1. SQUIRREL CAGE AC MOTOR. NO LOAD TEST

Size: px
Start display at page:

Download "1. SQUIRREL CAGE AC MOTOR. NO LOAD TEST"

Transcription

1 1. SQUIRREL CAGE AC MOTOR. NO LOAD TEST 1.1 INTRODUCTION. DESCRIPTION OF THE EXPERIMENT The three-phase induction motor carries a three-phase winding on its stator. The rotor is either a wound type or consists of copper bars short-circuited at each end, in which case it is known as squirrel-cage rotor. The three-phase current drawn by the stator from a three-phase supply produces a magnetic field rotating at synchronous speed in the air-gap. The magnetic field cuts the rotor conductors inducing electromotive forces which circulate currents in them. The no-load test on a squirrel cage AC motor shows the operating conditions in the magnetic circuit of the motor and gives information on the absorbed current and losses in no load condition. It is normally performed at rated frequency by applying balanced phase voltages to the stator terminals. The three-phase induction motor behaves as a transformer whose secondary winding can rotate. The basic difference is that the load is mechanical. Besides, the reluctance to the magnetic field is greater on account of the presence of the air-gap across which the stator power is transferred to the rotor. The no-load current of the motor is sometimes as high as 30 % to 40 % of the full-load value. Objectives By performing this experiment, the students will learn how to determine the losses of a squirrel cage AC motor in no load operation while reaching the following main objectives: ¾ To understand the schematic diagram corresponding to the no load test of the squirrel cage motor. ¾ To perform the squirrel cage motor wiring connections, in order to run the no load test. ¾ To obtain the characteristic curve related to the no load test (V 0 - no load voltage I 0 - no load current): I 0 = f(v 0 ) and cosφ 0 = f(v 0 ) 1.2 COMPONENTS LIST The modules required for this experiment are: ¾ DL 1021 Three-phase squirrel cage asynchronous motor ¾ DL 10065N Electrical Power Digital Measuring Unit ¾ DL 1013M2 Power Supply Module 1.3 PROCEDURE OUTLINE Schematic diagram The no-load test is useful not only to observe the working conditions of the motor magnetic circuit, but also to obtain data both for drawing the characteristic curves of the machine (I 0 and cosϕ 0 ) and for calculating the conventional efficiency (P m and P iron ). It consists in supplying the asynchronous motor with its rated voltage, leaving the rotor free to rotate without any braking torque. Under these conditions, the absorbed current is given by the vectorial sum of the magnetizing current and the small active component produced by the losses in the iron (stator) and mechanical (friction and ventilation). 5

2 In order to obtain the no load circuit characteristic curve, follow the figure 1. The no-load electrical parameters can be measured using the ammeter A and the voltmeter V. In this schematic diagram, the AC stator configuration is presented. The electrical power has been measured with a single wattmeter as the asynchronous motor is, due to its construction and operating conditions, a symmetrical machine under every load condition. Figure 1. Circuit diagram for the squirrel cage AC motor no load test. Characteristics curves From the diagrams, in correspondence of the current rated value, we obtain respectively: I 0, iron losses PFE, mechanical losses PM and power factor cosϕ. Figure 2. Characteristic curves of the squirrel cage AC motor no load test The no-load rotational losses (winding, friction, and core losses) will be seen in the no-load measurement. Given that the rotor current is negligible under no-load conditions, the rotor copper losses are also negligible. Thus, the input power measured in the no-load test is equal to the stator copper losses plus the rotational losses. The P m + P iron = f(v 0 ) curve is practically a parabola, with an offset from the V axis equal to P m (figure 3). In fact, when V 0 varies, the mechanical losses do not change since they are related to the speed that remains fairly constant. On the other hand, the iron losses do change (the voltage variations cause a proportional variation on the generated magnetic flux) and, since a quadratic proportion exists between the iron losses and the induction, their graph will have a parabolic shape. 6

3 Figure 3. The characteristic curve for extrapolation of the Pm + Piron The separation of P m and P iron is possible through a graphical way, when the cross point between the curve and the Y-axis has been determined. That point cannot be experimentally measured because when the supply voltage is too low, the asynchronous motor is inclined to stop. The cross-point, therefore, has to be determined by graphical extrapolation using the amount of the curve that has been measured: to reduce the difficulty of this operation it can be considered the fact that, in the cross-point, the curve is tangent to the X-axis. Setup and connection diagram Figure 4 shows the schematic diagram of the no load test, where the squirrel cage AC motor is supplied with AC three-phase voltage from the variable power supply section (0 240V/8A) of the DL 1013M2. The schematic diagram from figure 4 is close to the student s theoretical knowledge (it contains the classical electrical symbols). We invite you to use this diagram while performing the experiment, having the wiring diagram from figure 5 as a reference. 7

