Wafer Probing System Parametric Evaluation Files

Size: px
Start display at page:

Download "Wafer Probing System Parametric Evaluation Files"

Transcription

1 Application Note Innovating Test Technologies Introduction Evaluation Test Summary Wafer Probing System Parametric Evaluation Files Accuracy of on-wafer semiconductor electrical measurements is often limited by the poor signal path integrity of the typical probing system. Stray capacitance, current leakage, high electrical noise, dielectric absorption can all reduce the effective measurement floor and compromise accuracy. Cascade Microtech has found several electrical tests quite useful for assessing the parametric measurement capability of a wafer probing system. These system evaluation tests can be executed using the industry standard Agilent 4156B/C series DC Parameter Analyzer instrument setup files(.dat files) are available from Cascade Microtech on a 4156 readable floppy disk. NOTE - It s highly recommended that you first read the Cascade Microtech Appnote entitled Recent Advances in DC Parametric Measurements before proceeding further. This appnote can be viewed or downloaded at Test - Measurement Significance Parameters Filename Effected Measurement Wafer chuck or probe noise External and internal noise Idoff, gm, Channel current with an applied from chuck heaters, drive hfe, Vth, Ig, Noise voltage bias motors, etc. can obscure Vbe Noise.dat measurement values IV-Error Probe current with a Capacitive charging current Ig, gummel IV-Error.dat ramping voltage applied can add an error current when plots, Vf a voltage ramp is used Bias Settling Time for wafer chuck or Settling time effects low Idoff, Ig, Time probe to settle to zero current measurements - Isub, BJT Setlb.dat current after a voltage wait time can be added but gummel is applied. this slows the measurement plots and reduces throughput Channel Calculates residual Measurement channels should Vth, Capacitance capacitance of wafer chuck be low capacitance gummel Cap1.dat or probe. settling time can add noise plot, and hysteresis in swept swept Ig measurements. Leakage - Measures open circuit wafer Swept voltages may exhibit Vth, dielectric chuck current with a voltage current hysteresis due to gummel absorption sweep from -100V to +100V dielectric absorption plots, Leakage.dat swept Ig 1

2 Following are detailed instructions for performing each of these five tests as well as a discussion of their overall relevance to on-wafer device measurements. NOTE After turning on the 4156 a 20 minute warm-up period is recommended. For 4156 button and control locations, you may want to refer to the 4156 Users Manual. 1. Measurement Channel Noise: noise.dat Measures wafer chuck or probe needle current leakage and noise. Figure 1. Force Terminal fig. 1 NOTE Cascade parametric stations have two triaxial inputs on the rear of the prober either can be used. (See Figure 2) Make sure that the wafer chuck is open and not in contact with a probe (If the wafer prober does not have triaxial input(s) an individual probe needle may be used to make electrical contact to the wafer chuck top surface). fig Insert the diskette with the test files in the 4156 floppy drive c. Use the 4156 MARKER/CURSOR to highlight Noise.dat file g. Press Graph/List - View the stored display of a thermal parametric chuck 2

3 In this test, 10 volts is applied to the wafer chuck (or probe); noise and leakage current is then measured over a period of time. In an ideal case, no leakage or noise would exist. The stored measurement display was taken on a Cascade parametric thermal chuck noise peaks and leakage are less than 50 fa even at elevated temperature. h. Press green shift (green key on the lower right of the 4156 front panel) i. Press Stop (zero) Green measurement light should light for about 1 second. This zeros inherent 4156 SMU offset current. j. Press Append A live test begins running new measurement data is added to the existing example display. You can see how your system compares to the stored display of chuck noise on the Cascade Microtech system. If necessary, re-scale the vertical current axis to view the measurement result on your system. NOTE If you are testing a probe (rather than a chuck) the observed current should be no more than a few femtoamps. For high parametric accuracy, the measurement area should be as noise free as possible and exhibit very little leakage current. This is critical for good measurement of device off-state currents, and junction and/or oxide leakage. For vertical wafer measurements of gate or substrate current, a good low-noise parametric chuck is highly desirable. 2. IV-ERROR iv-error.dat Measures open circuit probe current with a ramping voltage applied. probe channel to be tested. See Figure 1. c. Use the 4156 MARKER/CURSOR to highlight iv-error.dat file g. Press Graph/List View the stored display - note level of DC offset current In this test, a voltage sweep from 0 V to +1 V and back is applied. This linear sweep may cause an error current to flow that is proportional to probe capacitance(i = C* V/ T). This shows up as a positive or negative DC offset current depending on sweep direction. h. Press green shift ( green key on the lower right of the front panel) i. Press Stop (zero) Green measurement light should light for about 1 second. This zeros inherent SMU offset current. j. Press Append -The live test begins running - new measurement data is added to the existing example display for comparison. To view at a slower ramp rate, you can change the 4156 Integ Time to Medium or Long. Measurements like gate current, junction forward voltage, or BJT gummel plots depend on measuring device current with a ramping voltage applied. But probing channels that are highly capacitive reduce measurement accuracy due to the C* V/ T effect. 3

