Courseware Sample F0

Size: px
Start display at page:

Download "Courseware Sample F0"

Transcription

1 Electric Power / Controls Courseware Sample F0 A

2

3

4 ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication may be reproduced, in any form or by any means, without the prior written permission of Lab-Volt Ltd. Printed in Canada October 2009

5 Table of Contents Introduction... V Courseware Outline Asynchronous and Doubly-Fed Generators... VII Sample Exercise Extracted from Asynchronous and Doubly-Fed Generators Exercise 3-9 The Boost Chopper...3 Instructor Guide Sample Exercise Extracted from Asynchronous and Doubly-Fed Generators Exercise 3-11 The Four-Quadrant Chopper...17 Bibliography III

6 IV

7 Introduction The Lab-Volt Asynchronous and Doubly-Fed Generators system, model , introduces the principles of electrical power generation and control in the field of wind turbines. Known as the standard for technical training systems in use across virtually every industry and around the globe, Lab-Volt is now using its expertise to facilitate the development, production, installation, and maintenance of the widest variety of Alternative and Renewable Energy Power Training Systems. While most power generation requires the creation, management, and conversion of heat energy into motion with most variations simply involving the way heat is produced alternative and renewable sources are far more varied. Many take advantage of the motion already found in nature; others harness nature s own renewable forms of heat and energy. Capturing and converting that motion or energy often requires very non-traditional methods. Accustomed to breaking down processes and procedures into elemental blocks, Lab-Volt s new training systems take the esoteric and theoretical out of the laboratory and translate it into apparatus that introduce practical, understandable teaching methods. Regardless of the operational scale of the alternative energy sources, Lab-Volt has distilled the essential elements of the process down to safe, hands-on classroom applications, developing each training product and process to yield realistic, repeatable, and logical results. V

8 VI

9 Courseware Outline ASYNCHRONOUS AND DOUBLY-FED GENERATORS Unit 1 Fundamentals for Rotating Machines Introduction to rotating machines. Work, speed, torque, and power. Operation of the Prime Mover / Dynamometer module. Ex. 1-1 Prime Mover Operation Familiarization with the Prime Mover / Dynamometer module operating in the Prime Mover mode. Prime mover speed versus voltage. Friction torque versus speed. Measurement of the opposition torque caused by the machine driven by the Prime Mover. Unit 2 AC Induction Motors The principles of electromagnetic induction. Rotating magnetic field and synchronous speed. Demonstrating the operation and characteristics of AC induction motors. Ex. 2-1 The Three-Phase Squirrel-Cage Induction Motor Creating a rotating magnetic field in a three-phase squirrel-cage induction motor. Synchronous speed. Description and operation of the Three-Phase Squirrel-Cage Induction Motor. Torque versus speed characteristic. Reactive power required for creating the rotating magnetic field. Ex. 2-2 Eddy-Current Brake and Asynchronous Generator Description and operation of the eddy-current brake. Operating a three-phase squirrel-cage induction motor as an asynchronous generator. Demonstrating that an asynchronous generator can supply active power to the AC power network. Demonstrating that asynchronous generator operation requires reactive power. Ex. 2-3 Effect of Voltage on the Characteristics of Induction Motors Saturation in induction motors. Nominal voltage of a squirrel-cage induction motor. Demonstrating the effect of the motor voltage on the torque versus speed characteristic of a squirrel-cage induction motor. Unit 3 Power Electronics Fundamentals Introduction to Reversible DC Power Supply, Rectifiers, Choppers, Inverters, High-Speed Power Switching, and Effect of Frequency in Magnetic Circuits. VII

