Development of Optical Interconnect PCBs for High-Speed Electronic Systems Fabricator s View

Size: px
Start display at page:

Download "Development of Optical Interconnect PCBs for High-Speed Electronic Systems Fabricator s View"

Transcription

1 Development of Optical Interconnect PCBs for High-Speed Electronic Systems Fabricator s View 2011 IBM Printed Circuit Board Symposium Raleigh, NC, USA November 16 th 2011, Time: 10:00-10:30am Speaker: Marika Immonen TTM Technologies

2 Outline Motivation Need and Challenges Roadmap for Intra-System Optical Interconnects Optical PCB Development Development Objectives and Target Applications Polymer Waveguide Technology and Channel Termination Test Vehicle Description and Results Summary Future Work

3 Motivation Standard initiatives for higher data rates IEEE 802.3ba 40/100G ratified June st Gen will use 10 Gbps signaling Improvements in size, power, and diff pair count leads increasing data rates per lane 25 Gb/s [IEEE & OIF CEI 25G/28 G]; Gb/s [Infiniband, & Fiber Channel] Growing bandwidth demand Many studies show 40-50% annual growth in global Internet traffic High-definition video and high-speed broadband penetration and consumer IP traffic responsible for majority of the traffic growth. [Cisco Visual Networking Index 2008] Enablers: Smart & media devices, social networks, 3D content, Cloud computing and services Increasing gap between network traffic and hardware development Network traffic 2x in 18 months Server I/O 2x in 24 months Sources: Cisco Visual Networking Index - Forecast and Methodology , IEEE G Copper BP TF; Optical Interconnecting Forum (OIF)

4 Copper Backplane Challenges Some challenges for 25 Gb/s/lane implementation Fabrication: Copper roughness, back drilling stub removal, moving to low & ultra-low loss material set & processes Well controlled Electrical/Mechanical parameters Flatness; Hole locations; Thickness variations Copper geometries & tolerance vs. Impedance, Attenuation, Propagation delay Power Consumption: Goal to keep less 1.5x of power of 10Gb/s [OIF CEI 25/28] => Challenging Cost: Ultra-low loss materials 3-6x FR4; additional chips (equalization, amplification) increase cost Termination: challenging to design (low crosstalk, noise), difficult to maintain form factors & high density Need clear understanding of yield detractors: yield/cost vs. design trade-offs Copper will be used as long as competitive alternatives are not available 4

5 Optics Will Be A Solution to Mitigate Challenges Speed is only one metric, the main drivers for optics are capacity over distance, lower power comsumption, bandwidth density and cost Cost of a Terapipe Over 5 Years Power consumption of 10 Tbps Electrical vs. Optical Router Power Consumption for Interconnect Operating Costs 98% reduction in cost Kotura, The Path to 1 TbE Ethernet Summit Feb % reduction in power consumption IEC Optical Backplane Roadmap 86/374/DC 2010 High-Speed interconnect is costing more power and money A terapipe, bi-directional Tbps interconnect Copper transceivers: $3500/year Each 100G link consumes 10W each (1kW/Tb) Traditional Optics: $700/year Each 10G XFP (10km) consumes 2W (200W/Tb) VCSELs: $70/year Each 10G VCSEL consumes 0.2W (20W/Tb) Silicon Photonics: $70/year Each 10G Si-Pho link consumes 0.2W (20W/Tb) 5

6 Optics Will Be A Solution to Mitigate Challenges Bandwidth Density [Gbps/mm2] Optical=6x electrical [Gbps/mm2] Cross-Talk Copper: Higher frequency signals => wider pitch: 3x signal speed => 3x pitch Frequency 2x leads 6 db increase in crosstalk Photons: Isolation of few microns enough Photons do not suffer EMI IBM Electrical TTM Optical High Speed Design Challenges, Cost and Complexity Signal traces with highly controlled impedance, via holes, and connectors are adding cost Photons: Frequency independent loss and design Core [µm] Pitch [µm] Density [Gbps/mm] Optical vs. copper 50x ,4 50x ,5 35x35 62, ,6 Microstrip Waveguide 6

7 Optical Interconnects for Short Reach Applications Applications per link length Within Data Center: m Rack-to-Rack: m Most links in DC Intra-Rack : < 10 m Intra-Box links: < 1-2m FO links emerging Server/HPC Environment Everyone needs optical interconnect with low power, low cost and high density One size fits all does not meet the requirements in this environment Requirements vary per application Link length vs. cost vs. power consumption vs. density Various physical link implementations, connector and device form-factors needed IEEE Next-Gen 100Gb/s Optical Ethernet Study Group Intra-Box Optical circuit board Opto-electronic module Optical backplane Discussion field in JWG9 Image: Avago -- $/Gbps -- $/Inch of board edge Out-of-Box < 商品化段階 > IEC TC86 field for standardization Fibre cable Optical connector Image: Sunway BlueLight MPP, National Supercomputer Center in Jinan, China -- Potential BW off ASIC -- Watt/Gbps or pj/bit 7

8 Density, Capacity, Complexity Optical Intra-System Link Evolution RACK-TO-RACK BOARD-TO-BOARD BACKPLANES AND ON-BOARD st Gen Fiber links (Single) 2 nd Gen Flex Shuffle Backplane (Fiber flex) Active Optical Cables 1-10 Gb/s (SFP+) 3 rd Gen Fiber Backplanes Fiber Optic Engines (Parallel) 5-25 Gb/s Fiber-Waveguide Backplanes Waveguide Backplanes Fiber-less Engines (Highly parallel) > 12.5 Gb/s Number of links, Integration level, Functionality 8