4 3. Bias Settling Time: Setlb.dat 4. Channel Capacitance: cap1.dat Measures wafer chuck or probe needle measurement settling time. Figure 1 and Figure 2. c. Use the MARKER/CURSOR to highlight Setlb.dat file g. Press Graph/List. View the stored display of current vs time. In this test, a 20 volt step is applied to the wafer chuck. Open circuit current versus time is measured with the application of the voltage step. Note that in the stored display the chuck settles very quickly to a very low open circuit current value. h. Press Append A live test begins running new measurement data is added. Note how your system compares to the stored display. Ideally no current should flow thru on open chuck. But many chucks are high in stray or residual capacitance. When a voltage bias is applied, this capacitance charges adding an error current to device measurement values for a finite interval. A good parametric chuck should be low capacitance and settle to a low value (< 500 fa) quickly. If chuck capacitance is high, then step recovery may take many seconds (or even minutes.) Slow recovery or settling time results in a time related measurement uncertainty. Measurement wait time can be added, but this may slow measurement time significantly or make some measurements impractical or impossible. Settling time error may effect the measurement of off-state drain current, gate and/or substrate current. Measures wafer chuck (or probe) capacitance. Figure 1 and Figure 2. c. Use the MARKER/CURSOR to highlight file named cap1.dat g. Press Graph/List View the stored display of thermal chuck capacitance at the top area of the 4156 display. Note the example capacitance value is < 2 pf. 4

5 In this test, a ramping voltage is applied and capacitance is calculated using the I =C* V/ T formula. Residual or stray capacitance effects measurements in several ways: 1. Adds error to capacitance measurements 2. May require frequent re-zeroing of the LCR meter -slows wafer throughput. 3. Adds an error current to DC measurements. 4. May cause V/ T current errors in swept measurements. 5. Results in slower measurements h. Press Append Live test begins running. Note your systems performance. For high resolution parametric measurements, the measurement area should exhibit low stray or residual capacitance. This is critical for accurate and fast measurement of device off-state currents, junction and/or oxide leakage. For vertical wafer measurements such as gate or substrate current, a good low-capacitance parametric chuck is highly desirable. 5. Leakage - dielectric absorption: Leakage.dat Measures wafer prober chuck or probe needle dielectric absorption and leakage. Figure 1 and Figure 2. NOTE This test uses +/- 100 volts - for 100 V output, the 4156 safety interlock must be enabled. The 4156 interlock cable, Cascade part number (See Figure 3), can be used with the interlock connection on Cascade probers. If interlock cannot be enabled then reduce the 4156 test range to +/- 40 V or less. fig. 3 c. Use MARKER/CURSOR to highlight file named Leakage.dat g. Press Graph/List View the display taken on a parametric chuck 5

6 In this test, the voltage is swept from 100V to + 100V and then back in 0.5V increments. Ideally, current should be zero (with no separation or hysteresis in display trace) since no current path should exist. A very good parametric displays very low current (< 100fA/100V) and hysteresis (< 100fA). h. Press Append - Live test begins running. Note your systems chuck performance High capacitance, dielectric absorption, or leakage show up respectively as display offset, hysteresis or slope over the course of the sweep. Summary Many factors must be considered in assuring high quality electrical contact to on-wafer semiconductor devices. The entire measurement path and surrounding environment must be designed to compliment the broad capability of today s precision test instrumentation. For more info on Cascade Microtech products, please visit us at Cascade Microtech, Inc., 2430 N.W. 206th Ave., Beaverton, OR Toll Free: Phone: Fax: Europe: Japan: sales@cmicro.com 6 Copyright 2004 Cascade Microtech, Inc. All rights reserved. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from Cascade Microtech, Inc. All trademarks are the property of their respective owners. 4156EVAL-APP-0404 Data subject to change without notice

Agilent 4070 Series Accurate Capacitance Characterization at the Wafer Level

Agilent 4070 Series Accurate Capacitance Characterization at the Wafer Level Agilent 4070 Series Accurate Capacitance Characterization at the Wafer Level Application Note 4070-2 Agilent 4070 Series Semiconductor Parametric Tester Introduction The continuing trend of decreasing

More information

Keysight Technologies Accurate Capacitance Characterization at the Wafer Level

Keysight Technologies Accurate Capacitance Characterization at the Wafer Level Keysight Technologies Accurate Capacitance Characterization at the Wafer Level 4080 Series Parametric Test Systems Application Note Introduction The continuing trend of decreasing device geometries of

More information

The Infinity Probe for On-Wafer Device Characterization and Modeling to 110 GHz

The Infinity Probe for On-Wafer Device Characterization and Modeling to 110 GHz Q & A Innovating Test Technologies The Infinity Probe for On-Wafer Device Characterization and Modeling to 110 GHz Why is this announcement important? INFINITY-QA-1102 Data subject to change without notice

More information

MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs

MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs MEMS On-wafer Evaluation in Mass Production Testing At the Earliest Stage is the Key to Lowering Costs Application Note Recently, various devices using MEMS technology such as pressure sensors, accelerometers,