10 Courseware Outline ASYNCHRONOUS AND DOUBLY-FED GENERATORS Ex. 3-1 Familiarization with the Reversible DC Power Supply The reversible DC power supply. Implementing a reversible DC power supply using a separately-excited DC motor/generator and a synchronous or asynchronous motor/generator. Operation of a reversible DC power supply implemented with a separatelyexcited DC motor/generator and a three-phase squirrel-cage induction motor/generator (asynchronous motor/generator). Ex. 3-2 Power Diode Single-Phase and Two-Phase Rectifiers Operating principles of the diode. Half-wave rectifier. Rectifier with free-wheeling diode. Battery charger circuit. Single-phase bridge rectifier. Two-phase half-wave rectifier. Ex. 3-3 Power Diode Three-Phase Rectifiers Three-phase, three-pulse rectifier. Three-phase, six-pulse rectifier. Ex. 3-4 Familiarization with the Chopper / Inverter Control Unit (Chopper Modes) Description of the controls, connectors, and indicators of the Chopper / Inverter Control Unit. Operation and use of the Chopper / Inverter Control Unit in a PWM-control chopper and a two-step neutral-zone (bang-bang) control chopper. Examples of various types of choppers built with IGBTs. Ex. 3-5 Familiarization with the Chopper / Inverter Control Unit (Inverter Modes) Operation and use of the Chopper / Inverter Control Unit in various two-phase and three-phase inverters. Introduction to the 120E-, 180E-, and programmed-waveform modulations. Use of synchronous pulse-width modulation (PWM) to obtain a constant V/f ratio three-phase inverter. Examples of inverters built with electronic switches. Ex. 3-6 Familiarization with the IGBT Chopper / Inverter Module Description of the IGBT Chopper / Inverter. Operation of the IGBT Chopper / Inverter module used as a buck chopper. Effect of the duty cycle on the power delivered. Ex. 3-7 Introduction to High-Speed Power Switching Voltage-type circuit. Current-type circuit. Free-wheeling diodes. Use of a capacitor to obtain a voltage-type source. Interconnecting voltage- and current-type circuits. VIII

11 Courseware Outline ASYNCHRONOUS AND DOUBLY-FED GENERATORS Ex. 3-8 The Buck Chopper Operation of a buck chopper in a simple circuit with a resistive/inductive load. Power flow. Voltage transfer ratio versus the duty cycle. Effect of frequency on the output voltage and current. Power efficiency. Ex. 3-9 The Boost Chopper Operation of a boost chopper in a simple circuit with a resistive load. Power flow. Voltage transfer ratio versus the duty cycle. Effect of frequency on the output voltage and current. Power efficiency. Ex The Buck / Boost Chopper Operation of a buck/boost chopper in a simple circuit with two DC power supplies. Power flow. Voltage transfer ratio versus duty cycle. Ex The Four-Quadrant Chopper Operation of a four-quadrant chopper in a simple circuit with a resistive load. Voltage transfer ratio versus the duty cycle. Power flow. Observing four-quadrant operation on an oscilloscope. Ex The Single-Phase Inverter Using a four-quadrant chopper as a single-phase inverter with variable voltage and frequency (variable voltage and frequency single-phase ac network). A simple dual-polarity DC power supply. Operation of a single-phase inverter built with a dual-polarity DC power supply and two electronic switches, and using either pulse-width modulation (PWM) or 180E-modulation. Ex Saturation and Effect of Frequency in Magnetic Circuits The phenomenon of saturation in magnetic circuits. Saturation curve of magnetic circuits. Effect of frequency in magnetic circuits. Unit 4 Wound-Rotor Induction Machines Familiarization with the operation and characteristics of wound-rotor induction motor and doubly-fed induction generator. IX