4 Figure 4. Schematic diagram for the squirrel cage AC motor no load test The squirrel cage motor stator can be connected in star or delta, but for this experiment we have selected the delta configuration. The electrical parameters of the motor DL1021 will be measured using the DL10065N module. Follow the diagram below to connect the power cables: Figure 5. Wiring diagram for the squirrel cage AC motor no load test Experimental procedure and learning plan Before starting any wiring activity, check all the power connections: all switches must be OFF. Do not forget to connect the ground terminal! As shown in the diagram with specific symbols, all the equipment is connected to the protective network with a dedicated connector and cable. 8

5 Before starting the experiment, connect all the modules to the main power supply using the supply cables. Perform the circuit configuration shown in the wiring diagram in figure 5. Power ON the DL 10065N measuring device. Follow the next steps to enable and prepare the DL 1013M2 power supply for use: ¾ Raise up all the switches on the power supply. ¾ Turn the key clockwise from position 0 to 1. ¾ Switch the selector "a0b" to position "b". We will use the AC part (0 240V/8A) of the power supply. This action is necessary in order to start the power supply. ¾ Press the green start button from the power supply module. Before using the power supply, make sure that the safety connector (dongle) K1 is installed on the DL 1013M2 module (see figure 5). Supply voltage to the squirrel cage AC motor (DL1021) using the DL 1013M2 power supply. Make sure that the knob of the power supply is turned counterclockwise at position 0 and that the main selector is switched to b. Switch the selector of DL 1013M2, corresponding to the variable AC voltage "L1L2L3/ 0 240V 8A", from off (O) to on (I) position. Gradually increase the voltage and, while adjusting the knob, read the voltage on the 10065N module, until the motor is supplied with its rated voltage; let the motor in free rotation for some minutes, for the frictions in the supports to stabilize. 9

6 Fill the following table with the input current I 0, power P 0 and Cosϕ 0 data measured with the DL 10065N module (use the arrows to switch between voltage, current and power), corresponding to each voltage value. Table 1. Measured values of the squirrel cage motor (delta) Calculate the power factor using the following formula and compare it with the power factor measured using the DL 10065N module: Calculate the losses using the formula below, using the value of the phase windings resistance (R ph ) measured in the previous exercise, and the no load phase current (I 0ph ): P m + P iron = P 0-3R ph I 2 0ph Trace the P m + P iron vs. V 0 curve shown in Figure 3 and determine the value of P m using the graphical extrapolation method. When the experiment is completed, turn off the power supply and switch all the selectors to off, the a0b to position zero and turn the knobs fully-counterclockwise to the zero position. 10

7 1.4 QUESTIONS Answer the following questions related to the experiment. 1. How many types of induction motors rotors are there? 2. The no load test of a 3-phase induction motor gives which of the following? (a) magnetic loss (b) variable loss (c) both magnetic and variable losses (d) none of the above 3. During no load condition the induction motor will have a power factor? (a) Negative (b) High (c) Moderate (d) Low 4. Which of the following supply is given to the rotor winding of a squirrel cage AC motor? (a) No Supply (b) DC Supply (c) AC Supply 5. Is it true that the squirrel cage induction motor requires an external resistor circuit in the rotor during starting? 1.5 PROPOSED EXERCISE 1 Repeat the example using the same procedure, but this time follow the diagram from figure 6 and connect the power cables accordingly: Figure 6. Wiring diagram for no load test of the squirrel cage AC motor (star connection) Repeat the first 2 steps off the previous procedure. 11

8 The third step from the procedure must be adapted for the corresponding level of supply voltage. Supply voltage to the squirrel cage AC motor (DL 1021) using the DL 1013M2 power supply. Make sure that the knob of the power supply is turned counterclockwise at 0 position and the main switch to b. Switch the selector of DL 1013M2, corresponding to the variable AC voltage "L1L2L3/ 0 430V 5A", from off (O) to on (I) position. Gradually increase the voltage and while adjusting the knob, read the voltage on the 10065N module, until the motor is supplied with its rated voltage; let the motor in free rotation for some minutes, for the frictions in the supports to stabilize. Fill the following table with the input current I 0, power P 0 and Cosϕ 0 data measured with the DL 10065N module (use the arrows to switch between voltage, current a power), corresponding to each voltage value. Table 2. Measured values of the squirrel cage motor (star) Calculate P m + P iron, and trace the P m + P iron vs. V 0 curve in Figure 3 to graphically determine the value of P m using the extrapolation method. 1.6 PROPOSED EXERCISE 2 Star/Delta starting of the squirrel cage motor The star-delta starting method consists of applying nominal voltages to the three-phase sta- 12

