A Primary Side Clamping Circuit Applied to the ZVS-PWM Asymmetrical Half-Bridge Converter

Size: px
Start display at page:

Download "A Primary Side Clamping Circuit Applied to the ZVS-PWM Asymmetrical Half-Bridge Converter"

Transcription

1 A Primary Side Clamping Circuit Applied to the ZVS-PWM Asymmetrical Half-Bridge Converter Marcel0 Lobo Heldwein, Alexandre Ferrari de Souza and vo Barbi Power Electronics nstitute Dept. of Electrical Engineering Federal University of Santa Catarina P.O. Box Floriandpolis - SC - Brazil Abstract - This paper presents a soft-switching asymmetrical half-bridge DC-DC converter with a clamping circuit connected in the primary side of the transformer. This clamping circuit will reduce the reverse recovery effects of the output diodes, increasing the overall efficiency. Theoretical analysis of the converter along with experimental results are provided.. NTRODUCTON The ZVS-PWM asymmetrical Half-Bridge DC-DC converter [] [2], shown in Fig. 1, is a suitable solution for converter with a processed power up to 1000 W. However, at the traditional ZVS PWM asymmetrical half-bridge topology the value of the resonant inductance L, can not be lowered or the soft commutation characteristic will not be present. This always traduces in minor care with the transformer assembly, allowing the dispersion inductance to be of high value. +. The main disadvantage with this kind of snubber is that the energy spent to keep the voltage in acceptable levels is dissipated in the resistors. These losses drastically reduce the overall efficiency of the converter. Another disadvantage of these RCD snubbers is that oscillations in the voltage will continue to occur and probably in a lower frequency, which are harder to extinguish. These oscillations will add losses as well, since they increase reactive power in the circuit. A solution to this problem is the use of clamping diodes on the primary side of the transformer, as presented in Fig. 3. With this technique the voltages applied to the transformer primary side are clamped to VC, during positive cycle of the source, and -VC~ during the negative cycle. deally this results in clamped voltages also in the secondary coils and as a consequence in the rectifier diodes (Drl and De). Thus, if the dispersion inductance is small the voltages applied to the rectifier diodes will not present significant overshooting. Snubber circuit, f f -L TC" _._..-. ' ' Fig. 2 - RCD Snubber placed in the output rectifier diodes. Fig. 1 - Traditional circuit of the ZVS PWM half-bridge converter with RCD snubbers. The effect of resonant inductance along with parasitic parameters in output rectifier diodes during commutations results in serious resonance in the circuit. The main effects of this resonance are overshooting and ringing voltages, reflecting in over-voltage on the output diodes. These over-voltages must be limited to avoid diodes malfunction or even their destruction. Usually, the overvoltages are limited by the use of clamping or snubber circuits, which are placed directly over the diodes. The most usual and less expensive circuit is the resistor-capacitor-diode (RCD) configuration, shown in Fig. 2. Alternate voltage source Drl DQ Output filter Load - Clamping diodes: D, and Dg Rectifier diodes: D,, and De Fig. 3 - Primary side clamping /00/$10.00 (c) 2000 EEE 199

2 This technique was applied to a Capacitor Voltage- Clamped Series Resonant Converter [3]. However, the technique was employed in Discontinuous Conduction Mode (DCM) of the Resonant nductor Current and was not proposed for converters with current source output characteristics operating in constant frequency and Continuous Conduction Mode (CCM). This technique can be applied to the half-bridge asymmetrical converter resulting on the proposed circuit shown in Fig. 4. The objective of clamping diodes on the primary side is to remove the effect of the resonant external inductor over the commutation of the output rectifier diodes without changing the characteristics of the converter. This objective is accomplished on the way that the primary side voltage is clamped to the voltages across capacitors C3 and C4. n this case, the voltage source and the capacitors absorb the energy due to commutation of the output rectifier diodes on the resonant inductor, through the clamping diodes. t can be noticed through the analysis of the operation stages of the converter that the inclusion of these diodes does not affect significantly the converter performance, once currents flowing through them are small and are caused by the commutation of the output diodes. Fig. 4 -The proposed ZVS P W half-bridge converter with primary side clamping. With the primary side clamping and depending on the value of the transformer leakage inductance, it is possible to eliminate the use of the RCD snubber circuits in the output. The use of this technique implies that the transformer must be assembled with a leakage inductance as low as possible, in order to avoid the same parasitic effects that can lead to high voltages on the output diodes. n some cases this is not possible, and the use of primary clamping only is not capable of avoiding voltages above the limits of the diodes. n these cases it is necessary to use snubber circuits in the output the diodes. However, these snubber circuits will be of small rating, when compared to the use of only them. Sometimes a small capacitor and a very high value resistor are sufficient. This paper proposes the use of the clamping diodes in the primary side of a soft-switching asymmetrical Half-Bridge Converter, leading to a higher efficiency, once there is no resistive elements in the clamping circuit. n. RELEVANT ANALYSS n order to simplify the analysis of the stages of operation, the following assumptions are made: *Switches S1 and SZ are ideal and unidirectional in current; *Diodes D1 and Dz are ideal;.the transformer is modeled as an ideal transformer with the primary in parallel with a magnetizing inductance Lag) and in series with a leakage inductance (Llk); *The output behaves like a constant current source with value,; *Capacitors C3 and C4 are considered ideal voltage sources with zero ripple; Commutation effects on diodes Del, Dc2, D,1 and Dr2 are considered; *Parameters of all components are invariable. *Duty cycle (D) is defined as switch S1 duty cycle. A. Average values: As switch S1 stays on during D.T, average voltage on point A is D.E. Knowing that average voltages across the inductors L, Llk and Lg are null, then the average voltage over CZ is also D.E and over C1 is (l-d).e. The on-times at Drl and Dr2 are not equal. Thus, the average current on the primary is different from zero. The average current on the magnetizing inductor must complement the asymmetric primary current in order to maintain no average current on capacitors C3 and C4. B. Operation stages: There are 12 stages during normal operation with softcommutation and Continuos Conduction Mode. The stages of operation of the asymmetrical half-bridge with primary clamping are presented in Fig. 5. The main waveforms are presented in Fig. 6, where Vgsl(t) and VgSz(t) are the gate signals of switches S1 and S2 respectively. The stages of operation are described as follows: lst stage (to - tl): Power transfer stage (Fig. 5.a) Energy is transferred to the load. Through switch S circulates the sum of the referred load current (z') and the magnetization current ih(t). Voltage between points A and B is (1 -D).E. Voltage over Dcl tends to bias it. Although there is circulating current due to the commutation on stage 12, current on Dcl is neglectible. The magnetizing inductor (L) receives energy. Capacitor C3 is discharged. This stage finishes when S1 is turned off. 2nd stage (tl - tz): Linear stage (Fig. 5.b) Current starts circulating through capacitors C1 and Cz. Capacitor C1 is linearly charged, while Cz is discharged at the same rate. This provides soft turn-off for S. Voltage vab(t) decreases also linearly. This stage ends when voltage between A and B is null /00/$10.00 (c) 2000 EEE 200

