An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series.

Size: px
Start display at page:

Download "An active filters means using amplifiers to improve the filter. An acive second-order RC low-pass filter still has two RC components in series."

Transcription

1 Active Filters An active filters means using amplifiers to improve the filter. An acive second-order low-pass filter still has two components in series. Hjω ( ) = = jω ω B 2jω ω B ( ω ω B ) 2 G( ω) = = 2( ω ω B ) 2 ( ω ω B ) 4 The amplifier buffer changes the impedance. This filter is sharper than the non-buffered filter ( ω ω B ) 2 of 2

2 Gyrator Active feedback alters the effective impedance of an element. The gyrator alters the apparent impedance of the load element. The op-amp rules are used to find the effective input impedance. On the non-inverting input: On the inverting input: i in Z load i in = i in Z load = Z load v = Z load ( out Z load v i ) in in i in -- Z load = v Z in = v load Z in load So and the impedance is the negative of the load. Z in = = Z i load in 2 of 2

3 Artificial Inductor If the load on a gyrator is a capacitor the phase behaves like an inductor. Z in = = jω j ω This would not have the frequency dependence of an inductor. With two gyrators a capacitor can act as an inductor in phase and frequency. Z in L = 2 GY GY Z in ( jω) = = jω 2 jω Inductors are difficult to miniaturize and have intrinsic resistance that may be undesirable. The inductor can be replaced by a gyrator circuit. 3 of 2

4 Active Bandpass A single pole filter uses a parallel L circuit as the feedback network. L 2 Use a notch filter in a inverting amplifier also makes a bandpass filter. Twin-T 2 At the notch frequency the Twin-T has infinite impedance, A = - 2 /. If >> Z TT, for other frequencies A = - TT / = 0. 4 of 2

5 Bootstrapping Bootstrapping refers to the use of feedback to make a very large input impedance by setting i in = 0 through a coupling capacitor for A frequencies of interest. 2 = The circuit is set for an A input signal with capacitive coupling to the non-inverting input. The feedback circuit will give unity gain of the A part of the signal. If the A part of the signal can pass through the coupling capacitor, it can also pass through the capacitor at the inverting input. The signal is the same on both sides of resristor. Since the voltage drop across = 0 and no current enters the opamp, i in = 0. The input impedance Z in = /i in, and should be very large. i in 5 of 2

6 Sallen-Key Filter The Sallen-Key filter looks like two filters (two pole) and a x amplifier (buffer). There is a bootstrap to create a large input impedance. For example, a high-pass Sallen-Key filter uses a resistor as the bootstrap. 2 i in 2 = The breakpoint frequency is ω b = The roll-off for very low frequencies is 40 db/decade or 2 db/octave. 6 of 2

7 Low Pass Sallen-Key The low-pass Sallen-Key filter swaps the resistors and capacitors. v 2 in 2 The circuit behavior is equivalent to a damped driven mechanical oscillator. The driving force is. The damping factor is d 0 = --- = ( Q 2 ) 2 ω b As a passive network, the oscillator can be overdamped, underdamped or critically damped: overdamped (d 2 0 > 2), underdamped (d 2 0 < 2), critically damped (d 2 0 = 2). 7 of 2

8 Voltage-ontrolled Voltage Source A voltage-controlled voltage source (VVS) replaces the Sallen-Key unity gain buffer with a noninverting amplifier. The high-pass VVS has two additional resistors to create a gain A A = 3 / 4 The gain is usually expressed as a factor K. 3 K = A = of 2

9 VVS Damping As with the Sallen-Key, the low-pass VVS swaps pairs of resistors and capacitors A = 3 / 4 With a variable gain for negative feedback and matching = 2 =, = 2 =, the gain and damping are independent of the break frequency = The gain remains A 0 = ω B The damping is 3 d 0 = 3 A 0 = of 2

10 Butterworth Low-Pass The VVS can be used to make an active filter version of the Butterworth filter. 4 3 K = 3 / 4 The desired damping is d 0 =.44, so K = 3 d 0 =.586. The ratio 3 / 4 = 2 d 0 = For a cutoff frequency at KHz, ω B = 6.28 x 0 3 s -. esistors are best in range from KΩ to 0 KΩ So typical = /ω B ; about 0. μf at.5 KΩ. High pass just inverts and in the circuit. Higher order filters requires multiple stages, with K-values set for each stage. 0 of 2