More information

Achieving 3000 V test at the wafer level

Achieving 3000 V test at the wafer level Achieving 3000 V test at the wafer level Bryan Root 1, Alex Pronin 2, Seng Yang 1,Bill Funk 1, K. Armendariz 1 1 Celadon Systems Inc., 2 Keithley September 2016 Outline Introduction Si, SiC and GaN Power

More information

C-V AND I-V MEASUREMENT SYSTEMS WINDOWS SOFTWARE

C-V AND I-V MEASUREMENT SYSTEMS WINDOWS SOFTWARE C-V AND I-V MEASUREMENT SYSTEMS WINDOWS SOFTWARE Whether you require a simple C-V plotter to measure mobile ion contamination or an advanced system to measure multi-frequency C-V, I-V, TVS, or gate oxide

More information

Voltage Current and Resistance II

Voltage Current and Resistance II Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

More information

APPLICATION NOTE. Wide Range of Resistance Measurement Solutions from μω to PΩ

APPLICATION NOTE. Wide Range of Resistance Measurement Solutions from μω to PΩ APPLICATION NOTE Wide Range of Resistance Measurement Solutions from μω to PΩ Introduction Resistance measurement is one of the fundamental characterizations of materials, electronic devices, and circuits.

More information

Agilent 4072A Advanced Parametric Test System with Agilent SPECS

Agilent 4072A Advanced Parametric Test System with Agilent SPECS Agilent 4072A Advanced Parametric Test System with Agilent SPECS Technical Data 1. General Description The Agilent 4072A Advanced Parametric Test System is designed to perform precision DC measurement,

More information

4082A Parametric Test System Keysight 4080 Series

4082A Parametric Test System Keysight 4080 Series 4082A Parametric Test System Keysight 4080 Series Leading-edge technologies demand high performance semiconductor devices available at the lower cost-of-test in high volume manufacturing. Keysight offers

More information

Keysight Technologies MEMS On-wafer Evaluation in Mass Production

Keysight Technologies MEMS On-wafer Evaluation in Mass Production Keysight Technologies MEMS On-wafer Evaluation in Mass Production Testing at the Earliest Stage is the Key to Lowering Costs Application Note Introduction Recently, various devices using MEMS technology

More information

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies

Next Generation Curve Tracing & Measurement Tips for Power Device. Kim Jeong Tae RF/uW Application Engineer Keysight Technologies Next Generation Curve Tracing & Measurement Tips for Power Device Kim Jeong Tae RF/uW Application Engineer Keysight Technologies Agenda Page 2 Conventional Analog Curve Tracer & Measurement Challenges

More information

Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements APPLICATION NOTE

Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements APPLICATION NOTE Using the 4200A-CVIV Multi-Switch to Make High Voltage and High Current C-V Measurements Introduction Traditional capacitance-voltage (C-V) testing of semiconductor materials is typically limited to about

More information

Production Test of Process Control Monitors (PCMs) with Pyramid Probe Cards

Production Test of Process Control Monitors (PCMs) with Pyramid Probe Cards Production Test of Process Control Monitors (PCMs) with Pyramid Probe Cards Ken Smith, Cascade Microtech Bill Knauer, Keithley Instruments Dr. Jerry Broz, Jason Aronoff, Texas Instruments Goal of Presentation

More information

S540 Power Semiconductor Test System Datasheet

S540 Power Semiconductor Test System Datasheet S540 Power Semiconductor Test System Datasheet Key Features Automatically perform all wafer-level parametric tests on up to 48 pins, including high voltage breakdown, capacitance, and low voltage measurements,

More information

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer The objective of this lab is to become familiar with methods to measure the dc current-voltage (IV) behavior of diodes

More information

Measuring Power Supply Switching Loss with an Oscilloscope

Measuring Power Supply Switching Loss with an Oscilloscope Measuring Power Supply Switching Loss with an Oscilloscope Our thanks to Tektronix for allowing us to reprint the following. Ideally, the switching device is either on or off like a light switch, and instantaneously

More information

Optimizing Automatic Parametric Test (APT) in Mixed Signal / Mems foundry

Optimizing Automatic Parametric Test (APT) in Mixed Signal / Mems foundry Optimizing Automatic Parametric Test (APT) in Mixed Signal / Mems foundry Authors: Steffen Richter, Group Mgr PCM-Member Technical Staff, Xfab Silicon Foundries Alex Pronin, Ph.D, Lead Applications Engineer,

More information

Schematic-Level Transmission Line Models for the Pyramid Probe

Schematic-Level Transmission Line Models for the Pyramid Probe Schematic-Level Transmission Line Models for the Pyramid Probe Abstract Cascade Microtech s Pyramid Probe enables customers to perform production-grade, on-die, full-speed test of RF circuits for Known-Good

More information

Switching Between C-V and I-V Measurements Using the 4200A-CVIV Multi-Switch and 4200A-SCS Parameter Analyzer APPLICATION NOTE

Switching Between C-V and I-V Measurements Using the 4200A-CVIV Multi-Switch and 4200A-SCS Parameter Analyzer APPLICATION NOTE Switching Between CV and IV Measurements Using the 4200ACVIV MultiSwitch and 4200ASCS Parameter Analyzer Introduction Full parametric characterization of a semiconductor device usually requires an array