12 Courseware Outline ASYNCHRONOUS AND DOUBLY-FED GENERATORS Ex. 4-1 Wound-Rotor Induction Motor To examine the construction of the Three-Phase Wound-Rotor Induction Motor. To understand exciting current, synchronous speed and slip in a wound-rotor induction motor. To observe the effect of the revolving field and rotor speed upon the voltage induced in the rotor. Ex. 4-2 Wound-Rotor Induction Motor with Short-Circuited Rotor To observe the starting characteristics of the Three-Phase Wound-Rotor Induction Motor having short-circuited rotor windings. You will also show the rotor and stator currents at different motor speeds. Ex. 4-3 Wound-Rotor Induction Motor with Variable Rotor Resistors To observe speed control using external variable resistors connected in series with the rotor windings. Ex. 4-4 Wound-Rotor Frequency Conversion Principles To observe no-load and full-load characteristics of a rotary frequency converter. Ex. 4-5 Speed Control of a Wound-Rotor Generator Using Rotor Resistors To demonstrate how the speed of a wound-rotor generator can be controlled by varying the resistance of the rotor windings. Ex. 4-6 Variable Speed Doubly-Fed Induction Generator Using Rotor Frequency Injection To demonstrate how to synchronize a generator to an AC power network, demonstrate how a doubly-fed induction generator can produce output power at various speeds, how to control the output power level, and how to control the power factor of a generator. Appendices A B C D E F G Circuit Diagram Symbols Impedance Tables Equipment Utilization Chart Reversible DC Power Supply New Terms and Words Configuration Files Saving a Window in WordPad X

13 Sample Exercise Extracted from Asynchronous and Doubly-Fed Generators

14

15 Exercise 3-9 The Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of a boost chopper. DISCUSSION The Boost Chopper As discussed in the previous exercise of this manual, transformers allow AC voltage and current levels to be converted. For example, a step-up transformer is normally used to convert an AC voltage into a higher AC voltage. With DC power, a similar conversion can be performed using a boost chopper. Figure 3-66 shows a boost chopper built with an electronic switch (Q) and a diode (D), and some waveforms related to this circuit. When electronic switch Q switches on, the voltage across its terminals becomes virtually null, the DC power supply voltage (E I ) is applied to the inductor (L), and the current flowing in inductor L (I L ) starts to increase. Simultaneously, diode D switches off since it becomes reverse-biased. At this moment, capacitor C starts to discharge into the load and both the output current (I O ) and voltage (E O ) start to decrease. 3

16 The Boost Chopper Figure Operation of a boost chopper. When electronic switch Q switches off, the voltage across its terminals increases very rapidly until it reaches approximately E O V (due to inductor L). This applies a forward-bias voltage of approximately 0.7 V to diode D, which therefore switches 4

17 The Boost Chopper on. At this moment, a current equal to I L! I O starts to charge up capacitor C, and both E O and I O start to increase. The DC voltage at the boost chopper output (E O ) is proportional to the DC voltage at the boost chopper input (E I ) and the time the electronic switch is on during each cycle. This time, which is referred to as the on-time (t ON ), is in turn proportional to the duty cycle α of the switching control signal applied to the control signal input of electronic switch Q. The equation relating voltages E O and E I is given by the expression: Thus, voltage E O can be varied by varying the duty cycle α. This equation indicates that voltage E O can range between voltage E I and an infinite voltage when the duty cycle α varies between 0 and 100%. In practice, however, the duty cycle α only approaches 0 and 100%. Therefore, voltage E O can vary between a voltage a little higher than voltage E I and many times voltage E I. In certain circuits, however, the maximum value of the duty cycle α must be limited to limit the maximum voltage the boost chopper can produce. Varying the frequency of the switching control signal while maintaining the duty cycle α constant does not vary the DC voltage and current at the boost chopper output (E O and I O ). However, the ripple on the output voltage decreases as the frequency of the switching control signal increases. The power which the boost chopper delivers at its output (P O ) is equal to the power it receives at its input (P I ) minus the power dissipated in the electronic switch and the inductor. The power dissipated in the electronic switch and the inductor is usually small compared to the power P O. The power efficiency of boost choppers, thus, often exceeds 80%. Notice that the power efficiency is the ratio of the output power on the input power times 100%, as stated in the following equation: Procedure summary In the first part of this exercise, you will set up the equipment required to perform this exercise. In the second part, you will use the circuit shown in Figure 3-67 to observe the operation of a boost chopper. In this circuit, the boost chopper output is connected to a resistive load consisting of resistors R 2 and R 3 connected in series. You will vary the duty cycle of the switching control signal while observing the DC voltage and current at the boost chopper output. This will allow you to verify the relationship between the duty cycle and the DC voltage at the boost chopper input and output, and to determine the direction of power flow. In the third part, you will vary the frequency of the switching control signal while observing the DC voltage and current, as well as the voltage waveform, at the boost chopper output. This will allow you to verify the effect of frequency on these parameters. 5