9 tor winding initially connected in star. When getting to a speed of 90-95% of the synchronism speed, the stator connection is switched to the delta connection. This switching can be done manual or automatically. Figure 7. Star/Delta configurations of the squirrel cage AC motor The value of line currents decreases three times in the star connection, thus reducing AC motor starting current. Direct connection to the network involves increases in the startup current, like it is shown in figure 8a. Direct start is abrupt and fast with dynamic shocks in the kinematic elements of the AC motor and with important Joule effects in motor windings. Figure 8. Characteristic of the star-delta starting: a) direct starting of AC motor; b) mechanical characteristic of star-delta starting Using the star/delta starting method, the starting torque decreases three times (in star configuration) compared to the starting torque with the stator winding connected in delta. Experimental procedure 13

10 For this experiment we will use the DL 2035 Star/Delta starter. Follow the diagram from next figure and connect the power cables accordingly. Figure 9. Wiring diagram for star/delta starting method of the squirrel cage AC motor Repeat the first 2 steps off the previous procedure. Supply voltage to the squirrel cage AC motor (DL1021) using the DL 1013M2 power supply. With the DL 2035 in the 0 position, set the voltage to the nominal value for Delta connection (230V). Switch the DL 2035 to the Y position and measure the current. When the motor will reach approximately the rated speed turn the switch to Δ position and measure the current. Calculate the starting current in star (I sυ ) and delta (I sδ ) if, according to figure 8a, its value is 5*I n. I sυ = I sδ = CONCLUSIONS Balanced voltages are applied to the stator terminals at the rated frequency with the rotor uncoupled from any mechanical load. Current, voltage and power are measured at the motor input. The losses in the no-load test are those due to core losses, winding losses and friction. 14

1. THREE-PHASE TRANSFORMER. SHORT CIRCUIT TEST

1. THREE-PHASE TRANSFORMER. SHORT CIRCUIT TEST 1. THREE-PHASE TRANSFORMER. SHORT CIRCUIT TEST 1.1 INTRODUCTION. DESCRIPTION OF THE EXPERIMENT The short-circuit test consists of measuring the input quantities of the transformer when its secondary winding

More information

DISCUSSION OF FUNDAMENTALS

DISCUSSION OF FUNDAMENTALS Unit 4 AC s UNIT OBJECTIVE After completing this unit, you will be able to demonstrate and explain the operation of ac induction motors using the Squirrel-Cage module and the Capacitor-Start Motor module.

More information

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation Exercise 3 Doubly-Fed Induction Generators EXERCISE OBJECTIVE hen you have completed this exercise, you will be familiar with the operation of three-phase wound-rotor induction machines used as doubly-fed

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 78 as amended

More information

Module 1. Introduction. Version 2 EE IIT, Kharagpur

Module 1. Introduction. Version 2 EE IIT, Kharagpur Module 1 Introduction Lesson 1 Introducing the Course on Basic Electrical Contents 1 Introducing the course (Lesson-1) 4 Introduction... 4 Module-1 Introduction... 4 Module-2 D.C. circuits.. 4 Module-3

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK : ELECRICAL MACHINES I : A40212

More information

Electrical Machines (EE-343) For TE (ELECTRICAL)

Electrical Machines (EE-343) For TE (ELECTRICAL) PRACTICALWORKBOOK Electrical Machines (EE-343) For TE (ELECTRICAL) Name: Roll Number: Year: Batch: Section: Semester: Department: N.E.D University of Engineering &Technology, Karachi Electrical Machines

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK IV SEMESTER EI6402 ELECTRICAL MACHINES Regulation 2013 Academic

More information

Dhanalakshmi Srinivasan Institute of Technology, Samayapuram, Trichy. Cycle 2 EE6512 Electrical Machines II Lab Manual

Dhanalakshmi Srinivasan Institute of Technology, Samayapuram, Trichy. Cycle 2 EE6512 Electrical Machines II Lab Manual Cycle 2 EE652 Electrical Machines II Lab Manual CIRCUIT DIAGRAM FOR SLIP TEST 80V DC SUPPLY 350Ω, 2 A 3 Point Starter L F A NAME PLATE DETAILS: 3Ф alternator DC shunt motor FUSE RATING: Volts: Volts: 25%

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator Exercise 1 Voltage-Versus-Speed Characteristic of a Wind Turbine Generator EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the principle of electromagnetic induction.