More information

APPLICATION NOTE. BV CEO Breakdown Measurements AN-124

APPLICATION NOTE. BV CEO Breakdown Measurements AN-124 APPLICATION NOTE AN-124 BV CEO Breakdown Measurements Overview Measuring BVCEO is tricky at any voltage, and is a slow test at low IC because any charge injected into the base when biasing the transistor

More information

Techniques for Proper and Efficient Characterization, Validation, and Reliability Testing of Power Semiconductor Devices. applications guide

Techniques for Proper and Efficient Characterization, Validation, and Reliability Testing of Power Semiconductor Devices. applications guide D I S C O V E R S E R I E S www.keithley.com I T H L E Y K E applications guide Techniques for Proper and Efficient Characterization, Validation, and Reliability Testing of Power Semiconductor Devices

More information

Agilent 4083A DC/RF Parametric Test System A fully automatic on-wafer RF S-parameter measurement environment

Agilent 4083A DC/RF Parametric Test System A fully automatic on-wafer RF S-parameter measurement environment Agilent 4083A DC/RF Parametric Test System A fully automatic on-wafer RF S-parameter measurement environment Application Note 4080-2 Introduction The current telecommunications revolution rests upon myriad

More information

Series 2600A. System SourceMeter Instruments. Semiconductor Device Test Applications Guide. Contains Programming Examples

Series 2600A. System SourceMeter Instruments. Semiconductor Device Test Applications Guide. Contains Programming Examples Series 2600A System SourceMeter Instruments Semiconductor Device Test Applications Guide Contains Programming Examples A G R E A T E R M E A S U R E O F C O N F I D E N C E Although this Guide was originally

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

High Speed Parametric Test Using Agilent 4070 Series

High Speed Parametric Test Using Agilent 4070 Series High Speed Parametric Test Using Agilent 4070 Series Throughput Tuning Techniques for Parametric Test Agilent 4070 Series Semiconductor Parametric Tester Application Note 4070-6 Introduction Constant advances

More information

Variable-temperature, wafer-level capacitance measurements

Variable-temperature, wafer-level capacitance measurements Variable-temperature, wafer-level capacitance measurements David R. Daughton, PhD Application Scientist 614.891.2243 www.lakeshore.com Introduction Wafer-level capacitance-voltage (or C-V) measurements

More information

Keysight Technologies How to Perform QSCV (Quasi-Static Capacitance Voltage) Measurement

Keysight Technologies How to Perform QSCV (Quasi-Static Capacitance Voltage) Measurement Keysight Technologies How to Perform QSCV (Quasi-Static Capacitance Voltage) Measurement Using Keysight B1500A Semiconductor Device Analyzer Application Note Introduction Recently, the post silicon new

More information

Verification of LRRM Calibrations with Load Inductance Compensation for CPW Measurements on GaAs Substrates

Verification of LRRM Calibrations with Load Inductance Compensation for CPW Measurements on GaAs Substrates Verification of LRRM Calibrations with Load Inductance Compensation for CPW Measurements on GaAs Substrates J.E. Pence Cascade Microtech, 2430 NW 206th Avenue, Beaverton, OR 97006 Abstract The on-wafer

More information

Solving Connection Challenges in On-Wafer Power Semiconductor Device Test. Application Note Series. Introduction

Solving Connection Challenges in On-Wafer Power Semiconductor Device Test. Application Note Series. Introduction Number 3276 pplication Note Series Solving Connection Challenges in On-Wafer Power Semiconductor Device Test Introduction Measuring DC and capacitance parameters for high power semiconductor devices requires

More information

S540 Power Semiconductor Test System Datasheet

S540 Power Semiconductor Test System Datasheet S540 Power Semiconductor Test System Key Features Automatically perform all wafer-level parametric tests on up to 48 pins, including high voltage breakdown, capacitance, and low voltage measurements, in

More information

Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V

Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V Keysight Technologies Direct Power MOSFET Capacitance Measurement at 3000 V B1505A Power Device Analyzer/Curve Tracer Application Note Introduction The input, output and reverse transfer capacitance of

More information

PAPER. Reducing parametric test costs with faster, smarter parallel test techniques

PAPER. Reducing parametric test costs with faster, smarter parallel test techniques WHITE PAPER Reducing parametric test costs with faster, smarter parallel test techniques Jeff Kuo, Steven Weinzierl, Keithley Instruments Glenn Alers, Gregory Harm, Novellus Systems Introduction The 1999

More information

Test Structure Design for Parallel Testing

Test Structure Design for Parallel Testing Test Structure Design for Parallel Testing Randall G. Lee Keithley Instruments, Inc. Parallel testing provides higher through put than conventional sequential testing. Although parallel testing can sometimes

More information

TLP/VF-TLP/HMM Test System TLP-3010C/3011C Advanced TLP/HMM/HBM Solutions

TLP/VF-TLP/HMM Test System TLP-3010C/3011C Advanced TLP/HMM/HBM Solutions 1 Features Wafer and package level TLP/VF-TLP/HMM testing Ultra fast high voltage pulse output with typical 1 ps rise time Built-in HMM (IEC 61-4-2) pulse up to ±8 kv High pulse output current up to ±3

More information

SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING. Lee Stauffer. Keithley Instruments, Inc.

SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING. Lee Stauffer. Keithley Instruments, Inc. SOURCE-MEASURE UNITS INCREASE PRODUCTIVITY AND ACCURACY IN AUTOMATED TESTING Lee Stauffer Keithley Instruments, Inc. Introduction Source-Measure Units (SMUs) are more than the next generation of power

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

FACULTY OF ENGINEERING LAB SHEET ENT 3036 SEMICONDUCTOR DEVICES TRIMESTER

FACULTY OF ENGINEERING LAB SHEET ENT 3036 SEMICONDUCTOR DEVICES TRIMESTER FACULTY OF ENGINEERING LAB SHEET ENT 3036 SEMICONDUCTOR DEVICES TRIMESTER 3 2017-2018 SD1 I-V MEASUREMENT OF MOS CAPACITOR *Note: On-the-spot evaluation may be carried out during or at the end of the experiment.

More information

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot

SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot SAMPLE: EXPERIMENT 2 Series RLC Circuit / Bode Plot ---------------------------------------------------------------------------------------------------- This experiment is an excerpt from: Electric Experiments

More information

KickStart Instrument Control Software Datasheet

KickStart Instrument Control Software Datasheet KickStart Instrument Control Software Datasheet Key Features Built-in I-V characterizer, datalogger, and precision DC power applications Optional high resistivity measurement application that complies

More information

300 mm Semi-automated Probe System

300 mm Semi-automated Probe System Elite300 300 mm Semi-automated Probe System DATA SHEET The Elite 300 is essential for characterizing devices at the 32 nm technology node and beyond. This probe systems uses PureLine technology to achieve

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #6. Current-Voltage Characteristics of Electronic Devices. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #6 Current-Voltage Characteristics of Electronic Devices By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las

More information

Measuring Power Supply Switching Loss with an Oscilloscope

Measuring Power Supply Switching Loss with an Oscilloscope Measuring Power Supply Switching Loss with an Oscilloscope Application Note Introduction With the demand for improving power efficiency and extending the operating time of battery-powered devices, the

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Safety Precautions Working with Electricity Before starting, check cables for cracks or wear. Get new cables if

More information

BJT Characterization Laboratory Dr. Lynn Fuller

BJT Characterization Laboratory Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING BJT Characterization Laboratory Dr. Lynn Fuller 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email:

More information

Keysight Technologies Making Matching Measurements for Use in IC Design

Keysight Technologies Making Matching Measurements for Use in IC Design Keysight Technologies Making Matching Measurements for Use in IC Design 4080 Series Parametric Test Systems Application Note Introduction Matching applications play a key role in modern IC design: they

More information

Agilent N5250A PNA Millimeter-Wave Network Analyzer 10 MHz to 110 GHz

Agilent N5250A PNA Millimeter-Wave Network Analyzer 10 MHz to 110 GHz Agilent N5250A PNA Millimeter-Wave Network Analyzer 10 MHz to 110 GHz Technical Overview High Performance Bench-Top Network Analyzer Maximize your frequency coverage with a single sweep from 10 MHz to

More information

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model

Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model APPLICATION NOTE Load Pull Validation of Large Signal Cree GaN Field Effect Transistor (FET) Model Introduction Large signal models for RF power transistors, if matched well with measured performance,

More information

New Wide Band Gap High-Power Semiconductor Measurement Techniques Accelerate your emerging material device development

New Wide Band Gap High-Power Semiconductor Measurement Techniques Accelerate your emerging material device development New Wide Band Gap High-Power Semiconductor Measurement Techniques Accelerate your emerging material device development Alan Wadsworth Americas Market Development Manager Semiconductor Test Division July

More information

A PROBE TECHNOLOGY FOR 110+ GHZ INTEGRATED CIRCUITS WITH ALUMINUM PADS

A PROBE TECHNOLOGY FOR 110+ GHZ INTEGRATED CIRCUITS WITH ALUMINUM PADS A PROBE TECHNOLOGY FOR 11+ GHZ INTEGRATED CIRCUITS WITH ALUMINUM PADS Amr M. E. Safwat, Mike Andrews, Leonard Hayden, K. Reed Gleason and Eric Strid Cascade Microtech, Inc. 243 NW 26th Avenue, Beaverton,

More information

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture Note on Switches Marc T. Thompson, 2003 Revised 2007 Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture note on switches_tan_thompsonpage 1 of 21 1. DEVICES OVERVIEW... 4 1.1.

More information

Achieving Maximum Throughput with Keithley S530 Parametric Test Systems

Achieving Maximum Throughput with Keithley S530 Parametric Test Systems Achieving Maximum Throughput with Keithley S530 Parametric Test Systems Keithley Instruments is a world leader in the development of precision DC electrical instruments and integrated parametric test systems.