3 E Fig. 5 - Stages of operation. 3d stage (tz - t3): Resonant stage (Fig. 5.c) When VAB(t) reaches zero the rectifier is short-circuited, so the magnetizing current is absorbed by the output stage. The circuit is reduced to L,, Llk, C1, Cz and the voltage sources. Resonance between the components takes place and the transition of the states is accomplished. 4* stage (ts - 4): Energy recovery stage (Fig. 5.d) The energy remaining in the inductors L, and L1k is recovered to the source through diode Dz, decreasing the current linearly until it becomes null and ending this stage. Voltage over Sz is null enabling a soft turn-on of this switch. 5* stage (f4 - ts): Linear magnetization stage (Fig. 5.e) When current in the resonant inductor changes its direction S2 starts conducting. The voltage over L, and L1k is still D.E and the current in these components increases linearly until ih(t) reaches ih(t)-o when this stage ends. 6* stage (ts - f6): Output rectifier transition stage (Fig. 5.0 At the end of stage 5 the rectifier diode Dr2 is blocked and the voltage applied to the primary of the transformer tends to rise quickly. Due to the effect of inductor L1k and intrinsic capacitances of the clamping and rectifier diodes, the primary voltage tends to rise to a level higher than D.E. Thus, the diode D,z clamps the voltage on point C and these capacitances are discharged over L,. 7* stage (k - t7): Power transfer stage pig. 5.g) Energy is transferred to the load. Through switch Sz circulates the difference between the load referred current (o ) and the magnetization current ih(t). Voltage between points B and A is D.E. Voltage over DgZ tends to bias it. Although there is circulating current due to the commutation on stage 6, current on Dg2 is neglectible. The magnetizing inductor (L,J delivers energy to the load. Capacitor C3 is charged. This stage ends when Sz is turned off with zero voltage. 8* stage (t7 - ts): Linear stage (Fig. 5.h) Current starts circulating through capacitors C1 and CZ. Capacitor C1 is linearly discharged, while Cz is charged at the same rate. This provides soft turn-off for Sz. Voltage vab(t) decreases linearly. This stage ends when voltage between A and B is null. 9* stage (ts- 6): Resonant stage (Fig. 5.9 When VAB(t) reaches zero the rectifier is short-circuited. The circuit is reduced to L, Lkr C,, Cz and the voltage /00/$10.00 (c) 2000 EEE 20 1

4 sources. Resonance among L, Llk, c1, cz takes place and the voltage over S1 reaches zero at the end of this stage. lo& stage - tlo): Energy recovery stage (Fig. 5.j) The energy remaining in the inductors and Llk is recovered to the source through diode D1, which current decreases linearly until it nulls, ending this stage. Switch S is enabled to be turned on in a softly way. ll& stage (tlo- td: Linear magnetization stage (Fig. 5.k) When current in the resonant inductor becomes positive S1 starts conducting. The voltage over L, and Llk is still (l-d)-e and the current on these inductors increases linearly until ih(t) reaches ih(t)-o' when the stage ends. 12" stage (til - tlz): Output rectifier transition stage pig. 5.1) The same effect explained on stage 6 takes place. At the end of stage 11 the rectifier diode D,1 is blocked and the voltage applied to the primary of the transformer tends to rise quickly. Diode Dgl clamps the voltage on point C at (l-d).e. C. Output characteristics As it can be noticed in the analysis of the stages of the converter, the inclusion of the clamping diodes does not affect considerably on the operation of the converter. Hence, it does not change the output characteristic of the converter. The DC gain of the converter (4) is defined by (V',, / E). Thus: Fig. 7 presents the DC gain as a function of the average voltage drop across the resonant inductor and the duty cycle. qt t AVE Fig. 7 -Output characteristics. V ya.lo'li [ b k 1.l.l. b k lll.1. Fig. 6 - Main waveforms for the converter. 4V7,i-g"i RFP~OJ M1 Ezy f-. sec EXPERMENTAL RESULTS n order to verify the proposed converter a prototype was built with the specifications presented below. The current mode control was employed in this topology, in order to ensure proper operation for telecommunication applications. The complete power stage diagram is shown in Fig. 8..nput voltage: 45OVk20V *Output voltage: 60V.Rated output current: 6A.Efficiency: greater than 90 % Commutation frequency: 8OkHz.Maximum duty cycle: 0.4 EE-SUP pnm.:sg.:20 turns lums X 30AWG 15 turns sec2.:20 turns - 28 X 30AWG 15Vll w 17'30AWG,---. T T 330nFl63OV Heatsinks: a Mi andmp:rth=4,83ocw(sk129) Dr1 and De : Rth = 4, W W (SKPB) Fig. 8 - Power stage diagram for the Half-Bridge asymmetrical converter with primary clamping /00/$10.00 (c) 2000 EEE 202