More information

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I Three-Phase Induction Motors 1 2 3 Classification of AC Machines 1. According to the type of current Single Phase and Three phase 2. According to Speed Constant Speed, Variable Speed and Adjustable Speed

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 00 0 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name Course Code Class Branch : ELECRICAL MACHINES - II : A0 :

More information

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 365: Applied Electronics and Electromechanics Final Exam / Sample-Practice Exam Spring 2008 April 23 Topics Covered:

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220204 Set No. 1 II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2007 ELECTRICAL MACHINES-II (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR

CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 35 CHAPTER 3 EQUIVALENT CIRCUIT AND TWO AXIS MODEL OF DOUBLE WINDING INDUCTION MOTOR 3.1 INTRODUCTION DWIM consists of two windings on the same stator core and a squirrel cage rotor. One set of winding

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

Exercise 3-3. Manual Reversing Starters EXERCISE OBJECTIVE DISCUSSION. Build manual reversing starters and understand how they work.

Exercise 3-3. Manual Reversing Starters EXERCISE OBJECTIVE DISCUSSION. Build manual reversing starters and understand how they work. Exercise 3-3 Manual Reversing Starters EXERCISE OBJECTIVE Build manual reversing starters and understand how they work. DISCUSSION Reversing motor rotation direction is a common operation in industrial

More information

Placement Paper For Electrical

Placement Paper For Electrical Placement Paper For Electrical Q.1 The two windings of a transformer is (A) conductively linked. (B) inductively linked. (C) not linked at all. (D) electrically linked. Ans : B Q.2 A salient pole synchronous

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 78 as amended

More information

EXPERIMENT 1 TITLE: SINGLE PHASE TRANSFORMERS - TRANSFORMER REGULATION

EXPERIMENT 1 TITLE: SINGLE PHASE TRANSFORMERS - TRANSFORMER REGULATION EXPERIMENT 1 TITLE: SINGLE PHASE TRANSFORMERS - TRANSFORMER REGULATION OBJECTIVES 1) To determine the voltage regulation of a transformer with varying loads and to discuss capacitive and inductive loading

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM I (CE,EC,EE,EN)] QUIZ TEST-3 (Session: 2012-13) Time: 1 Hour ELECTRICAL ENGINEERING Max. Marks: 30 (EEE-101) Roll No. Academic/26 Refer/WI/ACAD/18

More information

Unit FE-5 Foundation Electricity: Electrical Machines

Unit FE-5 Foundation Electricity: Electrical Machines Unit FE-5 Foundation Electricity: Electrical Machines What this unit is about Power networks consist of large number of interconnected hardware. This unit deals specifically with two types of hardware:

More information

Primary Resistor Starters with Time Relays

Primary Resistor Starters with Time Relays Exercise 6-3 Primary Resistor Starters with Time Relays EXERCISE OBJECTIVE Understand how a time relay can be used jointly with primary resistor starters. DISCUSSION Primary resistor starters are used

More information

Electrical Workstation Nvis 7089B

Electrical Workstation Nvis 7089B All AC & DC Machines are optional Electrical Workstation offers an excellent approach to the teaching of Electrical Machines principles by introducing a unique modular designed control unit. It provides

More information

Reg. No. : BASIC ELECTRICAL TECHNOLOGY (ELE 101)

Reg. No. : BASIC ELECTRICAL TECHNOLOGY (ELE 101) Department of Electrical and Electronics Engineering Reg. No. : MNIPL INSTITUTE OF TECHNOLOGY, MNIPL ( Constituent Institute of Manipal University, Manipal) FIRST SEMESTER B.E. DEGREE MKEUP EXMINTION (REVISED

More information

1. A battery has an emf of 12.9 volts and supplies a current of 3.5 A. What is the resistance of the circuit?

1. A battery has an emf of 12.9 volts and supplies a current of 3.5 A. What is the resistance of the circuit? 1. A battery has an emf of 12.9 volts and supplies a current of 3.5 A. What is the resistance of the circuit? (a) 3.5 Ω (b) 16.4 Ω (c) 3.69 Ω (d) 45.15 Ω 2. Sign convention used for potential is: (a) Rise

More information

Contents. About the Authors. Abbreviations and Symbols

Contents. About the Authors. Abbreviations and Symbols About the Authors Preface Abbreviations and Symbols xi xiii xv 1 Principal Laws and Methods in Electrical Machine Design 1 1.1 Electromagnetic Principles 1 1.2 Numerical Solution 9 1.3 The Most Common

More information

Three Phase Transformers

Three Phase Transformers EE/CME 392 Laboratory 6-1 Three Phase Transformers Safety The voltages used in this experiment are lethal. Assemble or modify a circuit only with the breakers off. Do not apply power until the wiring has

More information

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12)