18 The Boost Chopper In the fourth part, you will determine the power at the input and output of the boost chopper. You will then compare the output power to the input power and determine the power efficiency of the chopper. EQUIPMENT REQUIRED Refer to the Equipment Utilization Chart, in Appendix C of this manual, to obtain the list of the equipment required to carry out this exercise. PROCEDURE CAUTION! High voltages are present in this laboratory exercise! Do not make or modify any banana jack connections with the power on unless otherwise specified! Setting up the Equipment G 1. Install the Enclosure / Power Supply, Power Supply, Chopper / Inverter, Smoothing Inductors, Resistive Load (2), and Data Acquisition Interface modules in the Mobile Workstation. Install the Chopper / Inverter Control Unit in the Enclosure / Power Supply. Plug the Enclosure / Power Supply line cord into a wall receptacle. Set the power switch of the Enclosure / Power Supply to I (on). G 2. On the Power Supply, make sure that the main power switch is set to O (off) and the voltage control knob to 0%. Make sure that the Power Supply is connected to a three-phase power source. G 3. Make sure that the USB port cable from the computer is connected to the DAI module. Connect the Low Power Inputs of the DAI and Chopper / Inverter modules to the 24-V ac output of the Power Supply. On the Power Supply, set the 24-V ac power switch to I (on). G 4. Open the LVDAM-EMS Oscilloscope window. 6

19 The Boost Chopper Operation of the Boost Chopper G 5. Set up the circuit shown in Figure Figure Circuit used to observe the operation of a boost chopper. Make the appropriate connections on the Smoothing Inductors module to obtain an inductance of 0.2 H for L 1. 7

20 The Boost Chopper Note: Diode D 1 is the power diode connected in parallel with electronic switch Q 1. Diode D 4 (connected in parallel with electronic switch Q 4 ) and electronic switch Q 1 are not shown in the figure because they are not used in this circuit. Electronic switch Q 1 is forced to the off state by connecting SWITCHING CONTROL INPUT 1 to the common point. G 6. Make the following settings: On the Chopper / Inverter Control Unit MODE... CHOP. PWM On the Chopper / Inverter module Switch S 1...lower position In the Oscilloscope window Display E1, E2, AI-1, and I2 on Ch1, Ch2, Ch3, and Ch4. Ch1 Vertical Scale Setting V/Div. (DC coupling) Ch2 Vertical Scale Setting V/Div. (DC coupling) Ch3 Vertical Scale Setting... 2 V/Div. (DC coupling) Ch4 Vertical Scale Setting A/Div. (DC coupling) Time Base...1 ms/div. Trigger Source...Ext. Sync. In the LVDAM-EMS application Analog Output AO V Analog Output AO V G 7. Set the Resistive Load modules to obtain a resistance of 400 Ω for R 2 and R 3. G 8. On the Power Supply, set the main power switch to I (on), then set the voltage control knob to 20%. Note: Select convenient vertical scale and position settings in the Oscilloscope window to facilitate observation. Set Analog Output AO-2 so that two complete cycles of the switching control signal coincide as closely as possible with the full width of the Oscilloscope window. This sets the period of the switching control signal to approximately 5 ms. Consequently, the operating frequency of the boost chopper is approximately 200 Hz. Set Analog Output AO-1 so that the duty cycle of the switching control signal is approximately 80% while observing the DC voltage at the boost chopper output in the AVG column of the Waveform Data box in the Oscilloscope window. 8