More information

A NEW DC MEASUREMENT PRINCIPLE TO FULLY COVER DEVICE SELF-HEATING

A NEW DC MEASUREMENT PRINCIPLE TO FULLY COVER DEVICE SELF-HEATING -1- A NEW DC MEASUREMENT PRINCIPLE TO FULLY COVER DEVICE SELF-HEATING Keywords: Device Self-Heating During DC Measurement, Data Sampling After Self-Heating Reached Final Value, IC-CAP Demo File Contents:

More information

Agilent 4083A DC/RF Parametric Test System

Agilent 4083A DC/RF Parametric Test System Agilent 4083A DC/RF Parametric Test System Data Sheet Contents General Description Switching Matrix Subsystem 3 Optional Pulse Switch 5 DC Measurement Subsystem SMU 6 Capacitance Measurement Subsystem

More information

of High Power Semiconductor Device Testing

of High Power Semiconductor Device Testing Tips, Tricks, and Traps of High Power Semiconductor Device Testing 张卫华 KEITHLEY INSTRUMENTS 1 8/20/2012 2012 Keithley Instruments, Inc. 2012 Keithley Instruments, Inc. Overview The goal of this seminar

More information

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS)

ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) SOLUTIONS ES 330 Electronics II Homework # 1 (Fall 2016 SOLUTIONS) Problem 1 (20 points) We know that a pn junction diode has an exponential I-V behavior when forward biased. The diode equation relating

More information

What Is An SMU? SEP 2016

What Is An SMU? SEP 2016 What Is An SMU? SEP 2016 Agenda SMU Introduction Theory of Operation (Constant Current/Voltage Sourcing + Measure) Cabling : Triax vs Coax Advantages in Resistance Applications (vs. DMMs) Advantages in

More information

Keysight Technologies Improve the Accuracy and Efficiency for Organic-Thin Film Transistor (Organic-TFT) Characterization

Keysight Technologies Improve the Accuracy and Efficiency for Organic-Thin Film Transistor (Organic-TFT) Characterization Keysight Technologies Improve the Accuracy and Efficiency for Organic-Thin Film Transistor (Organic-TFT) Characterization B1500A Semiconductor Device Analyzer Application Note Introduction Organic materials

More information

OVEN INDUSTRIES, INC. Model 5C7-362

OVEN INDUSTRIES, INC. Model 5C7-362 OVEN INDUSTRIES, INC. OPERATING MANUAL Model 5C7-362 THERMOELECTRIC MODULE TEMPERATURE CONTROLLER TABLE OF CONTENTS Features... 1 Description... 2 Block Diagram... 3 RS232 Communications Connections...

More information

TUTORIAL 283 INL/DNL Measurements for High-Speed Analog-to- Digital Converters (ADCs)

TUTORIAL 283 INL/DNL Measurements for High-Speed Analog-to- Digital Converters (ADCs) Maxim > Design Support > Technical Documents > Tutorials > A/D and D/A Conversion/Sampling Circuits > APP 283 Maxim > Design Support > Technical Documents > Tutorials > High-Speed Signal Processing > APP

More information

Keysight Technologies How to Perform QSCV (Quasi-Static Capacitance Voltage) Measurement

Keysight Technologies How to Perform QSCV (Quasi-Static Capacitance Voltage) Measurement Keysight Technologies How to Perform QSCV (Quasi-Static Capacitance Voltage) Measurement Using Keysight B1500A Semiconductor Device Analyzer Application Note Introduction Recently, the post silicon new

More information

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System.

Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System. Welcome! Device Characterization with the Keithley Model 4200-SCS Characterization System Speed and Timing Considerations 1 Factors Affecting Measurement Time Internal to 4200: Settings in the Timing Window:

More information

Measuring CNT FETs and CNT SETs Using the Agilent B1500A

Measuring CNT FETs and CNT SETs Using the Agilent B1500A Measuring CNT FETs and CNT SETs Using the Agilent B1500A Application Note B1500-1 Agilent B1500A Semiconductor Device Analyzer Introduction Exotic carbon nanotube (CNT) structures have generated a great

More information

Laboratory 4: Biasing of Bipolar Transistors Laboratory Exercises

Laboratory 4: Biasing of Bipolar Transistors Laboratory Exercises Laboratory 4: Biasing of Bipolar Transistors Laboratory Exercises INTRODUCTION Objectives In this lab, we will design and build three different bias circuits for BJT s (Bipolar Junction Transistors). In

More information

AND9100/D. Paralleling of IGBTs APPLICATION NOTE. Isothermal point

AND9100/D. Paralleling of IGBTs APPLICATION NOTE. Isothermal point Paralleling of IGBTs Introduction High power systems require the paralleling of IGBTs to handle loads well into the 10 s and sometimes the 100 s of kilowatts. Paralleled devices can be discrete packaged

More information

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#:

Experiment 3. 3 MOSFET Drain Current Modeling. 3.1 Summary. 3.2 Theory. ELEC 3908 Experiment 3 Student#: Experiment 3 3 MOSFET Drain Current Modeling 3.1 Summary In this experiment I D vs. V DS and I D vs. V GS characteristics are measured for a silicon MOSFET, and are used to determine the parameters necessary