11 Bessel and hebyshev VVS The VVS can also be used to make other special purpose active filters. The Bessel filter needs a normalizing factor f n for the frequency: = /f n ω B. The gain for a Bessel filter requires K =.268, and the frequency factor is f n =.272. The hebyshev filter has an additional variable that controls the ripple band size. For a ripple band of 0.5 db: K =.842, f n =.23. For a ripple band of 2.0 db: K = 2.4, f n = Users of specific values and higher order filters rely on tanles of K and f n values for circuit design. of 2

12 Bandpass VVS Filter The VVS circuit can also be used to create a bandpass filter. Use one-pole for each cutoff frequency. 4 3 v 5 in 2 2 The cutoff frequencies are at / and / of 2

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 21 Active Filters Topics Covered in Chapter 21 Ideal responses Approximate responses Passive ilters First-order stages VCVS unity-gain second-order

More information

Chapter 15: Active Filters

Chapter 15: Active Filters Chapter 15: Active Filters 15.1: Basic filter Responses A filter is a circuit that passes certain frequencies and rejects or attenuates all others. The passband is the range of frequencies allowed to pass

More information

Frequency Responses and Active Filter Circuits

Frequency Responses and Active Filter Circuits Frequency Responses and Active Filter Circuits Compensation capacitors and parasitic capacitors will influence the frequency response Capacitors are also purposely added to create certain functions; e.g.

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 15 Active Filter Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 15.1 First-Order

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Continuing the discussion of Op Amps, the next step is filters. There are many different types of filters, including low pass, high pass and band pass. We will discuss each of the

More information

Active Filter. Low pass filter High pass filter Band pass filter Band stop filter

Active Filter. Low pass filter High pass filter Band pass filter Band stop filter Active Filter Low pass filter High pass filter Band pass filter Band stop filter Active Low-Pass Filters Basic Low-Pass filter circuit At critical frequency, esistance capacitance X c ω c πf c So, critical

More information

Active Filter Design Techniques

Active Filter Design Techniques Active Filter Design Techniques 16.1 Introduction What is a filter? A filter is a device that passes electric signals at certain frequencies or frequency ranges while preventing the passage of others.

More information

Example #6 1. An amplifier with a nominal gain

Example #6 1. An amplifier with a nominal gain 1. An amplifier with a nominal gain A=1000 V/V exhibits a gain change of 10% as the operating temperature changes from 25 o C to 75 o C. If it is required to constrain the change to 0.1% by applying negative

More information

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz

1) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz ) Consider the circuit shown in figure below. Compute the output waveform for an input of 5kHz Solution: a) Input is of constant amplitude of 2 V from 0 to 0. ms and 2 V from 0. ms to 0.2 ms. The output

More information

EXPERIMENT 1: Characteristics of Passive and Active Filters

EXPERIMENT 1: Characteristics of Passive and Active Filters Kathmandu University Department of Electrical and Electronics Engineering ELECTRONICS AND ANALOG FILTER DESIGN LAB EXPERIMENT : Characteristics of Passive and Active Filters Objective: To understand the

More information

Active Filters - Revisited

Active Filters - Revisited Active Filters - Revisited Sources: Electronic Devices by Thomas L. Floyd. & Electronic Devices and Circuit Theory by Robert L. Boylestad, Louis Nashelsky Ideal and Practical Filters Ideal and Practical

More information

Introduction (cont )

Introduction (cont ) Active Filter 1 Introduction Filters are circuits that are capable of passing signals within a band of frequencies while rejecting or blocking signals of frequencies outside this band. This property of

More information

Lecture 17 Date: Parallel Resonance Active and Passive Filters

Lecture 17 Date: Parallel Resonance Active and Passive Filters Lecture 17 Date: 09.10.2017 Parallel Resonance Active and Passive Filters Parallel Resonance At resonance: The voltage V as a function of frequency. At resonance, the parallel LC combination acts like

More information

Homework Assignment 03

Homework Assignment 03 Homework Assignment 03 Question 1 (Short Takes), 2 points each unless otherwise noted. 1. Two 0.68 μf capacitors are connected in series across a 10 khz sine wave signal source. The total capacitive reactance

More information

Lecture 8: More on Operational Amplifiers (Op Amps)

