and Pulsed Doppler Radar systems are used to detect moving targets in severe clutter environment. Unambiguous Range MTI PD Velocity Ambiguous Low Medium High PRF PRF : Pulse Repetition Frequency 46

47 Purpose and Definition Both the MTI and Pulsed Doppler Radar systems are based on the same physical principle, but in practice there are generally recognisable differences between them. mainly for range but with some knowledge on speed MTI Radar operates with ambiguous Doppler Measurement but with unambiguous Range Measurement. Pulsed Doppler Radar operates with unambiguous Doppler Measurement but with ambiguous Range Measurement. mainly for speed but with some knowledge on range 47

48 Operational Limits Combing the features of Pulsed and CW radar systems to obtain target Range and Speed information. Unambiguous Range Measurement is inversely proportional to the pulse repetition rate. Unambiguous Speed Measurement by Doppler frequency shift method requires a long enough pulse width. A compromise must be made on which measurement is to be unambiguous, Rang or Speed. 48

49 Coherent MTI Radar System Pulsed f t Dup Phase Detector PRI Memory - Pulsed f t CW + Pulsed Amplifier CW RF Oscillator PRI : Pulse Repetition Interval 49

50 Simple CW Radar Transmit Antenna f t CW Oscillator f t Receive Antenna f t + f d f t -f d Receiver f d Indicator 50

51 Pulsed-Doppler Radar Pulse Modulator Transmit Antenna Pulsed f t Power Amplifier f t CW Oscillator Pulsed f t Receive Antenna f t + f d f t -f d Receiver f d Indicator 51

52 Waveform Equations The transmitted carrier = A 1 sin (2 f o t) The reference carrier = A 2 sin (2 f o t) The returned echo = A 3 sin [2 f o +/- f d ) t - 4 f o R / c] The result of mixing returned echo and reference carrier is : V diff = A 4 sin ( 2 f d t - 4 f o R / c ) 52

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d

1. Explain how Doppler direction is identified with FMCW radar. Fig Block diagram of FM-CW radar. f b (up) = f r - f d. f b (down) = f r + f d 1. Explain how Doppler direction is identified with FMCW radar. A block diagram illustrating the principle of the FM-CW radar is shown in Fig. 4.1.1 A portion of the transmitter signal acts as the reference

More information

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1

UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 UNIT 8 : MTI AND PULSE DOPPLAR RADAR LECTURE 1 The ability of a radar receiver to detect a weak echo signal is limited by the noise energy that occupies the same portion of the frequency spectrum as does

More information

Lecture 6. Angle Modulation and Demodulation

Lecture 6. Angle Modulation and Demodulation Lecture 6 and Demodulation Agenda Introduction to and Demodulation Frequency and Phase Modulation Angle Demodulation FM Applications Introduction The other two parameters (frequency and phase) of the carrier

More information

METR 3223, Physical Meteorology II: Radar Doppler Velocity Estimation

METR 3223, Physical Meteorology II: Radar Doppler Velocity Estimation METR 3223, Physical Meteorology II: Radar Doppler Velocity Estimation Mark Askelson Adapted from: Doviak and Zrnić, 1993: Doppler radar and weather observations. 2nd Ed. Academic Press, 562 pp. I. Essentials--Wave

More information

Set No.1. Code No: R

Set No.1. Code No: R Set No.1 IV B.Tech. I Semester Regular Examinations, November -2008 RADAR SYSTEMS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours Max Marks: 80 Answer any

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Frequency-Modulated CW Radar EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with FM ranging using frequency-modulated continuous-wave (FM-CW) radar. DISCUSSION

More information

Radar Systems Engineering Lecture 12 Clutter Rejection

Radar Systems Engineering Lecture 12 Clutter Rejection Radar Systems Engineering Lecture 12 Clutter Rejection Part 1 - Basics and Moving Target Indication Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Block Diagram of Radar System Transmitter

More information

INTRODUCTION TO RADAR SIGNAL PROCESSING

INTRODUCTION TO RADAR SIGNAL PROCESSING INTRODUCTION TO RADAR SIGNAL PROCESSING Christos Ilioudis University of Strathclyde c.ilioudis@strath.ac.uk Overview History of Radar Basic Principles Principles of Measurements Coherent and Doppler Processing

More information

Radar level measurement - The users guide

Radar level measurement - The users guide Radar level measurement The user's guide Radar level measurement - The users guide Peter Devine written by Peter Devine additional information Karl Grießbaum type setting and layout Liz Moakes final drawings