More information

Keysight 4082A Parametric Test System. Data Sheet

Keysight 4082A Parametric Test System. Data Sheet Keysight 4082A Parametric Test System Data Sheet 02 Keysight 4082A Parametric Test System - Data Sheet General Description Contents General Description... 2 Specification... 4 DC Measurement Subsystem

More information

Keysight B1505A Power Device Analyzer/Curve Tracer

Keysight B1505A Power Device Analyzer/Curve Tracer Keysight B1505A Power Device Analyzer/Curve Tracer For the tests up to 40 A/ 3000 V by Dual HCSMU/ HVSMU Quick Start Guide Table of Contents Before Using B1505A 3 Instruments and Accessories used in this

More information

Wafer-Level Calibration & Verification up to 750 GHz. Choon Beng Sia, Ph.D. Mobile:

Wafer-Level Calibration & Verification up to 750 GHz. Choon Beng Sia, Ph.D.   Mobile: Wafer-Level Calibration & Verification up to 750 GHz Choon Beng Sia, Ph.D. Email: Choonbeng.sia@cmicro.com Mobile: +65 8186 7090 2016 Outline LRRM vs SOLT Calibration Verification Over-temperature RF calibration

More information

Product Note 73 Vibration Tester for On-Wafer Tuner Operation

Product Note 73 Vibration Tester for On-Wafer Tuner Operation 1603 St.Regis D.D.O., Quebec H9B 3H7, Canada Tel 514-684-4554 Fax 514-684-8581 E-mail: info@ focus-microwaves.com Website: http://www.focus-microwaves.com Product Note 73 Vibration Tester for On-Wafer

More information

product note Using Power Leveling to Control Test Port Output Power Product Note 8510XF XF Network Analyzer

product note Using Power Leveling to Control Test Port Output Power Product Note 8510XF XF Network Analyzer This literature was published years prior to the establishment of Agilent Technologies as a company independent from Hewlett-Packard and describes products or services now available through Agilent. It

More information

ECE 2274 MOSFET Voltmeter. Richard Cooper

ECE 2274 MOSFET Voltmeter. Richard Cooper ECE 2274 MOSFET Voltmeter Richard Cooper Pre-Lab for MOSFET Voltmeter Voltmeter design: Build a MOSFET (2N7000) voltmeter in LTspice. The MOSFETs in the voltmeter act as switches. To turn on the MOSFET.

More information

Electrical characterization of Graphene and nano-devices. Stewart Wilson European Sales Manager Semiconductor Parametric Test Systems Autumn 2014.

Electrical characterization of Graphene and nano-devices. Stewart Wilson European Sales Manager Semiconductor Parametric Test Systems Autumn 2014. Electrical characterization of Graphene and nano-devices Stewart Wilson European Sales Manager Semiconductor Parametric Test Systems Autumn 2014. Keysight role in Graphene/Nano technology science Keysight

More information

System Cabling Errors and DC Voltage Measurement Errors in Digital Multimeters

System Cabling Errors and DC Voltage Measurement Errors in Digital Multimeters Digital Multimeter Measurement Errors Series System Cabling Errors and DC Voltage Measurement Errors in Digital Multimeters Application Note AN 1389-1 Introduction When making measurements with a digital

More information

V A ( ) 2 = A. For Vbe = 0.4V: Ic = 7.34 * 10-8 A. For Vbe = 0.5V: Ic = 3.49 * 10-6 A. For Vbe = 0.6V: Ic = 1.

V A ( ) 2 = A. For Vbe = 0.4V: Ic = 7.34 * 10-8 A. For Vbe = 0.5V: Ic = 3.49 * 10-6 A. For Vbe = 0.6V: Ic = 1. 1. A BJT has the structure and parameters below. a. Base Width = 0.5mu b. Electron lifetime in base is 1x10-7 sec c. Base doping is NA=10 17 /cm 3 d. Emitter Doping is ND=2 x10 19 /cm 3. Collector Doping

More information

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press UNIT-1 Bipolar Junction Transistors Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press Figure 6.1 A simplified structure of the npn transistor. Microelectronic Circuits, Sixth

More information

Ultra-Fast NBTI/PBTI Package for the Model 4200-SCS

Ultra-Fast NBTI/PBTI Package for the Model 4200-SCS Best-in-class test speed allows faster, more complete device characterization Begin measuring BTI degradation as soon as 30ns after stress is removed Measure transistor V T in less than 1µs using I D V

More information

Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India

Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India Advanced Low Power CMOS Design to Reduce Power Consumption in CMOS Circuit for VLSI Design Pramoda N V Department of Electronics and Communication Engineering, MCE Hassan Karnataka India Abstract: Low

More information

Agilent B1500A Semiconductor Device Analyzer

Agilent B1500A Semiconductor Device Analyzer Agilent B1500A Semiconductor Device Analyzer Self-paced Training Manual, 4 Agilent Technologies Notices Agilent Technologies 2005-2008 No part of this manual may be reproduced in any form or by any means

More information

A Simplified Test Set for Op Amp Characterization

A Simplified Test Set for Op Amp Characterization A Simplified Test Set for Op Amp Characterization INTRODUCTION The test set described in this paper allows complete quantitative characterization of all dc operational amplifier parameters quickly and