21 The Boost Chopper Note: Notice that the duty cycle of PWM control signals 2 and 4 varies linearly from 0.95 to 0.05 as the voltage applied to CONTROL INPUT 1 varies from -10 to +10 V when the Chopper / Inverter Control Unit in the CHOP. PWM mode. G 9. Print or save the waveforms displayed in the Oscilloscope window as OW391. They represent the supply voltage (E I on Ch1), the voltage across the load connected to the boost chopper output (E O on Ch2), the switching control signal applied to electronic switch Q 4 (Ch3), and the load current (I O on Ch4). G 10. Describe how the DC voltage at the boost chopper output varies when the duty cycle of the switching control signal is increased. G 11. Briefly explain why the boost chopper can produce output voltages which are much higher than the voltage applied at its input. G 12. Set Analog Output AO-1 so that the duty cycle of the switching control signal is approximately 5% (minimum value). Print or save the waveforms displayed in the Oscilloscope window as OW392. G 13. Compare the DC voltage at the boost chopper output (Ch2) with the DC voltage provided to the boost chopper (Ch1) (shown in the AVG column of the Waveform Data box). Explain why this circuit is referred to as a boost chopper, knowing that the duty cycle of the switching control signal is set to minimum. 9

22 The Boost Chopper G 14. Compare the DC voltages at the boost chopper output for both duty cycle values: 5 and 80%. Do your observations confirm that the DC voltage at the boost chopper output increases as the duty cycle of the switching control signal is increased? G Yes G No G 15. Set Analog Output AO-1 so that the duty cycle of the switching control signal increases from 5 to 80% while observing the load current (Ch4). Does the polarity of the load current change as the duty cycle of the switching control signal increases from 5 to 80%? G Yes G No In which direction does the power flow? G 16. Record the supply voltage (E I ) shown in the AVG column (Ch1) of the Waveform Data box. Supply voltage E I = G 17. Calculate the DC voltage which should appear at the output of the boost chopper using the following equation (α = 80%): G 18. Record the output voltage E O shown in the AVG column (Ch2) of the Waveform Data box. Measured output voltage E O = Note: The difference between the calculated and measured value is caused by the voltage drops in the inductor and in the electronic switch. 10

23 The Boost Chopper Observing the Effect of the Switching Control Signal Frequency G 19. Make the following settings in the Oscilloscope window: Display E1, E2, I1, and I2 on Ch1, Ch2, Ch3, and Ch4. Ch1 Vertical Scale Setting V/Div. (DC coupling) Ch2 Vertical Scale Setting V/Div. (DC coupling) Ch3 Vertical Scale Setting...1 A/Div. (DC coupling) Ch4 Vertical Scale Setting...1 A/Div. (DC coupling) Time Base... 2 ms/div. Trigger Source... Ext. Sync. G 20. Make sure that the duty cycle of the switching control signal is set to 80%. Make sure that the voltage control knob on the Power Supply is set to 20%. Slowly vary the voltage applied to Control Input 2 from -10 to +10 V to vary the frequency of the switching control signal, while observing the average voltage and current at the buck chopper output (shown in the AVG column (Ch2 and Ch4) of the Waveform Data box). Does the frequency of the switching control signal have a significant effect on the average voltage and current the buck chopper provides? If so, describe this effect. G 21. Set the voltage applied to Control Input 2 to obtain a minimum frequency of the switching control signal. Print or save the waveforms displayed in the Oscilloscope window as OW393. G 22. Slowly vary the voltage applied to Control Input 2 from -10 to +10 V to vary the frequency of the switching control signal, while observing the waveform of the current at the boost chopper input in the Oscilloscope window (Ch3). Does the frequency of the switching control signal have a significant effect on the ripple of the current at the boost chopper input? If so, describe this effect. 11