Lecture 8: More on Operational Amplifiers (Op Amps) Lecture 8: More on Operational mplifiers (Op mps) Input Impedance of Op mps and Op mps Using Negative Feedback: Consider a general feedback circuit as shown. ssume that the amplifier has input impedance

More information

Analog Design-filters

Analog Design-filters Analog Design-filters Introduction and Motivation Filters are networks that process signals in a frequency-dependent manner. The basic concept of a filter can be explained by examining the frequency dependent

More information

Operational Amplifiers

Operational Amplifiers Fundamentals of op-amp Operation modes Golden rules of op-amp Op-amp circuits Inverting & non-inverting amplifier Unity follower, integrator & differentiator Introduction An operational amplifier, or op-amp,

More information

Homework Assignment 10

Homework Assignment 10 Homework Assignment 10 Question The amplifier below has infinite input resistance, zero output resistance and an openloop gain. If, find the value of the feedback factor as well as so that the closed-loop

More information

Lecture 2: Non-Ideal Amps and Op-Amps

Lecture 2: Non-Ideal Amps and Op-Amps Lecture 2: Non-Ideal Amps and Op-Amps Prof. Ali M. Niknejad Department of EECS University of California, Berkeley Practical Op-Amps Linear Imperfections: Finite open-loop gain (A 0 < ) Finite input resistance

More information

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below:

Assume availability of the following components to DESIGN and DRAW the circuits of the op. amp. applications listed below: ========================================================================================== UNIVERSITY OF SOUTHERN MAINE Dept. of Electrical Engineering TEST #3 Prof. M.G.Guvench ELE343/02 ==========================================================================================

More information

ELEC207 LINEAR INTEGRATED CIRCUITS

ELEC207 LINEAR INTEGRATED CIRCUITS Concept of VIRTUAL SHORT For feedback amplifiers constructed with op-amps, the two op-amp terminals will always be approximately equal (V + = V - ) This condition in op-amp feedback amplifiers is known

More information

Operational Amplifiers

Operational Amplifiers Questions Easy Operational Amplifiers 1. Which of the following statements are true? a. An op-amp has two inputs and three outputs b. An op-amp has one input and two outputs c. An op-amp has two inputs

More information

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout

The above figure represents a two stage circuit. Recall, the transfer function relates. Vout LABORATORY 12: Bode plots/second Order Filters Material covered: Multistage circuits Bode plots Design problem Overview Notes: Two stage circuits: Vin1 H1(s) Vout1 Vin2 H2(s) Vout2 The above figure represents

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

Butterworth Active Bandpass Filter using Sallen-Key Topology

Butterworth Active Bandpass Filter using Sallen-Key Topology Butterworth Active Bandpass Filter using Sallen-Key Topology Technical Report 5 Milwaukee School of Engineering ET-3100 Electronic Circuit Design Submitted By: Alex Kremnitzer Date: 05-11-2011 Date Performed:

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.5 Integrators and Differentiators Utilized resistors in the op-amp feedback and feed-in path Ideally independent of frequency Use of capacitors together

More information

Low Pass Filter Introduction

Low Pass Filter Introduction Low Pass Filter Introduction Basically, an electrical filter is a circuit that can be designed to modify, reshape or reject all unwanted frequencies of an electrical signal and accept or pass only those

More information

Lesson number one. Operational Amplifier Basics

Lesson number one. Operational Amplifier Basics What About Lesson number one Operational Amplifier Basics As well as resistors and capacitors, Operational Amplifiers, or Op-amps as they are more commonly called, are one of the basic building blocks

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm 1,

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

L02 Operational Amplifiers Applications 1

L02 Operational Amplifiers Applications 1 L02 Operational Amplifiers Applications 1 Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits Donald A. Neamen (2009). Microelectronics: Circuit Analysis and Design, 4th Edition, Mc-Graw-Hill Prepared

More information

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS

EE LINEAR INTEGRATED CIRCUITS & APPLICATIONS UNITII CHARACTERISTICS OF OPAMP 1. What is an opamp? List its functions. The opamp is a multi terminal device, which internally is quite complex. It is a direct coupled high gain amplifier consisting of