More information

Lecture 3 SIGNAL PROCESSING

Lecture 3 SIGNAL PROCESSING Lecture 3 SIGNAL PROCESSING Pulse Width t Pulse Train Spectrum of Pulse Train Spacing between Spectral Lines =PRF -1/t 1/t -PRF/2 PRF/2 Maximum Doppler shift giving unambiguous results should be with in

More information

EE470 Electronic Communication Theory Exam II

EE470 Electronic Communication Theory Exam II EE470 Electronic Communication Theory Exam II Open text, closed notes. For partial credit, you must show all formulas in symbolic form and you must work neatly!!! Date: November 6, 2013 Name: 1. [16%]

More information

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell

Introduction to Radar Systems. Clutter Rejection. MTI and Pulse Doppler Processing. MIT Lincoln Laboratory. Radar Course_1.ppt ODonnell Introduction to Radar Systems Clutter Rejection MTI and Pulse Doppler Processing Radar Course_1.ppt ODonnell 10-26-01 Disclaimer of Endorsement and Liability The video courseware and accompanying viewgraphs

More information

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar)

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) Frequency-Modulated Continuous-Wave Radar (FM-CW Radar) FM-CW radar (Frequency-Modulated Continuous Wave radar = FMCW radar) is a special type of radar sensor which radiates continuous transmission power

More information

UNIT-2 Angle Modulation System

UNIT-2 Angle Modulation System UNIT-2 Angle Modulation System Introduction There are three parameters of a carrier that may carry information: Amplitude Frequency Phase Frequency Modulation Power in an FM signal does not vary with modulation

More information

Frequency Modulation KEEE343 Communication Theory Lecture #15, April 28, Prof. Young-Chai Ko

Frequency Modulation KEEE343 Communication Theory Lecture #15, April 28, Prof. Young-Chai Ko Frequency Modulation KEEE343 Communication Theory Lecture #15, April 28, 2011 Prof. Young-Chai Ko koyc@korea.ac.kr Summary Angle Modulation Properties of Angle Modulation Narrowband Frequency Modulation

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

Radar-Verfahren und -Signalverarbeitung

Radar-Verfahren und -Signalverarbeitung Radar-Verfahren und -Signalverarbeitung - Lesson 2: RADAR FUNDAMENTALS I Hon.-Prof. Dr.-Ing. Joachim Ender Head of Fraunhoferinstitut für Hochfrequenzphysik and Radartechnik FHR Neuenahrer Str. 20, 53343

More information

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand

RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand RF and Microwave Test and Design Roadshow 5 Locations across Australia and New Zealand ni.com Design and test of RADAR systems Agenda Radar Overview Tools Overview VSS LabVIEW PXI Design and Simulation

More information

Signal Characteristics

Signal Characteristics Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium

More information

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment

A new Sensor for the detection of low-flying small targets and small boats in a cluttered environment UNCLASSIFIED /UNLIMITED Mr. Joachim Flacke and Mr. Ryszard Bil EADS Defence & Security Defence Electronics Naval Radar Systems (OPES25) Woerthstr 85 89077 Ulm Germany joachim.flacke@eads.com / ryszard.bil@eads.com

More information

Continuous Wave Radar

Continuous Wave Radar Continuous Wave Radar CW radar sets transmit a high-frequency signal continuously. The echo signal is received and processed permanently. One has to resolve two problems with this principle: Figure 1:

More information

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target Moving Target Indicator 1 Objectives Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target velocity. Be able to

More information

Pulse-Width Modulation (PWM)

Pulse-Width Modulation (PWM) Pulse-Width Modulation (PWM) Modules: Integrate & Dump, Digital Utilities, Wideband True RMS Meter, Tuneable LPF, Audio Oscillator, Multiplier, Utilities, Noise Generator, Speech, Headphones. 0 Pre-Laboratory

More information

Outline. Communications Engineering 1

Outline. Communications Engineering 1 Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti

Lecture 6 SIGNAL PROCESSING. Radar Signal Processing Dr. Aamer Iqbal Bhatti. Dr. Aamer Iqbal Bhatti Lecture 6 SIGNAL PROCESSING Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain Radar Cross Section of Target. Signal-to-noise ratio Receiver

More information

VHF Radar Target Detection in the Presence of Clutter *

VHF Radar Target Detection in the Presence of Clutter * BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 6, No 1 Sofia 2006 VHF Radar Target Detection in the Presence of Clutter * Boriana Vassileva Institute for Parallel Processing,

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM) April 11, 2008 Today s Topics 1. Frequency-division multiplexing 2. Frequency modulation

More information

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission:

The quality of the transmission signal The characteristics of the transmission medium. Some type of transmission medium is required for transmission: Data Transmission The successful transmission of data depends upon two factors: The quality of the transmission signal The characteristics of the transmission medium Some type of transmission medium is

More information

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p.

Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. Preface p. xv Principles of Pulse-Doppler Radar p. 1 Types of Doppler Radar p. 1 Definitions p. 5 Doppler Shift p. 5 Translation to Zero Intermediate Frequency p. 6 Doppler Ambiguities and Blind Speeds

More information

Fundamentals Of Commercial Doppler Systems

Fundamentals Of Commercial Doppler Systems Fundamentals Of Commercial Doppler Systems Speed, Motion and Distance Measurements I. Introduction MDT manufactures a large variety of microwave oscillators, transceivers, and other components for the

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

List of Figures. Sr. no.

List of Figures. Sr. no. List of Figures Sr. no. Topic No. Topic 1 1.3.1 Angle Modulation Graphs 11 2 2.1 Resistor 13 3 3.1 Block Diagram of The FM Transmitter 15 4 4.2 Basic Diagram of FM Transmitter 17 5 4.3 Circuit Diagram

More information

To design Phase Shifter. To design bias circuit for the Phase Shifter. Realization and test of both circuits (Doppler Simulator) with

To design Phase Shifter. To design bias circuit for the Phase Shifter. Realization and test of both circuits (Doppler Simulator) with Prof. Dr. Eng. Klaus Solbach Department of High Frequency Techniques University of Duisburg-Essen, Germany Presented by Muhammad Ali Ashraf Muhammad Ali Ashraf 2226956 Outline 1. Motivation 2. Phase Shifters

More information

FM cw Radar. FM cw Radar is a low cost technique, often used in shorter range applications"

FM cw Radar. FM cw Radar is a low cost technique, often used in shorter range applications 11: FM cw Radar 9. FM cw Radar 9.1 Principles 9.2 Radar equation 9.3 Equivalence to pulse compression 9.4 Moving targets 9.5 Practical considerations 9.6 Digital generation of wideband chirp signals FM

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

ECE 678 Radar Engineering Fall 2018

ECE 678 Radar Engineering Fall 2018 ECE 678 Radar Engineering Fall 2018 Prof. Mark R. Bell Purdue University RAdio Detection And Ranging RADAR It has become so commonplace that the acronym RADAR has evolved into a common noun: radar. A

More information

Experiment 7: Frequency Modulation and Phase Locked Loops

Experiment 7: Frequency Modulation and Phase Locked Loops Experiment 7: Frequency Modulation and Phase Locked Loops Frequency Modulation Background Normally, we consider a voltage wave form with a fixed frequency of the form v(t) = V sin( ct + ), (1) where c

More information

Boost Your Skills with On-Site Courses Tailored to Your Needs

Boost Your Skills with On-Site Courses Tailored to Your Needs Boost Your Skills with On-Site Courses Tailored to Your Needs www.aticourses.com The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current

More information

Staggered PRI and Random Frequency Radar Waveform

Staggered PRI and Random Frequency Radar Waveform Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences Staggered PRI and Random Frequency Radar Waveform Submitted as part of the requirements towards an M.Sc. degree in Physics School

More information

UNIT I FUNDAMENTALS OF ANALOG COMMUNICATION Introduction In the Microbroadcasting services, a reliable radio communication system is of vital importance. The swiftly moving operations of modern communities

More information

Lock in time calculation Wenlan Wu (

Lock in time calculation Wenlan Wu ( Lock in time calculation Wenlan Wu (http://cmosedu.com/jbaker/students/wenlan/wenlan.htm) Figure 1 Charge pump PLL block diagram First, for the above feedback system, we can get the loop gain and transfer

More information

Lecture Notes On COMMUNICATION SYSTEM ENGINEERING II

Lecture Notes On COMMUNICATION SYSTEM ENGINEERING II Lecture Notes On COMMUNICATION SYSTEM ENGINEERING II (Radar Systems) Department of Electronics and Telecommunications VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY BURLA ODISHA-768018 1 COMMUNICATION SYSTEM

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar

Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar Digital Signal Processing (DSP) Algorithms for CW/FMCW Portable Radar Muhammad Zeeshan Mumtaz, Ali Hanif, Ali Javed Hashmi National University of Sciences and Technology (NUST), Islamabad, Pakistan Abstract