5 All waveforms are presented at rated load. The voltage between points A and B and the current on the resonant inductor are shown in Fig. 9. Current and voltage across the switches are presented in Fig. 10. TOk Frn lc"l5 < - F.i / " Fig Tum-off details of MOSFETs M and Mz. Fig. 9 -Voltage VAB and current in the resonant inductor. (loov/div-2ndiv - 2.5~ddiv) n order to compare the conventional RCD snubbers with the primary side clamping technique the clamping diodes were taken off from the prototype and RCD circuits were put over the rectifier diodes. The RCD circuit has the following parameters: Resistors - 220W3W and 100W3W; Capacitors - lnf/400v and ln5f/400v; Diodes - both 1N4936. The waveform presented in Fig. 13 (a) shows the voltage across Da, which is naturally higher if the duty cycle is limited to 0.5. n this figure the maximum voltage across Da is about 292V, that is too close to the voltage rating of the device (300V). t can also be noticed that high amplitude oscillations occur on the voltage. n Fig. 13 (b) it is shown the voltage across Da, with primary side clamping only. t can be easily noticed that the voltage is clamped with a maximum at about 223V. Oscillations are very reduced and occur in higher frequency disappearing quickly after commutation. Fig.10 - Currents and voltages in both switches. (loov/div - la/div - 2.5pddiv). t can be noticed that all commutations in both switches occur under zero voltage in Figs. 11 and 12. The turn-on on switch S2 it is more difficult, once transition between capacitors states have to be accomplished with less current across the resonant inductor and the difference of voltages is higher. Fig Voltage across Dn. (a) with RCD snubbers. (b) with primary side clamping diodes. n Fig. 14 it is shown the achieved efficiency for the prototype with the primary clamping. The efficiency at full load is at about 94.6%. A measure of the achieved efficiency without primary clamping and with RCD snnubers at rated load was at about 93.4%. Fig Tum-on details of MOSFETs M and Mz /00/$10.00 (c) 2000 EEE 203

6 REFERENCES Fig Achieved efficiency with primary side clamping. V. CONCLUSON n this paper a very simple clamping circuit for the ZVS- PWM Asymmetrical Half-Bridge DC-DC converter was presented. The employment of this clamping circuit reduces the oscillations caused by the reverse recovery of the output diodes, increasing the efficiency. A prototype was built in order to compare the results between the Half-Bridge converter with RCD snubber and with primary side clamping. An increase in the efficiency of the converter was obtained. A comparison of the effect of the primary side clamping circuit with the conventional RCD snubber was made, confirming better performance of the proposed circuit. The primary side clamping circuit can be extended to other DC-DC converter topologies, with great advantages over the conventional RCD snubbers. [l],. E. COLLNG &. BARB. Analysis and Design of a Zero- Voltage Switching PWM Asymmetrical Half-Bridge DC-DC Converter. n: COBEP95 Conference Records, Siio Paulo, pp [2] P. MBERTSON & N. MOHAN. Asymmetrical duty cycle permits zero switching loss in PWM circuits with no conduction loss penalty. n: EEE - AS ANN. MEETNG 91: Conference Records, vol. 1, pp [3] J.L.F. VERA &. BARB, Constant Frequency PWM Capacitor Voltage-Clamped Series Resonant Power Supply. BEE - Transactions on Power Electronics vol. 8, no. 2, 1993, pp [4] J. P. AGRAWAL, S. H. KM & C. Q. LEE. Capacitor Voltage Clamped Series Resonant Power Supply with mproved Cross Regulation. n: EEE - AS ANN. MEETNG 89: Conference Records, 1989, pp [5] J. A. SABATE et al. Design Considerations for high-voltage high power full-bridge zero-voltage-switched PWM converter. EEE - APEC 90 Conference Records, 1990, pp [6] R. REDL, N.O. SOW, L. BALOGH, A Novel Soft- Switching Full-Bridge DClDC Converter: Analysis, Design Considerations and Experimental Results at 1.5 kw, 100 khz, PESC W, pp /00/$10.00 (c) 2000 EEE 204

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 6, NOVEMBER 2001 745 A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation René Torrico-Bascopé, Member, IEEE, and

More information

Design and analysis of ZVZCS converter with active clamping

Design and analysis of ZVZCS converter with active clamping Design and analysis of ZVZCS converter with active clamping Mr.J.Sivavara Prasad 1 Dr.Ch.Sai babu 2 Dr.Y.P.Obelesh 3 1. Mr. J.Sivavara Prasad, Asso. Professor in Dept. of EEE, Aditya College of Engg.,

More information

A Simple Control Strategy Applied to Three-phase Rectifier Units for Telecommunication Applications Using Single-phase Rectifier Modules