More information

REPLACING OP-AMPS WITH BJTS AS VOLTAGE BUFFERS

REPLACING OP-AMPS WITH BJTS AS VOLTAGE BUFFERS REPLAING OP-AMPS WITH BJTS AS VOLTAGE BUFFERS December 3, 24 J.L. 2 SALLEN AND KEY FILTERS Background and motivation Often when designing simple audio-related circuits it seems such a waste to put in an

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS Issued 9/22/2008 Pre Lab Completed 9/29/2008 Lab Due in Lecture 10/6/2008 Introduction In this lab you will design a

More information

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING

ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING ME 365 EXPERIMENT 7 SIGNAL CONDITIONING AND LOADING Objectives: To familiarize the student with the concepts of signal conditioning. At the end of the lab, the student should be able to: Understand the

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrical ircuits II (EE33b) ariablefrequency Network Performance (Part 3) Anestis Dounavis The University of Western Ontario Faculty of Engineering Science Scaling Often the values of circuit parameters

More information

University of Southern California

University of Southern California University of Southern alifornia Ming Hsieh Department of Electrical Engineering EE 0L - Linear ircuits Homework Set #6 Due in class Thursday 9 April Problems 3.33 3.34 3.35 a and b only) The problems

More information

Assist Lecturer: Marwa Maki. Active Filters

Assist Lecturer: Marwa Maki. Active Filters Active Filters In past lecture we noticed that the main disadvantage of Passive Filters is that the amplitude of the output signals is less than that of the input signals, i.e., the gain is never greater

More information

INTRODUCTION TO FILTER CIRCUITS

INTRODUCTION TO FILTER CIRCUITS INTRODUCTION TO FILTER CIRCUITS 1 2 Background: Filters may be classified as either digital or analog. Digital filters are implemented using a digital computer or special purpose digital hardware. Analog

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G)

ECE 3410 Homework 4 (C) (B) (A) (F) (E) (D) (H) (I) Solution. Utah State University 1 D1 D2. D1 v OUT. v IN D1 D2 D1 (G) ECE 341 Homework 4 Problem 1. In each of the ideal-diode circuits shown below, is a 1 khz sinusoid with zero-to-peak amplitude 1 V. For each circuit, sketch the output waveform and state the values of

More information

Fundamentals of Active Filters

Fundamentals of Active Filters Fundamentals of Active Filters This training module covers active filters. It introduces the three main filter optimizations, which include: Butterworth, Chebyshev and Bessel. The general transfer function

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Wheatstone Bridge and Filters Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of

More information

EE301 ELECTRONIC CIRCUITS

EE301 ELECTRONIC CIRCUITS EE30 ELECTONIC CICUITS CHAPTE 5 : FILTES LECTUE : Engr. Muhammad Muizz Electrical Engineering Department Politeknik Kota Kinabalu, Sabah. 5. INTODUCTION Is a device that removes or filters unwanted signal.

More information

Downloaded from

Downloaded from VI SEMESTER FINAL EXAMINATION 2003 Attempt ALL questions. Q. [1] [a] What is filter? Why it is required? Define half power points, rolloff and centre frequency. [3] [b] Plot the magnitude and phase response

More information

CHAPTER 14. Introduction to Frequency Selective Circuits

CHAPTER 14. Introduction to Frequency Selective Circuits CHAPTER 14 Introduction to Frequency Selective Circuits Frequency-selective circuits Varying source frequency on circuit voltages and currents. The result of this analysis is the frequency response of

More information

Electronics basics for MEMS and Microsensors course

Electronics basics for MEMS and Microsensors course Electronics basics for course, a.a. 2017/2018, M.Sc. in Electronics Engineering Transfer function 2 X(s) T(s) Y(s) T S = Y s X(s) The transfer function of a linear time-invariant (LTI) system is the function

More information

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Analog Filters D R. T A R E K T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Analog Filters D. T A E K T U T U N J I P H I L A D E L P H I A U N I V E S I T Y, J O D A N 2 0 4 Introduction Electrical filters are deigned to eliminate unwanted frequencies Filters can be classified

More information

A third-order active-r filter with feedforward input signal

A third-order active-r filter with feedforward input signal Sādhanā Vol. 28, Part 6, December 2003, pp. 1019 1026. Printed in India A third-order active-r filter with feedforward input signal G N SHINDE 1,PBPATIL 2 and P R MIRKUTE 1 1 Department of Electronics,