9 Embedded Waveguide Architecture and Building Blocks CARD 1 Tx/Rx : VCSEL, DRV, PD, TIA Logic IC 2 1. Optical Engines with Interface to waveguides 2. Optical Channel 3. Optical Connectors with functions e.g. 90 beam deflection CARD 1 2 Tx/Rx : VCSEL, DRV, PD, TIA Logic IC BACKPLANE 9

10 Development Objectives Optical/Electrical Circuit Board Technology Hybrid passive PCB with optical and electrical interconnects Optical manufacturing methods and tolerances compliant with conventional PCBs Passive optical alignment and simple assembly (optical device to connector, connector to board, connector to connector) Pluggable optical connectors with reasonable alignment tolerance Cost comparable to electrical solution High reliability and long-term stability 10

11 Optical Waveguide Routing Layout And Components Electrical CARD CARD CARD Optical Optical Routing Requirements Point-to-point links Link length: mm Cascading bends Negative and positive cascading 90 bends Multiple cascading bends per link RoC min 17 mm Crossovers Waveguides intersect in one or more positions along the channel Angles 130 to 160 (40 to 70 ) BACKPLANE/ MIDPLANE R.Pitwon et al.: Design and Implementation of an Electro-Optical Backplane with Pluggable In-Plane Connectors, SPIE , Network Storage Midplane

12 Production Test Vehicle Description Optical/Electrical Mixed Signal Board Generic test bed with multiple waveguide passive components Designed for parallel optics l=850 nm VCSEL /PD 12-channel unidirectional or 4+4 bidirectional Engines Optical waveguide signal layer Multi modal type with numerical aperture (N.A.) matching MMF Square step index profile in multiple core sizes and pitch Core: 25x50µm 2, 50x50µm 2, 70x50µm 2 ; Pitch: 250µm, 100µm Optical circuit layout with multiple design features & functions : Straight, cross-overs, bend waveguides Channel termination and optical I/O coupling Flat end I/O and 45 out-of-coupling micro-mirrors Variations in board construction and layer count 2+W and 2+W+2 (W=waveguide) High-Tg Std. loss FR-4 (baseline); Mid-loss halogen-free base 12

13 Fabricated OE PCB Module : 2+W+2 Connector test sites Embedded Optical Layer Construction : 2+W+2 Waveguides Optical I/O Board build: 2+W+2 (W=waveguide) Board thickness 2.0 mm Optical layer thickness: 115 µm Waveguide width: µm Channel pitch: 100 and 250 µm Integrated 45-deg beam couplers 13

14 Waveguides W= µm, Pitch=100 µm, 250 µm Physical Characterization Parameters: Dimensions, uniformity, alignment accuracy, surface roughness. Tools: Optical, LSCM, SEM L/S 25/100 µm, Pitch 125 µm L/S 50/250 µm, Pitch 250 µm L/S 50/50 µm, Pitch 100 µm L/S 70/30 µm, Pitch 100 µm L/S 50/200 µm, Pitch 250 µm 14

15 Side Wall Roughness vs. Channel Loss Cladding Macro roughness (L=240 µm) λ= 850 nm, Core 100µmx100µm, n core =1,56, n clad =1,49 (NA=0.46) Source: It-Infomation Technology 45 (2003), Core Micro roughness : < 5 nm Ra < 30 nm Core Macro roughness (L=300 µm) Ra < 25 nm White light interferometer (Wyko NT 2000) 15

16 Fabrication Requirements Process requirements Cost-effective processes scalable to standard panel sizes Optical material coatable by conventional processes Thickness control : < 5 µm I-line exposure compatible in ambient conditions High resolution soda lime or quartz mask technology May need soft contact, proximity or projection Processing needs clean room environment Curing temperatures compatible with laminate loading Material selection criteria Low intrinsic absorption at operational wavelength, typ. l = nm Tunability of refractive index to N.A High thermal, mechanical & chemical robustness and compatibility to CCL materials Withstand thermal processes, lamination, solder reflow, humidity, chemicals during processing and service 16

17 Termination, 1 st Level: Chip-to-Waveguide Indirect coupling with micro-optics SMT packaged OEs 90-deg beam turn Loosest tolerance Chip-like approach Complex I/O Low loss m-optics and beam turn No comm.oe- pkgs Indirect coupling without micro-optics Flip chip OEs 90-deg beam turn Simple I/O FC OEs available High accuracy critic. Low loss beam turn Direct coupling OE-chip in cavity or plugg-in rod No beam turn Simple I/O Low loss I/O WG end face critic. 17

18 Termination, 2 nd Level: Card-to-Backplane 1 st Gen. Backplane Connector Flexible waveguide terminated by standard MTconnectors; 90 bend by WG 2 nd Gen. Backplane Connector Connector with coupling device for mid-board vertical access; 90 by built-in deflection optics CARD Waveguide MT MT Waveguide BACKPLANE Development collaboration in HDPUG (High Density Interconnect User Group) Consortium (2010-) Sources: B.Booth HDPUG Opto-Electronic Test Vehicle 1 Feb 2011; D.Morlion et al. Optical Backplane Interconnect June 2011

19 Polymer Waveguide Thermo-Mechanical Stability Commercial siloxane-based material 85 C/85% rh Reliability Performance on FR4 Thermal Stability (TGA) No significant changes in intrinsic attenuation or refractive index Environmental: 85 C /85%-RH > 4500 h Withstand temperatures in excess of 250 C (Solder reflow) 5-wt% loss at 522 C 19

20 Summary and Future Work Potentials for lower power consumption and higher channel density are key drivers for optical interconnects intra-box Manufacturing of waveguides, out-of-plane couplers and routing components on PCBs in panel scale processes is challenging, yet possible Efficient coupling structures and connector solutions and optical engines in packages with interface to waveguides are needed to provide end-to-end optical links for drop-in replacement for Users Reliability system-level needs to be qualified according user specific requirements For commercial break-though Supply chain across the industry to support polymer waveguide technology Clear product roadmaps from End-Users and OEMs for applications Cost/performance comparable to copper by High/Volume fabrication, low-cost device technologies and end applications 20