A Simple Control Strategy Applied to Three-phase Rectifier Units for Telecommunication Applications Using Single-phase Rectifier Modules A Simple Control Strategy Applied to Three-phase Rectifier Units for Telecommunication Applications Using Single-phase Rectifier Modules Marcel0 Lobo Heldwein, Alexandre Ferrari de Souza and Ivo Barbi

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter 466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY 1998 A Single-Switch Flyback-Current-Fed DC DC Converter Peter Mantovanelli Barbosa, Member, IEEE, and Ivo Barbi, Senior Member, IEEE Abstract

More information

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications 184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 2, MARCH 2001 Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications Rajapandian

More information

IN THE high power isolated dc/dc applications, full bridge

IN THE high power isolated dc/dc applications, full bridge 354 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 2, MARCH 2006 A Novel Zero-Current-Transition Full Bridge DC/DC Converter Junming Zhang, Xiaogao Xie, Xinke Wu, Guoliang Wu, and Zhaoming Qian,

More information

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India. A Closed Loop for Soft Switched PWM ZVS Full Bridge DC - DC Converter S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP-517583, India. Abstract: - This paper propose soft switched PWM ZVS full bridge DC to

More information

Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems

Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems A Mallikarjuna Prasad 1, B Gururaj 2 & S Sivanagaraju 3 1&2 SJCET, Yemmiganur, Kurnool, India 3 JNTU Kakinada, Kakinada,

More information

THE TWO TRANSFORMER active reset circuits presented

THE TWO TRANSFORMER active reset circuits presented 698 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 8, AUGUST 1997 A Family of ZVS-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis, Design, and

More information

INSULATED gate bipolar transistors (IGBT s) are widely

INSULATED gate bipolar transistors (IGBT s) are widely IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 4, JULY 1998 601 Zero-Voltage and Zero-Current-Switching Full-Bridge PWM Converter Using Secondary Active Clamp Jung-Goo Cho, Member, IEEE, Chang-Yong

More information

Simplified loss analysis and comparison of full-bridge, full-range-zvs DC-DC converters

Simplified loss analysis and comparison of full-bridge, full-range-zvs DC-DC converters Sādhanā Vol. 33, Part 5, October 2008, pp. 481 504. Printed in India Simplified loss analysis and comparison of full-bridge, full-range-zvs DC-DC converters SHUBHENDU BHARDWAJ 1, MANGESH BORAGE 2 and SUNIL

More information

NOWADAYS, several techniques for high-frequency dc dc

NOWADAYS, several techniques for high-frequency dc dc IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 5, OCTOBER 2007 2779 Voltage Oscillation Reduction Technique for Phase-Shift Full-Bridge Converter Ki-Bum Park, Student Member, IEEE, Chong-Eun

More information

Improvements of LLC Resonant Converter

Improvements of LLC Resonant Converter Chapter 5 Improvements of LLC Resonant Converter From previous chapter, the characteristic and design of LLC resonant converter were discussed. In this chapter, two improvements for LLC resonant converter

More information

새로운무손실다이오드클램프회로를채택한두개의트랜스포머를갖는영전압스위칭풀브릿지컨버터

새로운무손실다이오드클램프회로를채택한두개의트랜스포머를갖는영전압스위칭풀브릿지컨버터 새로운무손실다이오드클램프회로를채택한두개의트랜스포머를갖는영전압스위칭풀브릿지컨버터 윤현기, 한상규, 박진식, 문건우, 윤명중한국과학기술원 Zero-Voltage Switching Two-Transformer Full-Bridge PWM Converter With Lossless Diode-Clamp Rectifier H.K. Yoon, S.K. Han, J.S.

More information

A New Soft Switching PWM DC-DC Converter with Auxiliary Circuit and Centre-Tapped Transformer Rectifier

A New Soft Switching PWM DC-DC Converter with Auxiliary Circuit and Centre-Tapped Transformer Rectifier Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 241 247 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 1- Electronic and Electrical

More information

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 47 CHAPTER 3 DC-DC CONVERTER TOPOLOGIES 3.1 INTRODUCTION In recent decades, much research efforts are directed towards finding an isolated DC-DC converter with high volumetric power density, low electro

More information

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter 1 Neha Gupta, 2 Dr. A.K. pandey, 3 Dr. K.G. Upadhyay 1. M.Tech(Power Electronics & Drives), Electrical Engineering Department,

More information

A Comparison Among Three-Level ZVS-PWM Isolated DC-to-DC Converters

A Comparison Among Three-Level ZVS-PWM Isolated DC-to-DC Converters A Comparison Among Three-Level ZVS-PWM Isolated DC-to-DC Converters Eduardo Deschamps Electrical Engineering Department Regional University of Blumenau - FURB P. 0. Box 1507 89.010-971 - Blumenau - SC

More information

THREE-PHASE converters are used to handle large powers

THREE-PHASE converters are used to handle large powers IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 6, NOVEMBER 1999 1149 Resonant-Boost-Input Three-Phase Power Factor Corrector Da Feng Weng, Member, IEEE and S. Yuvarajan, Senior Member, IEEE Abstract

More information

l1-i VEL SINGLE-PHASE ZCS-PWM HIGH POWER FACTOR BOOST RECTIFIER IVO Barbi Carlos A. Canesin

l1-i VEL SINGLE-PHASE ZCS-PWM HIGH POWER FACTOR BOOST RECTIFIER IVO Barbi Carlos A. Canesin VEL SINGLE-PHASE ZCS-PWM HIGH POWER FACTOR BOOST RECTIFIER Carlos A. Canesin Paulista State University UNESP - FEIS - DEE - P.O. box 31 Fax: (+55) 18-7622125 e-mail: canesin@feis.unesp.br 15385-000 - Ilha