More information

Lecture 2 Analog circuits. IR detection

Lecture 2 Analog circuits. IR detection Seeing the light.. Lecture Analog circuits I t IR light V 9V V Q OP805 RL IR detection Noise sources: Electrical (60Hz, 0Hz, 80Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information

ECEN Network Analysis Section 3. Laboratory Manual

ECEN Network Analysis Section 3. Laboratory Manual ECEN 3714----Network Analysis Section 3 Laboratory Manual LAB 07: Active Low Pass Filter Oklahoma State University School of Electrical and Computer Engineering. Section 3 Laboratory manual - 1 - Spring

More information

ActiveLowPassFilter -- Overview

ActiveLowPassFilter -- Overview ActiveLowPassFilter -- Overview OBJECTIVES: At the end of performing this experiment, learners would be able to: Describe the concept of active Low Pass Butterworth Filter Obtain the roll-off factor and

More information

Lab 9: Operational amplifiers II (version 1.5)

Lab 9: Operational amplifiers II (version 1.5) Lab 9: Operational amplifiers II (version 1.5) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy

More information

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp

PHYS 536 The Golden Rules of Op Amps. Characteristics of an Ideal Op Amp PHYS 536 The Golden Rules of Op Amps Introduction The purpose of this experiment is to illustrate the golden rules of negative feedback for a variety of circuits. These concepts permit you to create and

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

LINEAR IC APPLICATIONS

LINEAR IC APPLICATIONS 1 B.Tech III Year I Semester (R09) Regular & Supplementary Examinations December/January 2013/14 1 (a) Why is R e in an emitter-coupled differential amplifier replaced by a constant current source? (b)

More information

Poles and Zeros of H(s), Analog Computers and Active Filters

Poles and Zeros of H(s), Analog Computers and Active Filters Poles and Zeros of H(s), Analog Computers and Active Filters Physics116A, Draft10/28/09 D. Pellett LRC Filter Poles and Zeros Pole structure same for all three functions (two poles) HR has two poles and

More information

Scheme I Sample Question Paper

Scheme I Sample Question Paper Sample Question Paper Marks : 70 Time: 3 Hrs. Q.1) Attempt any FIVE of the following. 10 Marks a) Classify configuration of differential amplifier. b) Draw equivalent circuit of an OPAMP c) Suggest and

More information

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment School of Sciences SPRING SEMESTER 2010 INSTRUCTOR: Dr Konstantinos Katzis COURSE / SECTION: ECE212N COURSE TITLE: Electronics II OFFICE RM#: 124 (1 st floor) OFFICE TEL#: 22713296 OFFICE HOURS: Monday

More information

2. BAND-PASS NOISE MEASUREMENTS

2. BAND-PASS NOISE MEASUREMENTS 2. BAND-PASS NOISE MEASUREMENTS 2.1 Object The objectives of this experiment are to use the Dynamic Signal Analyzer or DSA to measure the spectral density of a noise signal, to design a second-order band-pass

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 4 EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Homework 4 This homework is solely for your own practice. However, everything on it is in scope for midterm, and

More information

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY

FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY FREQUENCY RESPONSE AND PASSIVE FILTERS LABORATORY In this experiment we will analytically determine and measure the frequency response of networks containing resistors, AC source/sources, and energy storage

More information

EECS40 RLC Lab guide

EECS40 RLC Lab guide EECS40 RLC Lab guide Introduction Second-Order Circuits Second order circuits have both inductor and capacitor components, which produce one or more resonant frequencies, ω0. In general, a differential

More information

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz

Assignment 11. 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Assignment 11 1) Using the LM741 op-amp IC a circuit is designed as shown, then find the output waveform for an input of 5kHz Vo = 1 x R1Cf 0 Vin t dt, voltage output for the op amp integrator 0.1 m 1

More information

Deliyannis, Theodore L. et al "Realization of First- and Second-Order Functions Using Opamps" Continuous-Time Active Filter Design Boca Raton: CRC

Deliyannis, Theodore L. et al Realization of First- and Second-Order Functions Using Opamps Continuous-Time Active Filter Design Boca Raton: CRC Deliyannis, Theodore L. et al "Realization of First- and Second-Order Functions Using Opamps" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,999 Chapter 4 Realization of First- and Second-Order