Polymer Interconnects for Datacom and Sensing. Department of Engineering, University of Cambridge

Polymer Interconnects for Datacom and Sensing. Department of Engineering, University of Cambridge Polymer Interconnects for Datacom and Sensing Richard Penty, Ian White, Nikos Bamiedakis, Ying Hao, Fendi Hashim Department of Engineering, University of Cambridge Outline Introduction and Motivation Material

More information

Optical Bus for Intra and Inter-chip Optical Interconnects

Optical Bus for Intra and Inter-chip Optical Interconnects Optical Bus for Intra and Inter-chip Optical Interconnects Xiaolong Wang Omega Optics Inc., Austin, TX Ray T. Chen University of Texas at Austin, Austin, TX Outline Perspective of Optical Backplane Bus

More information

Opportunities and challenges of silicon photonics based System-In-Package

Opportunities and challenges of silicon photonics based System-In-Package Opportunities and challenges of silicon photonics based System-In-Package ECTC 2014 Panel session : Emerging Technologies and Market Trends of Silicon Photonics Speaker : Stéphane Bernabé (Leti Photonics

More information

Zukunftstechnologie Dünnglasbasierte elektrooptische. Research Center of Microperipheric Technologies

Zukunftstechnologie Dünnglasbasierte elektrooptische. Research Center of Microperipheric Technologies Zukunftstechnologie Dünnglasbasierte elektrooptische Baugruppenträger Dr. Henning Schröder Fraunhofer IZM, Berlin, Germany Today/Overview Motivation: external roadmaps High Bandwidth and Channel Density

More information

4-Channel Optical Parallel Transceiver. Using 3-D Polymer Waveguide

4-Channel Optical Parallel Transceiver. Using 3-D Polymer Waveguide 4-Channel Optical Parallel Transceiver Using 3-D Polymer Waveguide 1 Description Fujitsu Component Limited, in cooperation with Fujitsu Laboratories Ltd., has developed a new bi-directional 4-channel optical

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments

Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments Chip Scale Package Fiber Optic Transceiver Integration for Harsh Environments Chuck Tabbert and Charlie Kuznia Ultra Communications, Inc. 990 Park Center Drive, Suite H Vista, CA, USA, 92081 ctabbert@

More information

Multi-gigabit intra-satellite interconnects employing multi-core fibers and optical engines

Multi-gigabit intra-satellite interconnects employing multi-core fibers and optical engines VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD at ICSO conference 19 Oct 2016 Multi-gigabit intra-satellite interconnects employing multi-core fibers and optical engines Mikko Karppinen et al. VTT P. Westbergh,

More information

inemi OPTOELECTRONICS ROADMAP FOR 2004 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005

inemi OPTOELECTRONICS ROADMAP FOR 2004 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005 inemi OPTOELECTRONICS ROADMAP FOR 2004 0 Dr. Laura J. Turbini University of Toronto SMTA International September 26, 2005 Outline Business Overview Traditional vs Jisso Packaging Levels Optoelectronics

More information

Characterization of Parallel Optical-interconnect Waveguides Integrated on a Printed Circuit Board

Characterization of Parallel Optical-interconnect Waveguides Integrated on a Printed Circuit Board RZ 343 (# 99) 4/12/4 Mathematics & Physics 8 pages Research Report Characterization of Parallel Optical-interconnect Waveguides Integrated on a Printed Circuit Board G.L. Bona, 1 B.J. Offrein, 1 U. Bapst,

More information

WDM board-level optical communications

WDM board-level optical communications MIT Microphotonics Center Spring Meeting, May 22 nd WDM board-level optical communications Jürgen Schrage Siemens AG,, Germany Outline Introduction to board-level optical communications, WDM motivation

More information

How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling

How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling How Bend Insensitive Multimode Fiber is Affecting Installation and Testing of Enterprise and Data Center Cabling David Mazzarese, Technical Manager, Fiber Systems and Standards Engineering, OFS Learning

More information

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012 Si Photonics Technology Platform for High Speed Optical Interconnect Peter De Dobbelaere 9/17/2012 ECOC 2012 - Luxtera Proprietary www.luxtera.com Overview Luxtera: Introduction Silicon Photonics: Introduction

More information

Trends in Optical Transceivers:

Trends in Optical Transceivers: Trends in Optical Transceivers: Light sources for premises networks Peter Ronco Corning Optical Fiber Asst. Product Line Manager Premises Fibers January 24, 2006 Outline: Introduction: Transceivers and

More information

Communications. Mitchell Fields, Ph. D. Director of Strategic Marketing

Communications. Mitchell Fields, Ph. D. Director of Strategic Marketing Optical Navigation Division Optical Interconnects for Chip-to-Chip Communications Mitchell Fields, Ph. D. Director of Strategic Marketing mitch.h.fields@avagotech.comh com Contributors: Avago: Christine

More information

160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects

160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects 160-Gb/s Bidirectional Parallel Optical Transceiver Module for Board-Level Interconnects Fuad Doany, Clint Schow, Jeff Kash C. Baks, D. Kuchta, L. Schares, & R. John IBM T. J. Watson Research Center doany@us.ibm.com

More information

Si photonics for the Zettabyte Era. Marco Romagnoli. CNIT & TeCIP - Scuola Superiore Sant Anna

Si photonics for the Zettabyte Era. Marco Romagnoli. CNIT & TeCIP - Scuola Superiore Sant Anna Si photonics for the Zettabyte Era Marco Romagnoli CNIT & TeCIP - Scuola Superiore Sant Anna Semicon 2013 Dresden 8-10 October 2013 Zetabyte era Disaggregation at system level Integration at chip level