More information

New lossless clamp for single ended converters

New lossless clamp for single ended converters New lossless clamp for single ended converters Nigel Machin & Jurie Dekter Rectifier Technologies Pacific 24 Harker St Burwood, Victoria, 3125 Australia information@rtp.com.au Abstract A clamp for single

More information

Soft switching of multioutput flyback converter with active clamp circuit

Soft switching of multioutput flyback converter with active clamp circuit Soft switching of multioutput flyback converter with active clamp circuit Aruna N S 1, Dr S G Srivani 2, Balaji P 3 PG Student, Dept. of EEE, R.V. College of Engineering, Bangalore, Karnataka, India 1

More information

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit RESEARCH ARTICLE OPEN ACCESS High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit C. P. Sai Kiran*, M. Vishnu Vardhan** * M-Tech (PE&ED) Student, Department of EEE, SVCET,

More information

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications International OPEN ACCESS Journal Of Modern Engineering Research (IJMER A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications Aswathi M. Nair 1, K. Keerthana 2 1, 2 (P.G

More information

Self-oscillating Auxiliary Medium Open Loop Power Supply Deploying Boost EIE Converter

Self-oscillating Auxiliary Medium Open Loop Power Supply Deploying Boost EIE Converter Self-oscillating Auxiliary Medium Open Loop Power Supply Deploying Boost EIE Converter L.C. Gomes de Freitas; F.R.S. Vincenzi; E.A.A. Coelho; J.B. Vieira Jr. and L.C. de Freitas Faculty of Electrical Engineering

More information

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89 Soft Switching Converter with High Voltage Gain for Solar Energy Applications S. Hema*, A. Arulmathy,V. Saranya, S. Yugapriya Department of EEE, Veltech, Chennai *Corresponding author: E-Mail: hema@veltechengg.com

More information

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 1, FEBRUARY 2002 165 Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss Hang-Seok Choi, Student Member, IEEE,

More information

Simulation of Soft Switched Pwm Zvs Full Bridge Converter

Simulation of Soft Switched Pwm Zvs Full Bridge Converter Simulation of Soft Switched Pwm Zvs Full Bridge Converter Deepak Kumar Nayak and S.Rama Reddy Abstract This paper deals with the analysis and simulation of soft switched PWM ZVS full bridge DC to DC converter.

More information

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 5 ǁ May. 2013 ǁ PP.11-19 Implementation of an Interleaved High-Step-Up Dc-Dc Converter

More information

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center

More information

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances IEEE PEDS 2011, Singapore, 5-8 December 2011 A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances N. Sanajit* and A. Jangwanitlert ** * Department of Electrical Power Engineering, Faculty

More information

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS

CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 68 CHAPTER 4 DESIGN OF CUK CONVERTER-BASED MPPT SYSTEM WITH VARIOUS CONTROL METHODS 4.1 INTRODUCTION The main objective of this research work is to implement and compare four control methods, i.e., PWM

More information

GENERALLY, a single-inductor, single-switch boost

GENERALLY, a single-inductor, single-switch boost IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 169 New Two-Inductor Boost Converter With Auxiliary Transformer Yungtaek Jang, Senior Member, IEEE, Milan M. Jovanović, Fellow, IEEE

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

A 1.2 kw Electronic Ballast for Multiple Lamps, with Dimming Capability and High-Power-Factor

A 1.2 kw Electronic Ballast for Multiple Lamps, with Dimming Capability and High-Power-Factor A.2 kw Electronic Ballast for Multiple Lamps, with Dimming Capability and High-Power-Factor Roger Gules and vo Barbi Federal University of Santa Catarina -UFSC Power Electronic nstitute - NEP P.O. Box

More information

Novel Off-Line Zero-Voltage-Switching PWM AC/DC Converter for Direct Conversion from AC Line to 48VDC Bus with Power Factor Correction

Novel Off-Line Zero-Voltage-Switching PWM AC/DC Converter for Direct Conversion from AC Line to 48VDC Bus with Power Factor Correction 1 Novel Off-Line Zero-Voltage-Switching PWM AC/DC Converter for Direct Conversion from AC Line to 48VDC Bus with Power Factor Correction Jung G. Cho and Gyu H. Cho Department of Electrical Engineering

More information

GENERALLY, at higher power levels, the continuousconduction-mode

GENERALLY, at higher power levels, the continuousconduction-mode 496 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 35, NO. 2, MARCH/APRIL 1999 A New, Soft-Switched Boost Converter with Isolated Active Snubber Milan M. Jovanović, Senior Member, IEEE, and Yungtaek

More information

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction A High Efficient DC-DC Converter with Soft Switching for Stress Reduction S.K.Anuja, R.Satheesh Kumar M.E. Student, M.E. Lecturer Sona College of Technology Salem, TamilNadu, India ABSTRACT Soft switching

More information

A New Three-Phase Interleaved Isolated Boost Converter With Solar Cell Application. K. Srinadh

A New Three-Phase Interleaved Isolated Boost Converter With Solar Cell Application. K. Srinadh A New Three-Phase Interleaved Isolated Boost Converter With Solar Cell Application K. Srinadh Abstract In this paper, a new three-phase high power dc/dc converter with an active clamp is proposed. The

More information

1 Introduction

1 Introduction Published in IET Power Electronics Received on 19th December 2008 Revised on 4th April 2009 ISSN 1755-4535 Three-level zero-voltage switching pulse-width modulation DC DC boost converter with active clamping

More information

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR Naci GENC 1, Ires ISKENDER 1 1 Gazi University, Faculty of Engineering and Architecture, Department of Electrical