More information

Lecture 12. Carrier Phase Synchronization. EE4900/EE6720 Digital Communications

Lecture 12. Carrier Phase Synchronization. EE4900/EE6720 Digital Communications EE49/EE6720: Digital Communications 1 Lecture 12 Carrier Phase Synchronization Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

ECE513 RF Design for Wireless

ECE513 RF Design for Wireless 1 ECE513 RF Design for Wireless MODULE 1 RF Systems LECTURE 1 Modulation Techniques Chapter 1, Sections 1.1 1.3 Professor Michael Steer http://www4.ncsu.edu/~mbs 2 Module 1: RF Systems Amplifiers, Mixers

More information

COMMUNICATION SYSTEMS-II (In continuation with Part-I)

COMMUNICATION SYSTEMS-II (In continuation with Part-I) MODULATING A SIGNAL COMMUNICATION SYSTEMS-II (In continuation with Part-I) TRANSMITTING SIGNALS : In order to transmit the original low frequency baseband message efficiently over long distances, the signal

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar

Simulation the Hybrid Combinations of 24GHz and 77GHz Automotive Radar Simulation the Hybrid Combinations of 4GHz and 77GHz Automotive Radar Yahya S. H. Khraisat Electrical and Electronics Department Al-Huson University College/ Al-Balqa' AppliedUniversity P.O. Box 5, 5,

More information

AN EXTENDED PHASE-LOCK TECHNIQUE FOR AIDED ACQUISITION

AN EXTENDED PHASE-LOCK TECHNIQUE FOR AIDED ACQUISITION AN EXTENDED PHASE-LOCK TECHNIQUE FOR AIDED ACQUISITION Item Type text; Proceedings Authors Barbour, Susan Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

CHAPTER 6 DIGITAL INSTRUMENTS

CHAPTER 6 DIGITAL INSTRUMENTS CHAPTER 6 DIGITAL INSTRUMENTS 1 LECTURE CONTENTS 6.1 Logic Gates 6.2 Digital Instruments 6.3 Analog to Digital Converter 6.4 Electronic Counter 6.6 Digital Multimeters 2 6.1 Logic Gates 3 AND Gate The

More information

CW and FM-CW radar adaptation for vehicle technology

CW and FM-CW radar adaptation for vehicle technology CW and FM-CW radar adaptation for vehicle technology Melinda Baracskai, Richárd Horváth, Dr. Ferenc Oláh HU ISSN 1418-7108: HEJ Manuscript no.: TAR-070416-A Abstract This series of articles deals with

More information

Detection of Targets in Noise and Pulse Compression Techniques

Detection of Targets in Noise and Pulse Compression Techniques Introduction to Radar Systems Detection of Targets in Noise and Pulse Compression Techniques Radar Course_1.ppt ODonnell 6-18-2 Disclaimer of Endorsement and Liability The video courseware and accompanying

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK)

ELEC3242 Communications Engineering Laboratory Frequency Shift Keying (FSK) ELEC3242 Communications Engineering Laboratory 1 ---- Frequency Shift Keying (FSK) 1) Frequency Shift Keying Objectives To appreciate the principle of frequency shift keying and its relationship to analogue

More information

Analog Communication.

Analog Communication. Analog Communication Vishnu N V Tele is Greek for at a distance, and Communicare is latin for to make common. Telecommunication is the process of long distance communications. Early telecommunications

More information

Introduction to: Radio Navigational Aids

Introduction to: Radio Navigational Aids Introduction to: Radio Navigational Aids 1 Lecture Topics Basic Principles Radio Directional Finding (RDF) Radio Beacons Distance Measuring Equipment (DME) Instrument Landing System (ILS) Microwave Landing

More information

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss Introduction Small-scale fading is used to describe the rapid fluctuation of the amplitude of a radio

More information

Charan Langton, Editor

Charan Langton, Editor Charan Langton, Editor SIGNAL PROCESSING & SIMULATION NEWSLETTER Baseband, Passband Signals and Amplitude Modulation The most salient feature of information signals is that they are generally low frequency.