More information

High Speed Interconnects

High Speed Interconnects High Speed Interconnects The Siemon Interconnect Solutions team has developed a full offering of interconnect assemblies for ultra high-speed point-to-point applications. Supporting speeds up to 40Gb/s

More information

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications

Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Modeling, Design, and Demonstration of 2.5D Glass Interposers for 16-Channel 28 Gbps Signaling Applications Brett Sawyer, Bruce C. Chou, Saumya Gandhi, Jack Mateosky, Venky Sundaram, and Rao Tummala 3D

More information

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Peter De Dobbelaere Luxtera Inc. 09/19/2016 Luxtera Proprietary www.luxtera.com Luxtera Company Introduction $100B+ Shift

More information

Scalable Electro-optical Assembly Techniques for Silicon Photonics

Scalable Electro-optical Assembly Techniques for Silicon Photonics Scalable Electro-optical Assembly Techniques for Silicon Photonics Bert Jan Offrein, Tymon Barwicz, Paul Fortier OIDA Workshop on Manufacturing Trends for Integrated Photonics Outline Broadband large channel

More information

Integrated Photonics using the POET Optical InterposerTM Platform

Integrated Photonics using the POET Optical InterposerTM Platform Integrated Photonics using the POET Optical InterposerTM Platform Dr. Suresh Venkatesan CIOE Conference Shenzhen, China Sept. 5, 2018 POET Technologies Inc. TSXV: PUBLIC POET PTK.V Technologies Inc. PUBLIC

More information

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Silicon Photonics Photo-Detector Announcement Mario Paniccia Intel Fellow Director, Photonics Technology Lab Agenda Intel s Silicon Photonics Research 40G Modulator Recap 40G Photodetector Announcement

More information

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland 5th International Symposium for Optical Interconnect in Data Centres in ECOC, Gothenburg,

More information

A tunable Si CMOS photonic multiplexer/de-multiplexer

A tunable Si CMOS photonic multiplexer/de-multiplexer A tunable Si CMOS photonic multiplexer/de-multiplexer OPTICS EXPRESS Published : 25 Feb 2010 MinJae Jung M.I.C.S Content 1. Introduction 2. CMOS photonic 1x4 Si ring multiplexer Principle of add/drop filter

More information

Fiber-Optic Transceivers for High-speed Digital Interconnects in Satellites

Fiber-Optic Transceivers for High-speed Digital Interconnects in Satellites Photo: ESA Fiber-Optic Transceivers for High-speed Digital Interconnects in Satellites ICSO conference, 9 Oct 2014 Mikko Karppinen (mikko.karppinen@vtt.fi), V. Heikkinen, K. Kautio, J. Ollila, A. Tanskanen

More information

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging M. Asghari Kotura Inc April 27 Contents: Who is Kotura Choice of waveguide technology Challenges and merits of Si photonics

More information

ExaMAX 56Gb/s High Speed Orthogonal Connector System

ExaMAX 56Gb/s High Speed Orthogonal Connector System ExaMAX 56Gb/s High Speed Orthogonal Connector System ExaMAX high speed orthogonal connector system is designed to enable superior 56Gb/s electrical performance for increasing bandwidth requirements and

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

High-Speed Board-Level Polymer Optical Sub- Systems

High-Speed Board-Level Polymer Optical Sub- Systems High-Speed Board-Level Polymer Optical Sub- Systems I. H. White, N. Bamiedakis, J. Chen, and R. V. Penty Department of Engineering, University of Cambridge, UK Motivation 3 Motivation - exponential growth

More information

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Daisuke Shimura Kyoko Kotani Hiroyuki Takahashi Hideaki Okayama Hiroki Yaegashi Due to the proliferation of broadband services

More information

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Christoph Theiss, Director Packaging Christoph.Theiss@sicoya.com 1 SEMICON Europe 2016, October 27 2016 Sicoya Overview Spin-off from

More information

Convergence Challenges of Photonics with Electronics

Convergence Challenges of Photonics with Electronics Convergence Challenges of Photonics with Electronics Edward Palen, Ph.D., P.E. PalenSolutions - Optoelectronic Packaging Consulting www.palensolutions.com palensolutions@earthlink.net 415-850-8166 October

More information

Application Interest Group (AIG) Process Overview. Dr. Robert C. Pfahl Director of Roadmapping

Application Interest Group (AIG) Process Overview. Dr. Robert C. Pfahl Director of Roadmapping Application Interest Group (AIG) Process Overview Dr. Robert C. Pfahl Director of Roadmapping Outline Overview of IPSR AIG Process Roadmapping Technical Planning Application Interest Group (AIG) Formation

More information

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects By Mieke Van Bavel, science editor, imec, Belgium; Joris Van Campenhout, imec, Belgium; Wim Bogaerts, imec s associated

More information

Transceiver Ordering Guide

Transceiver Ordering Guide Transceiver Ordering Guide All Systems Broadband offers a wide array of compact form-factor pluggable modules to optimize the performance of your networks. These modules are designed to fit switches, routers,

More information

Graded-Index Core Polymer Optical Waveguide for High-bandwidth-density On-Board Interconnect

Graded-Index Core Polymer Optical Waveguide for High-bandwidth-density On-Board Interconnect European Cluster for Optical Interconnects (ECO) Workshop Sep. 25, 2013 Graded-Index Core Polymer Optical Waveguide for High-bandwidth-density On-Board Interconnect Takaaki Ishigure Faculty of Science