More information

DC-DC Resonant converters with APWM control

DC-DC Resonant converters with APWM control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) ISSN: 2278-1676 Volume 2, Issue 5 (Sep-Oct. 2012), PP 43-49 DC-DC Resonant converters with APWM control Preeta John 1 Electronics Department,

More information

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 68-76 www.iosrjournals.org Sepic Topology Based High

More information

Designers Series XII. Switching Power Magazine. Copyright 2005

Designers Series XII. Switching Power Magazine. Copyright 2005 Designers Series XII n this issue, and previous issues of SPM, we cover the latest technologies in exotic high-density power. Most power supplies in the commercial world, however, are built with the bread-and-butter

More information

ECE514 Power Electronics Converter Topologies. Part 2 [100 pts] Design of an RDC snubber for flyback converter

ECE514 Power Electronics Converter Topologies. Part 2 [100 pts] Design of an RDC snubber for flyback converter ECE514 Power Electronics Converter Topologies Homework Assignment #4 Due date October 31, 2014, beginning of the lecture Part 1 [100 pts] Redo Term Test 1 (attached) Part 2 [100 pts] Design of an RDC snubber

More information

MUCH effort has been exerted by researchers all over

MUCH effort has been exerted by researchers all over IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 52, NO. 10, OCTOBER 2005 2219 A ZVS PWM Inverter With Active Voltage Clamping Using the Reverse Recovery Energy of the Diodes Marcello

More information

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1 Module 1 Power Semiconductor Devices Version EE IIT, Kharagpur 1 Lesson 8 Hard and Soft Switching of Power Semiconductors Version EE IIT, Kharagpur This lesson provides the reader the following (i) (ii)

More information

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters 1 Shivaraj Kumar H.C, 2 Noorullah Sherif, 3 Gourishankar C 1,3 Asst. Professor, EEE SECAB.I.E.T Vijayapura 2 Professor,

More information

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER

CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 53 CHAPTER 3 MODIFIED FULL BRIDGE ZERO VOLTAGE SWITCHING DC-DC CONVERTER 3.1 INTRODUCTION This chapter introduces the Full Bridge Zero Voltage Switching (FBZVSC) converter. Operation of the circuit is

More information

Exclusive Technology Feature. Leakage Inductance (Part 2): Overcoming Power Losses And EMI. Leakage Inductance-Induced Ringing. ISSUE: November 2015

Exclusive Technology Feature. Leakage Inductance (Part 2): Overcoming Power Losses And EMI. Leakage Inductance-Induced Ringing. ISSUE: November 2015 Leakage Inductance (Part 2): Overcoming Power Losses And EMI by Ernie Wittenbreder, Technical Witts, Flagstaff, Ariz ISSUE: November 2015 Part 1 of this article series focused on the science and math of

More information

A SINGLE STAGE DC-DC CONVERTER FEASIBLE TO BATTERY CHARGING FROM PV PANELS WITH HIGH VOLTAGE STEP UP CAPABILITY

A SINGLE STAGE DC-DC CONVERTER FEASIBLE TO BATTERY CHARGING FROM PV PANELS WITH HIGH VOLTAGE STEP UP CAPABILITY A SINGLE STAGE DC-DC CONVERTER FEASIBLE TO BATTERY CHARGING FROM PV PANELS WITH HIGH VOLTAGE STEP UP CAPABILITY Paulo P. Praça; Gustavo A. L. Henn; Ranoyca N. A. L. S.; Demercil S. Oliveira; Luiz H. S.

More information

Chapter 9 Zero-Voltage or Zero-Current Switchings

Chapter 9 Zero-Voltage or Zero-Current Switchings Chapter 9 Zero-Voltage or Zero-Current Switchings converters for soft switching 9-1 Why resonant converters Hard switching is based on on/off Switching losses Electromagnetic Interference (EMI) because

More information

ZCS-PWM Converter for Reducing Switching Losses

ZCS-PWM Converter for Reducing Switching Losses IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 1 Ver. III (Jan. 2014), PP 29-35 ZCS-PWM Converter for Reducing Switching Losses

More information

Simulation of a novel ZVT technique based boost PFC converter with EMI filter

Simulation of a novel ZVT technique based boost PFC converter with EMI filter ISSN 1746-7233, England, UK World Journal of Modelling and Simulation Vol. 4 (2008) No. 1, pp. 49-56 Simulation of a novel ZVT technique based boost PFC converter with EMI filter P. Ram Mohan 1 1,, M.

More information

A Quadratic Buck Converter with Lossless Commutation

A Quadratic Buck Converter with Lossless Commutation 264 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 2, APRIL 2000 A Quadratic Buck Converter with Lossless Commutation Vincius Miranda Pacheco, Acrísio José do Nascimento, Jr., Valdeir José Farias,

More information

A Novel Three-Phase Interleaved Isolated Boot Converter With Active Clamp For Fuel Cells

A Novel Three-Phase Interleaved Isolated Boot Converter With Active Clamp For Fuel Cells A Novel Three-Phase Interleaved Isolated Boot Converter With Active Clamp For Fuel Cells Md.Karima* 1 ; Shareef Shaik 2 & Dr. Abdul Ahad 3 1 M.tech (P&ID) Student Department Of EEE, Nimra College Of Engineering

More information

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 30-3331, Volume 11, Issue 3 Ver. II (May. Jun. 016), PP 8-3 www.iosrjournals.org Design Consideration for High