3. What is hysteresis loss? Also mention a method to minimize the loss. (N-11, N-12) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE 6401 ELECTRICAL MACHINES I UNIT I : MAGNETIC CIRCUITS AND MAGNETIC MATERIALS Part A (2 Marks) 1. List

More information

ELECTRICAL ENGINEERING LABORATORY MANUAL (NEE 151/251)

ELECTRICAL ENGINEERING LABORATORY MANUAL (NEE 151/251) ELECTRICAL ENGINEERING LABORATORY MANUAL (NEE 151/251) DEPARTMENTS OF ELECTRONICS & COMMUNICATION ENGINEERING/ ELECTRICAL ENGINEERING 27, Knowledge Park-III, Greater Noida, (U.P.) Phone: 0120-2323854-58

More information

Experiment 45. Three-Phase Circuits. G 1. a. Using your Power Supply and AC Voltmeter connect the circuit shown OBJECTIVE

Experiment 45. Three-Phase Circuits. G 1. a. Using your Power Supply and AC Voltmeter connect the circuit shown OBJECTIVE Experiment 45 Three-Phase Circuits OBJECTIVE To study the relationship between voltage and current in three-phase circuits. To learn how to make delta and wye connections. To calculate the power in three-phase

More information

LVSIM-EMS Help Table of Contents

LVSIM-EMS Help Table of Contents LVSIM-EMS Help Table of Contents LVSIM-EMS Help... 1 Overview of LVSIM-EMS... 7 LVSIM-EMS Toolbar... 8 LVSIM-EMS Menus... 10 File Menu Commands... 10 Virtual Laboratory File (filename.lvsimweb)... 10 New...

More information

ELECTRICAL POWER ENGINEERING

ELECTRICAL POWER ENGINEERING Introduction This trainer has been designed to provide students with a fully comprehensive knowledge in Electrical Power Engineering systems. The trainer is composed of a set of modules for the simulation

More information

UNIT 9 DC Separately-Excited Generator

UNIT 9 DC Separately-Excited Generator UNIT 9 DC Separately-Excited Generator 9-1 No-Load Saturation Characteristic EXERCISE 9-1 OBJECTIVE After completing this exercise, you should be able to demonstrate the operating characteristic of a DC

More information

Transformer & Induction M/C

Transformer & Induction M/C UNIT- 2 SINGLE-PHASE TRANSFORMERS 1. Draw equivalent circuit of a single phase transformer referring the primary side quantities to secondary and explain? (July/Aug - 2012) (Dec 2012) (June/July 2014)

More information

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY UNIT 1 DC MACHINES PART A 1. State Faraday s law of Electro magnetic induction and Lenz law. 2. Mention the following functions in DC Machine (i)

More information

Introduction : Design detailed: DC Machines Calculation of Armature main Dimensions and flux for pole. Design of Armature Winding & Core.

Introduction : Design detailed: DC Machines Calculation of Armature main Dimensions and flux for pole. Design of Armature Winding & Core. Introduction : Design detailed: DC Machines Calculation of Armature main Dimensions and flux for pole. Design of Armature Winding & Core. Design of Shunt Field & Series Field Windings. Design detailed:

More information

Inductance in DC Circuits

Inductance in DC Circuits Inductance in DC Circuits Anurag Srivastava Concept: Inductance is characterized by the behavior of a coil of wire in resisting any change of electric current through the coil. Arising from Faraday's law,

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES

CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 22 CHAPTER 2 D-Q AXES FLUX MEASUREMENT IN SYNCHRONOUS MACHINES 2.1 INTRODUCTION For the accurate analysis of synchronous machines using the two axis frame models, the d-axis and q-axis magnetic characteristics

More information

Transformers. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013

Transformers. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013 Transformers Department of Physics & Astronomy Texas Christian University, Fort Worth, TX April 23, 2013 1 Introduction In the early nineteenth century, Hans Christian Øersted discovered that a magnetic

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE 12 ELECTRICAL TECHNOLOGY NOVEMBER 2008 MEMORANDUM This memorandum consists of 12 pages. Electrical Technology 2 DoE/November 2008 QUESTION 1: TECHNOLOGY, SOCIETY AND THE

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatD21: Last updated: 29th November 2006 Author: Patrick J. Kelly This patent covers a device which is claimed to have a greater output power than the input

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17404 21314 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

EE 410/510: Electromechanical Systems Chapter 5

EE 410/510: Electromechanical Systems Chapter 5 EE 410/510: Electromechanical Systems Chapter 5 Chapter 5. Induction Machines Fundamental Analysis ayssand dcontrol o of Induction Motors Two phase induction motors Lagrange Eqns. (optional) Torque speed

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 03 ELECTRCIAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch : DC MACHINES AND TRANSFORMERS