More information

Silicon Photonics for Mid-Board Optical Modules Marc Epitaux

Silicon Photonics for Mid-Board Optical Modules Marc Epitaux Silicon Photonics for Mid-Board Optical Modules Marc Epitaux Chief Architect at Samtec, Inc Outline Interconnect Solutions Mid-Board Optical Modules Silicon Photonics o Benefits o Challenges DragonFly

More information

Specifications subject to change Packaging

Specifications subject to change Packaging VCSEL Standard Product Packaging Options All standard products are represented in the table below. The Part Number for a standard product is determined by replacing the x in the column Generic Part Number

More information

TABLE OF CONTENTS. Sliver Cable Assemblies. TE Connectivity Technical Datasheet

TABLE OF CONTENTS. Sliver Cable Assemblies. TE Connectivity Technical Datasheet TABLE OF CONTENTS Introduction... 2 Description... 2 Features and Benefits... 2 Product Applications... 2 Industry Standards... 2 Technical Documents... 2 Part Numbers... 3 Table 1. Part Number Selection

More information

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane

Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Integrated electro-optical waveguide based devices with liquid crystals on a silicon backplane Florenta Costache Group manager Smart Micro-Optics SMO/AMS Fraunhofer Institute for Photonic Microsystems,

More information

A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC

A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC A 24-Channel 300 Gb/s 8.2 pj/bit Full-Duplex Fiber-Coupled Optical Transceiver Module Based on a Single Holey CMOS IC A. Rylyakov, C. Schow, F. Doany, B. Lee, C. Jahnes, Y. Kwark, C.Baks, D. Kuchta, J.

More information

Introduction of 25 Gb/s VCSELs

Introduction of 25 Gb/s VCSELs Introduction of 25 Gb/s VCSELs IEEE P802.3.ba 40Gb/s and 100Gb/s Ethernet Task Force May 2008, Munich Kenichiro Yashiki - NEC Hikaru Kouta - NEC 1 Contributors and Supporters Jim Tatum - Finisar Akimasa

More information

Product Specification Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver. FTLF8519F2xTL

Product Specification Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver. FTLF8519F2xTL Product Specification 2.125 Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver FTLF8519F2xTL PRODUCT FEATURES Up to 2.125 Gb/s bi-directional data links Standard 2x5 pin SFF footprint (MSA compliant)

More information

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A. Rylyakov, C. Schow, B. Lee, W. Green, J. Van Campenhout, M. Yang, F. Doany, S. Assefa, C. Jahnes, J. Kash, Y. Vlasov IBM

More information

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13 µm CMOS SOI Technology School of Electrical and Electronic Engineering Yonsei University 이슬아 1. Introduction 2. Architecture

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Innovations in Photonic Integration Platforms

Innovations in Photonic Integration Platforms Innovations in Photonic Integration Platforms September 20, 20 Burgeoning Growth Demand Disruptive Technology Video content is fast becoming a larger percentage of total internet traffic 50% Video services

More information

Product Specification Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver. FTLF8519F2xCL. FTLF8519F2xCL

Product Specification Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver. FTLF8519F2xCL. FTLF8519F2xCL Product Specification 2.125 Gb/s RoHS Compliant Short Wavelength 2x5 SFF Transceiver FTLF8519F2xCL PRODUCT FEATURES Up to 2.125 Gb/s bi-directional data links Standard 2x5 pin SFF footprint (MSA compliant)

More information

Pitch Reducing Optical Fiber Array Two-Dimensional (2D)

Pitch Reducing Optical Fiber Array Two-Dimensional (2D) PROFA Pitch Reducing Optical Fiber Array Two-Dimensional (2D) Pitch Reducing Optical Fiber Arrays (PROFAs) provide low loss coupling between standard optical fibers and photonic integrated circuits. Unlike

More information

SFP-10G-M 10G Ethernet SFP+ Transceiver

SFP-10G-M 10G Ethernet SFP+ Transceiver SFP+, LC Connector, 850nm VCSEL with PIN Receiver, Multi Mode, 300M Features Applications High-speed storage area networks Computer cluster cross-connect Custom high-speed data pipes 10GE Storage, 8G Fiber

More information

Advances in CO 2 -Laser Drilling of Glass Substrates

Advances in CO 2 -Laser Drilling of Glass Substrates Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 548 555 LANE 2012 Advances in CO 2 -Laser Drilling of Glass Substrates Lars Brusberg,a, Marco Queisser b, Clemens Gentsch b, Henning

More information

PROBE: Prediction-based Optical Bandwidth Scaling for Energy-efficient NoCs

PROBE: Prediction-based Optical Bandwidth Scaling for Energy-efficient NoCs PROBE: Prediction-based Optical Bandwidth Scaling for Energy-efficient NoCs Li Zhou and Avinash Kodi Technologies for Emerging Computer Architecture Laboratory (TEAL) School of Electrical Engineering and

More information

Nan Ya Plastics Corp.

Nan Ya Plastics Corp. Nan Ya Plastics Corp. The Signal Integrity Study with Fiber Weave Effect Speaker: Peter Liang Electro Material Div. Copper Clad Laminate Unit Nanya CCL 1 Outline: -Demand of High Data Rate For Transmission

More information

IBM T. J. Watson Research Center IBM Corporation

IBM T. J. Watson Research Center IBM Corporation Broadband Silicon Photonic Switch Integrated with CMOS Drive Electronics B. G. Lee, J. Van Campenhout, A. V. Rylyakov, C. L. Schow, W. M. J. Green, S. Assefa, M. Yang, F. E. Doany, C. V. Jahnes, R. A.