More information

IN A CONTINUING effort to decrease power consumption

IN A CONTINUING effort to decrease power consumption 184 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 1, JANUARY 1999 Forward-Flyback Converter with Current-Doubler Rectifier: Analysis, Design, and Evaluation Results Laszlo Huber, Member, IEEE, and

More information

Power Factor Correction of Non-Linear Loads Employing a Single Phase Active Power Filter: Control Strategy, Design Methodology and Experimentation

Power Factor Correction of Non-Linear Loads Employing a Single Phase Active Power Filter: Control Strategy, Design Methodology and Experimentation ~ Power Factor Correction of Non-Linear Loads Employing a Single Phase Active Power Filter: Control Strategy, Design Methodology and Experimentation Fabiana Pottker and vo Barbi Federal University of Santa

More information

Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER

Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER 61 Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER S.No. Name of the Sub-Title Page No. 4.1 Introduction 62 4.2 Single output primary ZVS push-pull Converter 62 4.3 Multi-Output

More information

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter A. K. Panda and Aroul. K Abstract--This paper proposes a zero-voltage transition (ZVT) PWM synchronous buck converter, which

More information

Soft Switched Isolated ZVT Boost DC-DC Converter with Coupled Inductors

Soft Switched Isolated ZVT Boost DC-DC Converter with Coupled Inductors Soft Switched solated ZT Boost DC-DC Converter with Coupled nductors R.SAMUEL RAJESH BABU, Research scholar, EEE department, Sathyabama University, Chennai, ndia. Samuel.rajeshbabu@gmail.com Abstract:This

More information

HALF BRIDGE CONVERTER WITH WIDE RANGE ZVS

HALF BRIDGE CONVERTER WITH WIDE RANGE ZVS INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Inclusion of Switching Loss in the Averaged Equivalent Circuit Model The methods of Chapter 3 can

More information

Cost effective resonant DC-DC converter for hi-power and wide load range operation.

Cost effective resonant DC-DC converter for hi-power and wide load range operation. Cost effective resonant DC-DC converter for hi-power and wide load range operation. Alexander Isurin(sashai@vanner.com) and Alexander Cook(alecc@vanner.com) Vanner Inc, Hilliard, Ohio Abstract- This paper

More information

Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter

Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter IET Circuits, Devices & Systems Research Article Analysis, design and implementation of a zero voltage switching two-switch CCM flyback converter ISSN 1751-858X Received on 28th October 2014 Revised on

More information

Single-Stage Three-Phase AC-to-DC Front-End Converters for Distributed Power Systems

Single-Stage Three-Phase AC-to-DC Front-End Converters for Distributed Power Systems Single-Stage Three-Phase AC-to-DC Front-End Converters for Distributed Power Systems Peter Barbosa, Francisco Canales, Leonardo Serpa and Fred C. Lee The Bradley Department of Electrical and Computer Engineering

More information

Alternated duty cycle control method for half-bridge DC-DC converter

Alternated duty cycle control method for half-bridge DC-DC converter HAIT Journal of Science and Engineering B, Volume 2, Issues 5-6, pp. 581-593 Copyright C 2005 Holon Academic Institute of Technology CHAPTER 3. CONTROL IN POWER ELEC- TRONIC CIRCUITS Alternated duty cycle

More information

Soft-Switching Two-Switch Resonant Ac-Dc Converter

Soft-Switching Two-Switch Resonant Ac-Dc Converter Soft-Switching Two-Switch Resonant Ac-Dc Converter Aqulin Ouseph 1, Prof. Kiran Boby 2,, Prof. Dinto Mathew 3 1 PG Scholar,Department of Electrical and Electronics Engineering, Mar Athanasius College of

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications Karthik Sitapati Professor, EEE department Dayananda Sagar college of Engineering Bangalore, India Kirthi.C.S

More information

THE flyback converter represents a widespread topology,

THE flyback converter represents a widespread topology, 632 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 3, JUNE 2004 Active Voltage Clamp in Flyback Converters Operating in CCM Mode Under Wide Load Variation Nikolaos P. Papanikolaou and Emmanuel

More information

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS - HIGH VOLTAGE BOOST-HALF- BRIDGE (BHB) CELLS USING THREE PHASE DC-DC POWER CONVERTER FOR HIGH POWER APPLICATIONS WITH REDUCED SWITCH V. Saravanan* & R. Gobu** Excel College of Engineering and Technology,

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

RESONANT CIRCUIT MODEL AND DESIGN FOR A HIGH FREQUENCY HIGH VOLTAGE SWITCHED-MODE POWER SUPPLY

RESONANT CIRCUIT MODEL AND DESIGN FOR A HIGH FREQUENCY HIGH VOLTAGE SWITCHED-MODE POWER SUPPLY RESONANT CIRCUIT MODEL AND DESIGN FOR A HIGH FREQUENCY HIGH VOLTAGE SWITCHED-MODE POWER SUPPLY Gleyson L. Piazza, Ricardo L. Alves 2, Carlos H. Illa Font 3 and Ivo Barbi 3 Federal Institute of Santa Catarina,

More information

Zero Voltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability

Zero Voltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability Zero oltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability Hiroki Watanabe 1*, Jun-ichi toh 1 1 Department of Electrical, Electronics and nformation

More information

Zero Voltage Switching In Practical Active Clamp Forward Converter

Zero Voltage Switching In Practical Active Clamp Forward Converter Zero Voltage Switching In Practical Active Clamp Forward Converter Laishram Ritu VTU; POWER ELECTRONICS; India ABSTRACT In this paper; zero voltage switching in active clamp forward converter is investigated.