More information

A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION

A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION BY Daniel Gomez Garcia Alvestegui Submitted to the graduate degree program in Electrical Engineering and the Graduate

More information

Master Degree in Electronic Engineering

Master Degree in Electronic Engineering Master Degree in Electronic Engineering Analog and telecommunication electronic course (ATLCE-01NWM) Miniproject: Baseband signal transmission techniques Name: LI. XINRUI E-mail: s219989@studenti.polito.it

More information

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3]

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3] Code No: RR220401 Set No. 1 1. (a) The antenna current of an AM Broadcast transmitter is 10A, if modulated to a depth of 50% by an audio sine wave. It increases to 12A as a result of simultaneous modulation

More information

Glossary of VCO terms

Glossary of VCO terms Glossary of VCO terms VOLTAGE CONTROLLED OSCILLATOR (VCO): This is an oscillator designed so the output frequency can be changed by applying a voltage to its control port or tuning port. FREQUENCY TUNING

More information

HF Receivers, Part 3

HF Receivers, Part 3 HF Receivers, Part 3 Introduction to frequency synthesis; ancillary receiver functions Adam Farson VA7OJ View an excellent tutorial on receivers Another link to receiver principles NSARC HF Operators HF

More information

Modulations Analog Modulations Amplitude modulation (AM) Linear modulation Frequency modulation (FM) Phase modulation (PM) cos Angle modulation FM PM Digital Modulations ASK FSK PSK MSK MFSK QAM PAM Etc.

More information

S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering

S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering S.R.M. Institute of Science & Technology School of Electronics & Communication Engineering QUESTION BANK Subject Code : EC314 Subject Name : Communication Engineering Year & Sem : III Year, 6th Sem (EEE)

More information

PHASE NOISE MEASUREMENT SYSTEMS

PHASE NOISE MEASUREMENT SYSTEMS PHASE NOISE MEASUREMENT SYSTEMS Item Type text; Proceedings Authors Lance, A. L.; Seal, W. D.; Labaar, F. Publisher International Foundation for Telemetering Journal International Telemetering Conference

More information

MAKING TRANSIENT ANTENNA MEASUREMENTS

MAKING TRANSIENT ANTENNA MEASUREMENTS MAKING TRANSIENT ANTENNA MEASUREMENTS Roger Dygert, Steven R. Nichols MI Technologies, 1125 Satellite Boulevard, Suite 100 Suwanee, GA 30024-4629 ABSTRACT In addition to steady state performance, antennas

More information

QUESTION BANK FOR IV B.TECH II SEMESTER ( )

QUESTION BANK FOR IV B.TECH II SEMESTER ( ) DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK F IV B.TECH II SEMESTER (2018 19) MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY (Autonomous Institution UGC, Govt. of India) (Affiliated

More information

PN9000 PULSED CARRIER MEASUREMENTS

PN9000 PULSED CARRIER MEASUREMENTS The specialist of Phase noise Measurements PN9000 PULSED CARRIER MEASUREMENTS Carrier frequency: 2.7 GHz - PRF: 5 khz Duty cycle: 1% Page 1 / 12 Introduction When measuring a pulse modulated signal the

More information

S.R.M Institute of Science and Technology (Deemed University) Department of Electronics & Communication Engineering

S.R.M Institute of Science and Technology (Deemed University) Department of Electronics & Communication Engineering S.R.M Institute of Science and Technology (Deemed University) Department of Electronics & Communication Engineering QUESTION BANK Subject Code : EC211 Subject Name : Communication Engineering Year & Sem

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 27 March 2017 1 Contents Short review NARROW-BAND

More information

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase. P a g e 2 Contents 1) Oscillators 3 Sinusoidal Oscillators Phase Shift Oscillators 4 Wien Bridge Oscillators 4 Square Wave Generator 5 Triangular Wave Generator Using Square Wave Generator 6 Using Comparator

More information

Optical Delay Line Application Note

Optical Delay Line Application Note 1 Optical Delay Line Application Note 1.1 General Optical delay lines system (ODL), incorporates a high performance lasers such as DFBs, optical modulators for high operation frequencies, photodiodes,

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

S-Band 2.4GHz FMCW Radar

S-Band 2.4GHz FMCW Radar S-Band 2.4GHz FMCW Radar Iulian Rosu, YO3DAC / VA3IUL, Filip Rosu, YO3JMK, http://qsl.net/va3iul A Radar detects the presence of objects and locates their position in space by transmitting electromagnetic

More information

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS. College of Engineering Department of Electrical and Computer Engineering

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS. College of Engineering Department of Electrical and Computer Engineering THE STATE UNIVERSITY OF NEW JERSEY RUTGERS College of Engineering Department of Electrical and Computer Engineering 332:322 Principles of Communications Systems Spring Problem Set 3 1. Discovered Angle

More information

Effectiveness of Linear FM Interference Signal on Tracking Performance of PLL in Monopulse Radar Receivers