More information

Electrical Workstation Nvis 7089A

Electrical Workstation Nvis 7089A All AC & DC Machines are optional Electrical Workstation offers an excellent approach to the teaching of Electrical Machines principles by introducing a unique modular designed control unit. It provides

More information

Electronic Speed Controls and RC Motors

Electronic Speed Controls and RC Motors Electronic Speed Controls and RC Motors ESC Power Control Modern electronic speed controls regulate the electric power applied to an electric motor by rapidly switching the power on and off using power

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A30203 Class : II B. Tech I Semester Branch

More information

CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY

CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY CHIEF ENGINEER REG III/2 MARINE ELECTROTECHNOLOGY LIST OF TOPICS 1 Electric Circuit Principles 2 Electronic Circuit Principles 3 Generation 4 Distribution 5 Utilisation The expected learning outcome is

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 00 03 ELECTRICAL AND ELECTRONICS ENGINEERING ASSIGNMENT Course Name : ELECRICAL MACHINES - II Course Code : A0 Class : II B.TECH-II

More information

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers Exercise 10 Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the basic operating principles of transformers, as well as with the different ratios of transformers:

More information

Synchronous Machines Study Material

Synchronous Machines Study Material Synchronous machines: The machines generating alternating emf from the mechanical input are called alternators or synchronous generators. They are also known as AC generators. All modern power stations

More information

Unit 3 Magnetism...21 Introduction The Natural Magnet Magnetic Polarities Magnetic Compass...21

Unit 3 Magnetism...21 Introduction The Natural Magnet Magnetic Polarities Magnetic Compass...21 Chapter 1 Electrical Fundamentals Unit 1 Matter...3 Introduction...3 1.1 Matter...3 1.2 Atomic Theory...3 1.3 Law of Electrical Charges...4 1.4 Law of Atomic Charges...4 Negative Atomic Charge...4 Positive

More information

AP Physics Electricity and Magnetism #7 Inductance

AP Physics Electricity and Magnetism #7 Inductance Name Period AP Physics Electricity and Magnetism #7 Inductance Dr. Campbell 1. Do problems Exercise B page 589 and problem 2, 3, 8, 9 page 610-1. Answers at the end of the packet. 2. A 20-turn wire coil

More information

Preface...x Chapter 1 Electrical Fundamentals

Preface...x Chapter 1 Electrical Fundamentals Preface...x Chapter 1 Electrical Fundamentals Unit 1 Matter...3 Introduction...3 1.1 Matter...3 1.2 Atomic Theory...3 1.3 Law of Electrical Charges...4 1.4 Law of Atomic Charges...5 Negative Atomic Charge...5

More information

CHAPTER 5 SYNCHRONOUS GENERATORS

CHAPTER 5 SYNCHRONOUS GENERATORS CHAPTER 5 SYNCHRONOUS GENERATORS Summary: 1. Synchronous Generator Construction 2. The Speed of Rotation of a Synchronous Generator 3. The Internal Generated Voltage of a Synchronous Generator 4. The Equivalent

More information

Generator Advanced Concepts

Generator Advanced Concepts Generator Advanced Concepts Common Topics, The Practical Side Machine Output Voltage Equation Pitch Harmonics Circulating Currents when Paralleling Reactances and Time Constants Three Generator Curves

More information

MG Electrical Machine. 68 _ ED Co.,Ltd. > EXPERIMENTS > SPECIFICATIONS

MG Electrical Machine. 68 _ ED Co.,Ltd. > EXPERIMENTS > SPECIFICATIONS Electrical Machine 1/1 REPULSION MOTOR/ DC GENERATOR Starting and drive characteristics of repulsion induction motor Lad characteristics of separately excited DC shunt wound generator MG-5216 > EXPERIMENTS

More information

Table of Contents. Table of Figures. Table of Tables

Table of Contents. Table of Figures. Table of Tables Abstract The aim of this report is to investigate and test a transformer and check if it is good to use by doing the following tests continuity test, insulation test, polarity test, open circuit test,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING POWER POINT PRESENTATION ON ELECTRICAL MACHINES - II 016-017 II B. Tech II semester (JNTUH-R15) Mr. K DEVENDER REDDY, Assistant Professor ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad I INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-500043 CIVIL ENGINEERING TUTORIAL QUESTION BANK Course Name : BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Course Code : AEE018

More information

Overview of IAL Software Programs for the Calculation of Electrical Drive Systems

Overview of IAL Software Programs for the Calculation of Electrical Drive Systems for the Calculation of Electrical Drive Systems Combines FEM with analytical post-processing analytical Machine type Topic Electrically excited Salientpole rotor Synchronous machines Cylindrical rotor