More information

Zero voltage switching active clamp buck-boost stage Cuk converter

Zero voltage switching active clamp buck-boost stage Cuk converter Zero voltage switching active clamp buck-boost stage Cuk converter B.R. Lin and C.L. Huang Abstract: The paper presents an active clamp buck-boost stage Cuk converter to achieve soft switching commutation.

More information

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter Santosh B L 1, Dr.P.Selvan M.E. 2 1 M.E.(PED),ESCE Perundurai, (India) 2 Ph.D,Dept. of EEE, ESCE,

More information

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER

A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER A LLC RESONANT CONVERTER WITH ZERO CROSSING NOISE FILTER M. Mohamed Razeeth # and K. Kasirajan * # PG Research Scholar, Power Electronics and Drives, Einstein College of Engineering, Tirunelveli, India

More information

BIDIRECTIONAL dc dc converters are widely used in

BIDIRECTIONAL dc dc converters are widely used in 816 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 62, NO. 8, AUGUST 2015 High-Gain Zero-Voltage Switching Bidirectional Converter With a Reduced Number of Switches Muhammad Aamir,

More information

A ZCS-PWM Full-Bridge Boost Converter for Fuel-Cell Applications

A ZCS-PWM Full-Bridge Boost Converter for Fuel-Cell Applications A ZCS-PWM Full-Bridge Boost Converter for Fuel-Cell Applications Ahmad Mousavi, Pritam Das and Gerry Moschopoulos University of Western Ontario Department of Electrical and Computer Engineering Thompson

More information

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Topic 2 Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs Bing Lu Agenda 1. Basic Operation of Flyback and Forward Converters 2. Active Clamp Operation and Benefits

More information

A Three-Phase Buck Rectifier with High-Frequency Isolation by Single-Stage

A Three-Phase Buck Rectifier with High-Frequency Isolation by Single-Stage A Three-Phase Buck Rectifier with High-Frequency Isolation by Single-Stage D. S. Greff, R. da Silva, S. A. Mussa, A. Perin and I. Barbi Federal University of Santa Caratina Power Electronics Institute-INEP

More information

Voltage Fed DC-DC Converters with Voltage Doubler

Voltage Fed DC-DC Converters with Voltage Doubler Chapter 3 Voltage Fed DC-DC Converters with Voltage Doubler 3.1 INTRODUCTION The primary objective of the research pursuit is to propose and implement a suitable topology for fuel cell application. The

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

Soft Switched Resonant Converters with Unsymmetrical Control

Soft Switched Resonant Converters with Unsymmetrical Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. I (Jan Feb. 2015), PP 66-71 www.iosrjournals.org Soft Switched Resonant Converters

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder pn junction! Junction diode consisting of! p-doped silicon! n-doped silicon! A p-n junction where

More information

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER 1 Aravind Murali, 2 Mr.Benny.K.K, 3 Mrs.Priya.S.P 1 PG Scholar, 2 Associate Professor, 3 Assistant Professor Abstract - This paper proposes a highly efficient

More information

A New, Soft-Switched, High-Power-Factor Boost Converter With IGBTs

A New, Soft-Switched, High-Power-Factor Boost Converter With IGBTs IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 4, JULY 2002 469 A New, Soft-Switched, High-Power-Factor Boost Converter With IGBTs Yungtaek Jang, Senior Member, IEEE, and Milan M. Jovanović, Fellow,

More information

Design of Soft Switching Sepic Converter Fed DC Drive Applications

Design of Soft Switching Sepic Converter Fed DC Drive Applications Design of Soft Switching Sepic Converter Fed DC Drive Applications B.Mohamed Faizal, Assistant professor, Dr.S.J.S Paul Memorial College of Engg & Tech, Pondicherry, India ABSTRACT High efficiency DC-DC

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER

THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER THE KURII CIRCUIT: A HIGH POWER FACTOR AND LOW COST THREE-PHASE RECTIFIER Ewaldo L. M. Mehl Ivo Barbi Universidade Federal do Paraná Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica

More information

Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter

Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter S. Preethi 1, I Mahendiravarman 2, A. Ragavendiran 3 and M. Arunprakash 4 Department of EEE, AVC college of Engineering, Mayiladuthurai.

More information

* Corresponding author. A Resonant Local Power Supply with Turn off Snubbing Features. Sam Ben-Yaakov", Ilya Zeltser, and Gregory Ivensky

* Corresponding author. A Resonant Local Power Supply with Turn off Snubbing Features. Sam Ben-Yaakov, Ilya Zeltser, and Gregory Ivensky A Resonant Local Power Supply with Turn off Snubbing Features Sam Ben-Yaakov", Ilya Zeltser, and Gregory Ivensky Power Electronics Laboratory Department of Electrical and Computer Engineering Ben-Gurion

More information

FOR THE DESIGN of high input voltage isolated dc dc

FOR THE DESIGN of high input voltage isolated dc dc 38 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 1, JANUARY 2008 Dual Interleaved Active-Clamp Forward With Automatic Charge Balance Regulation for High Input Voltage Application Ting Qian and Brad

More information

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology 264 Journal of Power Electronics, Vol. 11, No. 3, May 2011 JPE 11-3-3 Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology Tao Meng, Hongqi Ben,

More information

Constant-Frequency Soft-Switching Converters. Soft-switching converters with constant switching frequency

Constant-Frequency Soft-Switching Converters. Soft-switching converters with constant switching frequency Constant-Frequency Soft-Switching Converters Introduction and a brief survey Active-clamp (auxiliary-switch) soft-switching converters, Active-clamp forward converter Textbook 20.4.2 and on-line notes

More information