More information

High-Performance Audio Applications of The LM833

High-Performance Audio Applications of The LM833 High-Performance Audio Applications of The LM833 Designers of quality audio equipment have long recognized the value of a low noise gain block with audiophile performance. The LM833 is such a device: a

More information

Homework Assignment 01

Homework Assignment 01 Homework Assignment 01 In this homework set students review some basic circuit analysis techniques, as well as review how to analyze ideal op-amp circuits. Numerical answers must be supplied using engineering

More information

Chapter 4: Passive Analog Signal Processing

Chapter 4: Passive Analog Signal Processing hapter 4: Passive Analog Signal Transmission hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog

More information

Chapter 2. Operational Amplifiers

Chapter 2. Operational Amplifiers Chapter 2. Operational Amplifiers Tong In Oh 1 2.3 The Noninverting Configuration v I is applied directly to the positive input terminal of the op amp One terminal of is connected to ground Closed-loop

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #6 Lab Report Active Filters and Oscillators Submission Date: 7/9/28 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

Source Transformation

Source Transformation HW Chapter 0: 4, 20, 26, 44, 52, 64, 74, 92. Source Transformation Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code:

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code: MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as

More information

UNIT I. Operational Amplifiers

UNIT I. Operational Amplifiers UNIT I Operational Amplifiers Operational Amplifier: The operational amplifier is a direct-coupled high gain amplifier. It is a versatile multi-terminal device that can be used to amplify dc as well as

More information

Electronics II. 3. measurement : Tuned circuits

Electronics II. 3. measurement : Tuned circuits Electronics II. 3. measurement : Tuned circuits This laboratory session involves circuits which contain a double-t (or TT), a passive RC circuit: Figure 1. Double T passive RC circuit module The upper

More information

Chapter 2. The Fundamentals of Electronics: A Review

Chapter 2. The Fundamentals of Electronics: A Review Chapter 2 The Fundamentals of Electronics: A Review Topics Covered 2-1: Gain, Attenuation, and Decibels 2-2: Tuned Circuits 2-3: Filters 2-4: Fourier Theory 2-1: Gain, Attenuation, and Decibels Most circuits

More information

MOSFET Amplifier Biasing

MOSFET Amplifier Biasing MOSFET Amplifier Biasing Chris Winstead April 6, 2015 Standard Passive Biasing: Two Supplies V D V S R G I D V SS To analyze the DC behavior of this biasing circuit, it is most convenient to use the following

More information

11. Chapter: Amplitude stabilization of the harmonic oscillator

11. Chapter: Amplitude stabilization of the harmonic oscillator Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator

More information

Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters

Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters Comparison of Signal Attenuation of Multiple Frequencies Between Passive and Active High-Pass Filters Aaron Batker Pritzker Harvey Mudd College 23 November 203 Abstract Differences in behavior at different

More information

Filter Notes. You may have memorized a formula for the voltage divider - if not, it is easily derived using Ohm's law, Vo Vi

Filter Notes. You may have memorized a formula for the voltage divider - if not, it is easily derived using Ohm's law, Vo Vi Filter Notes You may have memorized a formula for the voltage divider - if not, it is easily derived using Ohm's law, Vo Vi R2 R+ R2 If you recall the formula for capacitive reactance, the divider formula

More information

(b) 25% (b) increases

(b) 25% (b) increases Homework Assignment 07 Question 1 (2 points each unless noted otherwise) 1. In the circuit 10 V, 10, and 5K. What current flows through? Answer: By op-amp action the voltage across is and the current through

More information

Chapter 10: The Operational Amplifiers

Chapter 10: The Operational Amplifiers Chapter 10: The Operational Amplifiers Electronic Devices Operational Amplifiers (op-amp) Op-amp is an electronic device that amplify the difference of voltage at its two inputs. It has two input terminals,

More information

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf

Analog Electronics. Lecture. Op-amp Circuits and Active Filters. Muhammad Amir Yousaf Analog Electronics Lecture Op-amp Circuits and Active Filters Muhammad Amir Yousaf Instrumentation Amplifiers An instrumentation amplifier (IA) amplifies the voltage difference between its terminals. It

More information

Project 6: Oscillator Circuits

Project 6: Oscillator Circuits : Oscillator Circuits Ariel Moss The purpose of this experiment was to design two oscillator circuits: a Wien-Bridge oscillator at 3 khz oscillation and a Hartley Oscillator using a BJT at 5 khz oscillation.