More information

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland Silicon photonics with low loss and small polarization dependency Timo Aalto VTT Technical Research Centre of Finland EPIC workshop in Tokyo, 9 th November 2017 VTT Technical Research Center of Finland

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

PCB Material Selection for High-speed Digital Designs. Add a subtitle

PCB Material Selection for High-speed Digital Designs. Add a subtitle PCB Material Selection for High-speed Digital Designs Add a subtitle Outline Printed Circuit Boards (PCBs) for Highspeed Digital (HSD) applications PCB factors that limit High-speed Digital performance

More information

QSFP+ CONNECTORS AND CAGES

QSFP+ CONNECTORS AND CAGES QSFP+ CONNECTORS AND CAGES Quick Reference Guide QSFP+ Solutions Introducing QSFP+ Family QSFP (or quad SFP) connectors provide four channels of data in one pluggable interface. Each channel is capable

More information

Fiber Optic Principles. Oct-09 1

Fiber Optic Principles. Oct-09 1 Fiber Optic Principles Oct-09 1 Fiber Optic Basics Optical fiber Active components Attenuation Power budget Bandwidth Oct-09 2 Reference www.flukenetworks.com/fiber Handbook Fiber Optic Technologies (Vivec

More information

Soft-lithography-based Inter-chip Optical Interconnects

Soft-lithography-based Inter-chip Optical Interconnects PIERS ONLINE, VOL. 4, NO. 8, 2008 871 Soft-lithography-based Inter-chip Optical Interconnects Wei Ni 1, Rubing Shao 1, Jing Wu 2, and X. Wu 1 1 State Key Laboratory of Modern Optical Instrumentation, Department

More information

The Future of Packaging ~ Advanced System Integration

The Future of Packaging ~ Advanced System Integration The Future of Packaging ~ Advanced System Integration Enabling a Microelectronic World R. Huemoeller SVP, Adv. Product / Platform Develop June 2013 Product Segments End Market % Share Summary 2 New Product

More information

J4858C- NW SFP GIGABIT INTERFACE SX, 850nm

J4858C- NW SFP GIGABIT INTERFACE SX, 850nm J4858C- NW SFP GIGABIT INTERFACE SX, 850nm Features Up to 1.25 Gb/s NRZ Single +3.3V Power Supply Hot-Pluggable SFP footprint Metal enclosure, for lower EMI Up to 500m on 50/62.5μm MMF Duplex LC connector

More information

Presentation Overview

Presentation Overview Low-cost WDM Transceiver Technology for 10-Gigabit Ethernet and Beyond Brian E. Lemoff, Lisa A. Buckman, Andrew J. Schmit, and David W. Dolfi Agilent Laboratories Hot Interconnects 2000 Stanford, CA August

More information

PRODUCT FEATURES APPLICATIONS. Pin Assignment: 1 Gigabit Long-Wavelength SFP Transceiver SFP-SX-MM

PRODUCT FEATURES APPLICATIONS. Pin Assignment: 1 Gigabit Long-Wavelength SFP Transceiver SFP-SX-MM 1 Gigabit Long-Wavelength SFP Transceiver SFP-SX-MM PRODUCT FEATURES Up to 1.25Gb/s bi-directional data links Hot-pluggable SFP footprint Built-in digital diagnostic functions 850nm VCSEL laser transmitter

More information

Fiber-optic transceivers for multi-gigabit interconnects in space systems

Fiber-optic transceivers for multi-gigabit interconnects in space systems VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Photo: ESA Fiber-optic transceivers for multi-gigabit interconnects in space systems at EPIC Tech Watch of Micro Photonics Expo, Berlin, 11 Oct 2016 Mikko Karppinen(mikko.karppinen@vtt.fi)

More information

GLC-SX-MM-LEG. 1.25Gbps SFP Transceiver

GLC-SX-MM-LEG. 1.25Gbps SFP Transceiver GLC-SX-MM-LEG CISCO 1000BASE-SX SFP MMF 850NM 550M REACH LC GLC-SX-MM-LEG 1.25Gbps SFP Transceiver Features Up to 1.25Gb/s data links Duplex LC connector Hot-pluggable SFP footprint 850nm VCSEL Laser transmitter

More information

RJ-3G-RX2 Rugged RJ Size Fiber Optic Dual Receiver Fiber Optic Dual Receiver

RJ-3G-RX2 Rugged RJ Size Fiber Optic Dual Receiver Fiber Optic Dual Receiver RJ-3G-RX2 Rugged RJ Size Features: Compliant to ARINC 818 1.0625 Gb/s and 3.1875 Gb/s data rates Dual 850nm VCSEL PIN receiver Rugged LC connector housing including screw mounted OSAs 1x10 connector pinout

More information

Datasheet. SFP Optical Transceiver Product Features SFP-11D-M550T85. Applications. Description. SFP 550m transceiver 1G SX Ethernet

Datasheet. SFP Optical Transceiver Product Features SFP-11D-M550T85. Applications. Description. SFP 550m transceiver 1G SX Ethernet SFP Optical Transceiver Product Features 1BASE-SX Ethernet 7.5 SFP 55m SX SFP for MMF @ 1.25Gbps 85nm CSEL Laser 55m SFP C - 7 C Temperature - Extended/Industrial Available 2-Wire Interface Digital Diagnostic

More information

Source: Nanju Na Jean Audet David R Stauffer IBM Systems and Technology Group

Source: Nanju Na Jean Audet David R Stauffer IBM Systems and Technology Group Title: Package Model Proposal Source: Nanju Na (nananju@us.ibm.com) Jean Audet (jaudet@ca.ibm.com), David R Stauffer (dstauffe@us.ibm.com) Date: Dec 27 IBM Systems and Technology Group Abstract: New package

More information

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package

Data Sheet. Description. Features. Transmitter. Applications. Receiver. Package AFBR-59F1Z 125MBd Compact 650 nm Transceiver for Data Communication over Polymer Optical Fiber (POF) cables with a bare fiber locking system Data Sheet Description The Avago Technologies AFBR-59F1Z transceiver