More information

AN Analog Power USA Applications Department

AN Analog Power USA Applications Department Using MOSFETs for Synchronous Rectification The use of MOSFETs to replace diodes to reduce the voltage drop and hence increase efficiency in DC DC conversion circuits is a concept that is widely used due

More information

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note

Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples. Application Note Keysight Technologies Network Analyzer Measurements: Filter and Amplifier Examples Application Note Introduction Both the magnitude and phase behavior of a component are critical to the performance of

More information

expanding the possibilities

expanding the possibilities Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Agilent PNA Series RF and Microwave Network Analyzers exceptional performance advanced automation expanding the possibilities

More information

LM6118/LM6218 Fast Settling Dual Operational Amplifiers

LM6118/LM6218 Fast Settling Dual Operational Amplifiers Fast Settling Dual Operational Amplifiers General Description The LM6118/LM6218 are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ±20 ma output drive capability. The

More information

Voltage-to-Frequency and Frequency-to-Voltage CONVERTER

Voltage-to-Frequency and Frequency-to-Voltage CONVERTER Voltage-to-Frequency and Frequency-to-Voltage CONVERTER FEATURES OPERATION UP TO 500kHz EXCELLENT LINEARITY ±0.0% max at 0kHz FS ±0.05% max at 00kHz FS V/F OR F/V CONVERSION MONOTONIC VOLTAGE OR CURRENT

More information

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline:

ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: ECE 340 Lecture 37 : Metal- Insulator-Semiconductor FET Class Outline: Metal-Semiconductor Junctions MOSFET Basic Operation MOS Capacitor Things you should know when you leave Key Questions What is the

More information

Single-channel power supply monitor with remote temperature sense, Part 1

Single-channel power supply monitor with remote temperature sense, Part 1 Single-channel power supply monitor with remote temperature sense, Part 1 Nathan Enger, Senior Applications Engineer, Linear Technology Corporation - June 03, 2016 Introduction Many applications with a

More information

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE

Simplifying FET Testing with 2600B System SourceMeter SMU Instruments APPLICATION NOTE Simplifying FET Testing with 2600B System SourceMeter SMU Instruments Introduction Field effect transistors (FETs) are important semiconductor devices with many applications because they are fundamental

More information

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and

Lecture 16: MOS Transistor models: Linear models, SPICE models. Context. In the last lecture, we discussed the MOS transistor, and Lecture 16: MOS Transistor models: Linear models, SPICE models Context In the last lecture, we discussed the MOS transistor, and added a correction due to the changing depletion region, called the body

More information

Summit. 200 mm Manual and Semi-automated Probe Systems

Summit. 200 mm Manual and Semi-automated Probe Systems Summit 200 mm Manual and Semi-automated Probe Systems DATA SHEET Summit series manual and semi-automated probe systems, with PureLine and AttoGuard technology, allow you to access the full range of your

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

In-circuit Measurements of Inductors and Transformers in Switch Mode Power Supplies APPLICATION NOTE

In-circuit Measurements of Inductors and Transformers in Switch Mode Power Supplies APPLICATION NOTE In-circuit Measurements of Inductors and Transformers in Switch Mode Power Supplies FIGURE 1. Inductors and transformers serve key roles in switch mode power supplies, including filters, step-up/step-down,

More information

How to realize Low Current Measurement with Agilent B2901/02/11/12A

How to realize Low Current Measurement with Agilent B2901/02/11/12A How to realize Low Current Measurement with Agilent B2901/02/11/12A The Agilent B2901/02/11/12A has higher current measurement resolution (10 fa for B2911/12A, 100 fa for B2901/02A) so that it has the

More information

Low noise Amplifier, simulated and measured.

Low noise Amplifier, simulated and measured. Low noise Amplifier, simulated and measured. Introduction: As a study project a low noise amplifier shaper for capacitive detectors in AMS 0.6 µm technology is designed and realised. The goal was to design

More information

LM1042 Fluid Level Detector

LM1042 Fluid Level Detector LM1042 Fluid Level Detector General Description The LM1042 uses the thermal-resistive probe technique to measure the level of non-flammable fluids An output is provided proportional to fluid level and

More information

Introduction to On-Wafer Characterization at Microwave Frequencies

Introduction to On-Wafer Characterization at Microwave Frequencies Introduction to On-Wafer Characterization at Microwave Frequencies Chinh Doan Graduate Student University of California, Berkeley Introduction to On-Wafer Characterization at Microwave Frequencies Dr.

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

Keysight Technologies B1500A Semiconductor Device Analyzer Ultra-Fast 1 μs NBTI Characterization Using the B1500A s WGFMU Module.

Keysight Technologies B1500A Semiconductor Device Analyzer Ultra-Fast 1 μs NBTI Characterization Using the B1500A s WGFMU Module. Keysight Technologies B1500A Semiconductor Device Analyzer Ultra-Fast 1 μs NBTI Characterization Using the B1500A s WGFMU Module Application Note Introduction Reducing the time required to characterize

More information

SAMPLING NOTES. Scanned January 13, Revision 1.0

SAMPLING NOTES. Scanned January 13, Revision 1.0 SAMPLING NOTES Copyright 1964 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information