More information

1. Explain in detail the constructional details and working of DC motor.

1. Explain in detail the constructional details and working of DC motor. DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY, PERAMBALUR DEPT OF ECE EC6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT 1 PART B 1. Explain in detail the constructional details and

More information

REQUIRED SKILLS AND KNOWLEDGE UEENEEG101A. Electromagnetic devices and circuits. Topic and Description NIDA Lesson CARD # Magnetism encompassing:

REQUIRED SKILLS AND KNOWLEDGE UEENEEG101A. Electromagnetic devices and circuits. Topic and Description NIDA Lesson CARD # Magnetism encompassing: REQUIRED SKILLS AND KNOWLEDGE UEENEEG101A KS01-EG101A Electromagnetic devices and circuits T1 Magnetism encompassing: Topic and Description NIDA Lesson CARD # magnetic field pattern of bar and horse-shoe

More information

Bidirectional PWM DC Motor Drive with Regenerative Braking

Bidirectional PWM DC Motor Drive with Regenerative Braking Exercise 2 Bidirectional PWM DC Motor Drive with Regenerative Braking EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with two better types of PWM dc motor drives: the buck-boost

More information

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon:

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon: In this lecture Electromagnetism Electromagnetic Effect Electromagnets Electromechanical Devices Transformers Electromagnetic Effect Electricity & magnetism are different aspects of the same basic phenomenon:

More information

Experiment 3 Single Phase Transformer (II)

Experiment 3 Single Phase Transformer (II) Objectives To determine the polarity of single phase transformer windings. To determine the internal resistance of single phase transformer windings. To determine the efficiency and voltage regulation

More information

Alternating current circuits- Series RLC circuits

Alternating current circuits- Series RLC circuits FISI30 Física Universitaria II Professor J.. ersosimo hapter 8 Alternating current circuits- Series circuits 8- Introduction A loop rotated in a magnetic field produces a sinusoidal voltage and current.

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

GRAAD 12 NATIONAL SENIOR CERTIFICATE GRADE 12

GRAAD 12 NATIONAL SENIOR CERTIFICATE GRADE 12 GRAAD 12 NATIONAL SENIOR CERTIFICATE GRADE 12 ELECTRICAL TECHNOLOGY EXEMPLAR 2014 MEMORANDUM MARKS: 200 This memorandum consists of 13 pages. Electrical Technology 2 DBE/2014 INSTRUCTIONS TO THE MARKERS

More information

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING 1

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING 1 DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING 1 OC & SC TESTS ON SINGLE PHASE TRANSFORMER Circuit Diagram: (a) OC Test (b) SC Test Name Plate Details 1 Φ T/F: KVA = LV Voltage = HV Voltage = Frequency

More information

2-1 DC DRIVE OVERVIEW EXERCISE OBJECTIVE. Familiarize yourself with the DC Drive. Set the DC Drive parameters to control the DC Motor.

2-1 DC DRIVE OVERVIEW EXERCISE OBJECTIVE. Familiarize yourself with the DC Drive. Set the DC Drive parameters to control the DC Motor. 2-1 DC DRIVE OVERVIEW EXERCISE OBJECTIVE Familiarize yourself with the DC Drive. Set the DC Drive parameters to control the DC Motor. DISCUSSION The DC Drive of your training system is shown in Figure

More information

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science Motor Driver and Feedback Control: The feedback control system of a dc motor typically consists of a microcontroller, which provides drive commands (rotation and direction) to the driver. The driver is

More information

Objective: Study of self-excitation characteristics of an induction machine.

Objective: Study of self-excitation characteristics of an induction machine. Objective: Study of self-excitation characteristics of an induction machine. Theory: The increasing importance of fuel saving has been responsible for the revival of interest in so-called alternative source

More information

ELECTRIC MACHINES (TRANSFORMERS)

ELECTRIC MACHINES (TRANSFORMERS) ELECTRIC MACHINES (TRANSFORMERS) USER MANUAL CONTENTS. INTRODUCTION.... OVERVIEW..... Functionality..... Specifications... 3. SAFETY REQUIREMENTS... 3 4. HARDWARE AND SOFTWARE... 4 4.. System Architecture...