More information

Si CMOS Technical Working Group

Si CMOS Technical Working Group Si CMOS Technical Working Group CTR, Spring 2008 meeting Markets Interconnects TWG Breakouts Reception TWG reports Si CMOS: photonic integration E-P synergy - Integration - Standardization - Cross-market

More information

New silicon photonics technology delivers faster data traffic in data centers

New silicon photonics technology delivers faster data traffic in data centers Edition May 2017 Silicon Photonics, Photonics New silicon photonics technology delivers faster data traffic in data centers New transceiver with 10x higher bandwidth than current transceivers. Today, the

More information

AXGE Gbps Single-mode 1310nm, SFP Transceiver

AXGE Gbps Single-mode 1310nm, SFP Transceiver AXGE-1354 1.25Gbps Single-mode 1310nm, SFP Transceiver Product Overview Features The AXGE-1354 family of Small Form Factor Pluggable (SFP) transceiver module is specifically designed for the high performance

More information

Organic Packaging Substrate Workshop Overview

Organic Packaging Substrate Workshop Overview Organic Packaging Substrate Workshop Overview Organized by: International Electronics Manufacturing Initiative (inemi) Mario A. Bolanos November 17-18, 2009 1 Organic Packaging Substrate Workshop Work

More information

Application Bulletin 240

Application Bulletin 240 Application Bulletin 240 Design Consideration CUSTOM CAPABILITIES Standard PC board fabrication flexibility allows for various component orientations, mounting features, and interconnect schemes. The starting

More information

AXGE Gbps Single-mode 1310nm, 1x9 DSC Transceiver

AXGE Gbps Single-mode 1310nm, 1x9 DSC Transceiver AXGE-1351 1.25Gbps Single-mode 1310nm, 1x9 DSC Transceiver Product Overview Features The AXGE-1351 family of 1x9 DSC transceiver modules is specifically designed for the high performance integrated duplex

More information

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Special Issue Optical Communication The Development of the 16 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link Tomofumi Kise* 1, Toshihito Suzuki* 2, Masaki Funabashi* 1, Kazuya Nagashima*

More information

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication

Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Integration of Optoelectronic and RF Devices for Applications in Optical Interconnect and Wireless Communication Zhaoran (Rena) Huang Assistant Professor Department of Electrical, Computer and System Engineering

More information

AddOn Computer s SFP transceivers are RoHS compliant and lead- free.

AddOn Computer s SFP transceivers are RoHS compliant and lead- free. SFP- 1000BASE- SX- AO 1000BASE- SX SFP MMF 850NM 550M REACH LC www.addoncomputer.com SFP- 1000BASE- SX- AO 1.25Gbps SFP Transceiver Features Up to 1.25Gb/s data links Duplex LC connector Hot- pluggable

More information

SFF-4G-SX Rugged 1.25 Gb/s to 4.25 Gb/s SFF Fiber Optic Transceiver

SFF-4G-SX Rugged 1.25 Gb/s to 4.25 Gb/s SFF Fiber Optic Transceiver Features: 1.25 Gb/s to 4.25 Gb/s duplex data links 850 nm VCSEL laser transmitter and PIN receiver Class 1 Laser Int. Safety Std. IEC-825 compliant Standard reach of 500 m on 50/125 and 250 m on 62.5/125

More information

Datasheet. SFP Optical Transceiver Product Features SFP-11D-K0P5B31. Applications. Description. SFP Single Fiber 550m transceiver 1G BX Ethernet

Datasheet. SFP Optical Transceiver Product Features SFP-11D-K0P5B31. Applications. Description. SFP Single Fiber 550m transceiver 1G BX Ethernet SFP Optical Transceiver Product Features 1BASE-BX Ethernet 11.5 SFP 55m BX SFP for MMF @ 1.25Gbps 131Tx - 155Rx FP Laser 55m SFP C - 7 C Temperature - Extended/Industrial Available 2-Wire Interface Digital

More information

Silicon photonics integration roadmap for applications in computing systems

Silicon photonics integration roadmap for applications in computing systems Silicon photonics integration roadmap for applications in computing systems Bert Jan Offrein Neuromorphic Devices and Systems Group 2016 IBM Corporation Outline Photonics and computing? The interconnect

More information

Emerging Highly Compact Amplification Solutions for Coherent Transmission

Emerging Highly Compact Amplification Solutions for Coherent Transmission Emerging Highly Compact Amplification Solutions for Coherent Transmission Market Focus ECOC 2017 Sep 20, 2017 Dr. Sanjai Parthasarathi Vice President, Product Marketing & Strategy II-VI Photonics Outline

More information

Arista 40GBASE-XSR4-AR. Part Number: 40GBASE-XSR4-AR 40GBASE-XSR4-AR OVERVIEW APPLICATIONS PRODUCT FEATURES. FluxLight, Inc

Arista 40GBASE-XSR4-AR. Part Number: 40GBASE-XSR4-AR 40GBASE-XSR4-AR OVERVIEW APPLICATIONS PRODUCT FEATURES. FluxLight, Inc Part Number: 40GBASE-XSR4-AR 40GBASE-XSR4-AR OVERVIEW The 40GBASE-XSR4-AR is a parallel 40 Gbps Quad Small Form-factor Pluggable (QSFP+) optical module. It provides increased port density and total system

More information

Silicon Optical Modulator

Silicon Optical Modulator Silicon Optical Modulator Silicon Optical Photonics Nature Photonics Published online: 30 July 2010 Byung-Min Yu 24 April 2014 High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering

More information

Hermetic Packaging Solutions using Borosilicate Glass Thin Films. Lithoglas Hermetic Packaging Solutions using Borosilicate Glass Thin Films