Effectiveness of Linear FM Interference Signal on Tracking Performance of PLL in Monopulse Radar Receivers 202 Effectiveness of Linear FM Interference Signal on Tracking Performance of PLL in Monopulse Radar Receivers Harikrishna Paik*, Dr.N.N.Sastry, Dr.I.SantiPrabha Assoc.Professor, Dept. of E&I Engg, VRSEC,

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation

EE4512 Analog and Digital Communications Chapter 6. Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Chapter 6 Analog Modulation and Demodulation Amplitude Modulation Pages 306-309 309 The analytical signal for double sideband, large carrier amplitude modulation

More information

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar

Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Test & Measurement Simulating and Testing of Signal Processing Methods for Frequency Stepped Chirp Radar Modern radar systems serve a broad range of commercial, civil, scientific and military applications.

More information

FM THRESHOLD AND METHODS OF LIMITING ITS EFFECT ON PERFORMANCE

FM THRESHOLD AND METHODS OF LIMITING ITS EFFECT ON PERFORMANCE FM THESHOLD AND METHODS OF LIMITING ITS EFFET ON PEFOMANE AHANEKU, M. A. Lecturer in the Department of Electronic Engineering, UNN ABSTAT This paper presents the outcome of the investigative study carried

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper

Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper Watkins-Johnson Company Tech-notes Copyright 1981 Watkins-Johnson Company Vol. 8 No. 6 November/December 1981 Local Oscillator Phase Noise and its effect on Receiver Performance C. John Grebenkemper All

More information

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction

ESA Radar Remote Sensing Course ESA Radar Remote Sensing Course Radar, SAR, InSAR; a first introduction Radar, SAR, InSAR; a first introduction Ramon Hanssen Delft University of Technology The Netherlands r.f.hanssen@tudelft.nl Charles University in Prague Contents Radar background and fundamentals Imaging

More information

RADAR CHAPTER 3 RADAR

RADAR CHAPTER 3 RADAR RADAR CHAPTER 3 RADAR RDF becomes Radar 1. As World War II approached, scientists and the military were keen to find a method of detecting aircraft outside the normal range of eyes and ears. They found

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications About the Tutorial Linear Integrated Circuits are solid state analog devices that can operate over a continuous range of input signals. Theoretically, they are characterized by an infinite number of operating

More information

Narrow- and wideband channels

Narrow- and wideband channels RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1 Contents Short review

More information

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where

DOPPLER RADAR. Doppler Velocities - The Doppler shift. if φ 0 = 0, then φ = 4π. where Q: How does the radar get velocity information on the particles? DOPPLER RADAR Doppler Velocities - The Doppler shift Simple Example: Measures a Doppler shift - change in frequency of radiation due to

More information

For the mechanical system of figure shown above:

For the mechanical system of figure shown above: I.E.S-(Conv.)-00 ELECTRONICS AND TELECOMMUNICATION ENGINEERING PAPER - I Time Allowed: Three Hours Maximum Marks : 0 Candidates should attempt any FIVE questions. Some useful data: Electron charge : 1.6

More information

RFID Systems: Radio Architecture

RFID Systems: Radio Architecture RFID Systems: Radio Architecture 1 A discussion of radio architecture and RFID. What are the critical pieces? Familiarity with how radio and especially RFID radios are designed will allow you to make correct

More information

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p.

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. Basic Radar Definitions Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p. 11 Decibel representation of the radar equation p. 13 Radar frequencies p. 15

More information

Amplitude Modulated Systems

Amplitude Modulated Systems Amplitude Modulated Systems Communication is process of establishing connection between two points for information exchange. Channel refers to medium through which message travels e.g. wires, links, or

More information

GET10B Radar Measurement Basics- Spectrum Analysis of Pulsed Signals. Copyright 2001 Agilent Technologies, Inc.

GET10B Radar Measurement Basics- Spectrum Analysis of Pulsed Signals. Copyright 2001 Agilent Technologies, Inc. GET10B Radar Measurement Basics- Spectrum Analysis of Pulsed Signals Copyright 2001 Agilent Technologies, Inc. Agenda: Power Measurements Module #1: Introduction Module #2: Power Measurements Module #3:

More information

UNIT I AMPLITUDE MODULATION

UNIT I AMPLITUDE MODULATION UNIT I AMPLITUDE MODULATION Prepared by: S.NANDHINI, Assistant Professor, Dept. of ECE, Sri Venkateswara College of Engineering, Sriperumbudur, Tamilnadu. CONTENTS Introduction to communication systems

More information