More information

ELECTRICAL MACHINE LAB. MANUAL : EM II/1

ELECTRICAL MACHINE LAB. MANUAL : EM II/1 EE 59 ELECTRICL MCHINE LB. MNUL EXPERIMENT NO : EM II/ TITLE Different Method of Starting Of Three-Phase Squirrel Cage Induction Motor and Their Comparison. [DOL, uto-transformer, Star-Delta] OBJECTIE

More information

GATE: Electronics MCQs (Practice Test 1 of 13)

GATE: Electronics MCQs (Practice Test 1 of 13) GATE: Electronics MCQs (Practice Test 1 of 13) 1. Removing bypass capacitor across the emitter leg resistor in a CE amplifier causes a. increase in current gain b. decrease in current gain c. increase

More information

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO DEPARTMENT OF MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO Name Roll No. Subject Teacher MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO 1 Name:. Roll No: Score: Signature of Lab Tutor:

More information

3.1.Introduction. Synchronous Machines

3.1.Introduction. Synchronous Machines 3.1.Introduction Synchronous Machines A synchronous machine is an ac rotating machine whose speed under steady state condition is proportional to the frequency of the current in its armature. The magnetic

More information

total j = BA, [1] = j [2] total

total j = BA, [1] = j [2] total Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

More information

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? ) in the box next to your answer. ...

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? ) in the box next to your answer. ... Q1.The diagram shows a transformer. (a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer? Put a tick ( ) in the box next to your answer. a step-up

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt

Power. Power is the rate of using energy in joules per second 1 joule per second Is 1 Watt 3 phase Power All we need electricity for is as a source of transport for energy. We can connect to a battery, which is a source of stored energy. Or we can plug into and electric socket at home or in

More information

Faraday Laws of Electromagnetic Induction CLIL LESSON

Faraday Laws of Electromagnetic Induction CLIL LESSON Faraday Laws of Electromagnetic Induction CLIL LESSON Experimental trials Michael Faraday-1931 This law shows the relationship between electric circuit and magnetic field A coil is connected to a galvanometer

More information

STEADY STATE REACTANCE

STEADY STATE REACTANCE INDEX NO. : M-53 TECHNICAL MANUAL FOR STEADY STATE REACTANCE Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2008 Certified Company) 212/1, Mansarover Civil Lines, MEERUT. Phone : 0121-2645457,

More information

EEL 3086 SWITCHGEAR AND PROTECTION EXPERIMENT 2 DIFFERENTIAL PROTECTION OF A THREE-PHASE TRANSFORMER

EEL 3086 SWITCHGEAR AND PROTECTION EXPERIMENT 2 DIFFERENTIAL PROTECTION OF A THREE-PHASE TRANSFORMER EEL 3086 SWITCHGEAR AND PROTECTION EXPERIMENT 2 DIFFERENTIAL PROTECTION OF A THREE-PHASE TRANSFORMER Objective To analyse the differential protection scheme as applied to a three-phase power transformer

More information

ELECTRICAL ENGINEERING ESE TOPIC WISE OBJECTIVE SOLVED PAPER-II

ELECTRICAL ENGINEERING ESE TOPIC WISE OBJECTIVE SOLVED PAPER-II ELECTRICAL ENGINEERING ESE TOPIC WISE OBJECTIVE SOLVED PAPER-II From (1992 2017) Office : F-126, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-26522064 Mobile : 8130909220, 9711853908

More information

Facts Worth Knowing about Frequency Converters

Facts Worth Knowing about Frequency Converters Handbook VLT Frequency Converters Facts Worth Knowing about Frequency Converters Preface In 1968, Danfoss was the first company in the world to commence mass production of Frequency Converters, for variable

More information

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ACADEMIC YEAR 2010-2011 / EVEN SEMESTER QUESTION BANK SUBJECT CODE & NAME: EE 1352 - ELECTRICAL MACHINE DESIGN YEAR / SEM

More information

Experiment 6. Electromagnetic Induction and transformers

Experiment 6. Electromagnetic Induction and transformers Experiment 6. Electromagnetic Induction and transformers 1. Purpose Confirm the principle of electromagnetic induction and transformers. 2. Principle The PASCO scientific SF-8616 Basic Coils Set and SF-8617

More information

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits PH-315 MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits Portland State University Summary Four sequential digital waveforms are used to control a stepper motor. The main objective

More information

1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE

1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE 1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE Set the rotation direction of the motor. Understand the V/f (volts per hertz) characteristics. Learn how to use an analog voltage to assign the frequency

More information

CHAPTER 2. Transformers. Dr Gamal Sowilam

CHAPTER 2. Transformers. Dr Gamal Sowilam CHAPTER Transformers Dr Gamal Sowilam Introduction A transformer is a static machine. It is not an energy conversion device, it is indispensable in many energy conversion systems. A transformer essentially

More information

Trends in Power Electronics for High-Power Applications

Trends in Power Electronics for High-Power Applications Trends in Power Electronics for High-Power Applications 1 Hirofumi (Hiro) Akagi November 5, 2018 IEEE PEAC, Shenzhen, China Outline of Presentation Medium-Voltage, High-Power, High-Speed Motor Drives Bidirectional

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information