Hermetic Packaging Solutions using Borosilicate Glass Thin Films. Lithoglas Hermetic Packaging Solutions using Borosilicate Glass Thin Films Hermetic Packaging Solutions using Borosilicate Glass Thin Films 1 Company Profile Company founded in 2006 ISO 9001:2008 qualified since 2011 Headquarters and Production in Dresden, Germany Production

More information

APSUNY PDK: Overview and Future Trends

APSUNY PDK: Overview and Future Trends APSUNY PDK: Overview and Future Trends Erman Timurdogan Analog Photonics, 1 Marina Park Drive, Suite 205, Boston, MA, 02210 erman@analogphotonics.com Silicon Photonics Integrated Circuit Process Design

More information

CFORTH-QSFP28-100G-AOCxM Specification Rev. D00A. Applications

CFORTH-QSFP28-100G-AOCxM Specification Rev. D00A. Applications CFORTH-QSFP28-100G-AOCxM Specification Rev. D00A Preliminary DATA SHEET CFORTH-QSFP28-100G-AOCxM 100Gb/s QSFP28 Active Optical Cable Transceiver CFORTH-QSFP28-100G-AOCxM Overview CFORTH-QSFP28-100G-AOCxM

More information

Cisco PONC Pavan Voruganti Senior Product Manager. March 2015

Cisco PONC Pavan Voruganti Senior Product Manager. March 2015 Cisco PONC 2015 Pavan Voruganti Senior Product Manager March 2015 Bandwidth Explosion With a progressive uptake of video, IP, audio and cloud the compound annual growth rate (CAGR) of IP traffic is above

More information

GLC-LH-SMD-AO. 1.25Gbps SFP Transceiver

GLC-LH-SMD-AO. 1.25Gbps SFP Transceiver GLC-LH-SMD-AO Cisco 1000Base-LX SFP SMF 1310nm, 10km Reach, LC, DOM www.addonnetworks.com GLC-LH-SMD-AO 1.25Gbps SFP Transceiver Features Up to 1.25Gb/s data links Duplex LC connector Hot-pluggable SFP

More information

Markets for On-Chip and Chip-to-Chip Optical Interconnects 2015 to 2024 January 2015

Markets for On-Chip and Chip-to-Chip Optical Interconnects 2015 to 2024 January 2015 Markets for On-Chip and Chip-to-Chip Optical Interconnects 2015 to 2024 January 2015 Chapter One: Introduction Page 1 1.1 Background to this Report CIR s last report on the chip-level optical interconnect

More information

LTF8506 SFP+ AOC 10G Ethernet SFP+ Active Optical Cable

LTF8506 SFP+ AOC 10G Ethernet SFP+ Active Optical Cable Product Description he LTF8506 is a SFP+ active optical cable (AOC) for 10Gb Ethernet optical links. It is compliant with the SFF8431 for electrical specification and SFF8432 for mechanical specification.

More information

Comparison of Bandwidth Limits for On-card Electrical and Optical Interconnects for 100 Gb/s and Beyond

Comparison of Bandwidth Limits for On-card Electrical and Optical Interconnects for 100 Gb/s and Beyond Invited Paper Comparison of Bandwidth Limits for On-card Electrical and Optical Interconnects for 1 Gb/s and Beyond Petar Pepeljugoski *, Mark Ritter, Jeffrey A. Kash, Fuad Doany, Clint Schow, Young Kwark,

More information

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli Microphotonics Readiness for Commercial CMOS Manufacturing Marco Romagnoli MicroPhotonics Consortium meeting MIT, Cambridge October 15 th, 2012 Passive optical structures based on SOI technology Building

More information

Cable and Port Specifications

Cable and Port Specifications APPENDIX D This appendix includes the following information: Cables and Adapters Provided, page D-1 Console Port, page D-2 COM1 Port, page D-3 MGMT 10/100 Ethernet Port, page D-5 SFP Transceiver Specifications,

More information

- no emitters/amplifiers available. - complex process - no CMOS-compatible

- no emitters/amplifiers available. - complex process - no CMOS-compatible Advantages of photonic integrated circuits (PICs) in Microwave Photonics (MWP): compactness low-power consumption, stability flexibility possibility of aggregating optics and electronics functionalities

More information

Arista QSFP-40G-PLR4. Part Number: QSFP-40G-PLR4 QSFP-40G-PLR4 OVERVIEW PRODUCT FEATURES APPLICATIONS FUNCTIONAL DIAGRAM.

Arista QSFP-40G-PLR4. Part Number: QSFP-40G-PLR4 QSFP-40G-PLR4 OVERVIEW PRODUCT FEATURES APPLICATIONS FUNCTIONAL DIAGRAM. Part Number: QSFP-40G-PLR4 QSFP-40G-PLR4 OVERVIEW The QSFP-40G-PLR4 is a parallel 40 Gbps Quad Small Form-factor Pluggable (QSFP+) optical module. It provides increased port density and total system cost

More information

1.25Gbps Multimode 1310nm, 1x9 DSC Transceiver

1.25Gbps Multimode 1310nm, 1x9 DSC Transceiver AXGE-1351 1.25Gbps Multimode 1310nm, 1x9 DSC Transceiver Product Overview The AXGE-1351 family of 1x9 DSC transceiver modules is specifically designed for the high performance integrated duplex data link

More information

JD061A-C. 1.25Gbps SFP Transceiver

JD061A-C. 1.25Gbps SFP Transceiver JD061A-C HP 1000Base-EX SFP SMF 1310nm, 40km Reach, LC JD061A-C 1.25Gbps SFP Transceiver Features Up to 1.25Gb/s data links Duplex LC connector Hot-pluggable SFP footprint 1310nm FP Laser transmitter RoHS

More information