More information

Chapter 19. Basic Filters

Chapter 19. Basic Filters Chapter 19 Basic Filters Objectives Analyze the operation of RC and RL lowpass filters Analyze the operation of RC and RL highpass filters Analyze the operation of band-pass filters Analyze the operation

More information

Chapter 4: Passive Analog Signal Processing

Chapter 4: Passive Analog Signal Processing hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted

More information

Homework Assignment 07

Homework Assignment 07 Homework Assignment 07 Question 1 (Short Takes). 2 points each unless otherwise noted. 1. A single-pole op-amp has an open-loop low-frequency gain of A = 10 5 and an open loop, 3-dB frequency of 4 Hz.

More information

PHYS 536 Active Filters

PHYS 536 Active Filters PHYS 536 Active Filters Introduction Active filters provide a sudden change in signal amplitude for a small change in frequency. Several filters can be used in series to increase the attenuation outside

More information

Keywords: op amp filters, Sallen-Key filters, high pass filter, opamps, single op amp

Keywords: op amp filters, Sallen-Key filters, high pass filter, opamps, single op amp Maxim > Design Support > Technical Documents > Tutorials > Amplifier and Comparator Circuits > APP 738 Maxim > Design Support > Technical Documents > Tutorials > Audio Circuits > APP 738 Maxim > Design

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

Audio Applications for Op-Amps, Part III By Bruce Carter Advanced Analog Products, Op Amp Applications Texas Instruments Incorporated

Audio Applications for Op-Amps, Part III By Bruce Carter Advanced Analog Products, Op Amp Applications Texas Instruments Incorporated Audio Applications for OpAmps, Part III By Bruce Carter Advanced Analog Products, Op Amp Applications Texas Instruments Incorporated This is the third in a series of articles on singlesupply audio circuits.

More information

Special-Purpose Operational Amplifier Circuits

Special-Purpose Operational Amplifier Circuits Special-Purpose Operational Amplifier Circuits Instrumentation Amplifier An instrumentation amplifier (IA) is a differential voltagegain device that amplifies the difference between the voltages existing

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers CHAPTER 6 Filters and Tuned Amplifiers Introduction 55 6. Filter Transmission, Types, and Specification 56 6. The Filter Transfer Function 60 6.7 Second-Order Active Filters Based on the Two-Integrator-Loop

More information

Introductory Electronics for Scientists and Engineers

Introductory Electronics for Scientists and Engineers Introductory Electronics for Scientists and Engineers Second Edition ROBERT E. SIMPSON University of New Hampshire Allyn and Bacon, Inc. Boston London Sydney Toronto Contents Preface xiü 1 Direct Current

More information

Last time: BJT CE and CB amplifiers biased by current source

Last time: BJT CE and CB amplifiers biased by current source Last time: BJT CE and CB amplifiers biased by current source Assume FA regime, then VB VC V E I B I E, β 1 I Q C α I, V 0. 7V Calculate V CE and confirm it is > 0.2-0.3V, then BJT can be replaced with

More information

An electronic unit that behaves like a voltagecontrolled

An electronic unit that behaves like a voltagecontrolled 1 An electronic unit that behaves like a voltagecontrolled voltage source. An active circuit element that amplifies, sums, subtracts, multiply, divide, differentiate or integrates a signal 2 A typical

More information

BME 3512 Bioelectronics Laboratory Two - Passive Filters

BME 3512 Bioelectronics Laboratory Two - Passive Filters BME 35 Bioelectronics Laboratory Two - Passive Filters Learning Objectives: Understand the basic principles of passive filters. Laboratory Equipment: Agilent Oscilloscope Model 546A Agilent Function Generator

More information

+ power. V out. - power +12 V -12 V +12 V -12 V

+ power. V out. - power +12 V -12 V +12 V -12 V Question 1 Questions An operational amplifier is a particular type of differential amplifier. Most op-amps receive two input voltage signals and output one voltage signal: power 1 2 - power Here is a single

More information

A.C. FILTER NETWORKS. Learning Objectives

A.C. FILTER NETWORKS. Learning Objectives C H A P T E 17 Learning Objectives Introduction Applications Different Types of Filters Octaves and Decades of Frequency Decibel System alue of 1 db Low-Pass C Filter Other Types of Low-Pass Filters Low-Pass

More information