24 The Boost Chopper Set the voltage applied to Control Input 2 to obtain a maximum frequency of the switching control signal. Print or save the waveforms displayed in the Oscilloscope window as OW394. Output Power Versus Input Power G 23. Set Analog Output AO-2 to +10 V. Make sure that the duty cycle of the switching control signal is still set to 80%. Using the DC voltage and current supplied by the variable-voltage DC power supply to the buck chopper, calculate the power (P I ) which is supplied to the boost chopper. Record the resulting power in the following blank space. Power supplied to the boost chopper P I = G 24. Using the DC voltage and current supplied by the buck chopper to the load, calculate the power (P O ) which is supplied to the load. Record the resulting power in the following blank space. P O = G 25. Calculate the power efficiency of the boost chopper using the following equation: G 26. Is the power at the output of the boost chopper nearly equal to the power at its input? G Yes G No G 27. On the Power Supply, set the voltage control knob to 0%, then set the main power switch and the 24-V ac power switch to O (off). Set the power switch on the Enclosure / Power Supply to O (off). Remove all leads and cables. CONCLUSION In this exercise, you verified that the DC voltage at the boost chopper output increases as the duty cycle of the switching control signal is increased. You found that the minimum DC voltage that can be obtained at the boost chopper output is slightly higher than the DC voltage at its input. 12

25 The Boost Chopper You saw that power always flows in the same direction in a boost chopper. You observed that the frequency of the switching control signal has no effect on the DC voltage and current provided by the boost chopper. Nevertheless, you saw that as the frequency of the switching control signal increases, the ripple on the input current of the boost chopper decreases. You verified that the power at the boost chopper output is approximately equal to the power at its input. REVIEW QUESTIONS 1. Describe the effect the switching control signal frequency has on the output voltage and current of a boost chopper. 2. A boost chopper is powered by a 12-V dc power supply. What is the output voltage range of this chopper if the duty cycle can vary between 20 and 95%? 3. Briefly describe the operation of the boost chopper. 4. Explain why the maximum value of the duty cycle must be limited in certain boost choppers. 5. Name the component operating with AC power which best compares to the boost chopper. 13

26

27 Instructor Guide Sample Exercise Extracted from Asynchronous and Doubly-Fed Generators

28

29 Asynchronous and Doubly-Fed Generators EXERCISE 3-11 THE FOUR-QUADRANT CHOPPER ANSWERS TO PROCEDURE STEP QUESTIONS G 8. Electronic switches Q 1 and Q 5 turn on at same time, and they are complementary to electronic switches Q 2 and Q 4. Figure OW3111. Refer to the circuit shown in Figure Duty cycle = 70%. Ch1 = AI-1 = switching control signal 1. Ch2 = AI-2 = switching control signal 2. Ch3 = AI-3 = switching control signal 4. Ch4 = AI-4 = switching control signal 5. G 11. Because the voltage switches from positive to negative and stays the same time for each polarity. G 12. DC voltage at the input of the four-quadrant chopper = 117 V. 17

30 Asynchronous and Doubly-Fed Generators Figure OW3112. Refer to the circuit shown in Figure Duty cycle = 50%. Ch1 = AI-1 = switching control signal 1. Ch2 = AI-2 = switching control signal 2. Ch3 = E2 = output voltage of the four-quadrant chopper. Ch4 = I2 = output current of the four-quadrant chopper. Ch5 = E1 = supply voltage of the four-quadrant chopper. G 13. When the duty cycle is minimum for Q 1, E O is approximately equal to -E I. When the duty cycle is maximum for Q 1, E O is approximately equal to +E I. Between the minimum and maximum duty cycles, E O varies. G 14. DUTY CYCLE E O (V) I O (A) 5% % Table DC voltage and current at the output of the four-quadrant chopper. 18

31 Asynchronous and Doubly-Fed Generators G 15. The range of the four-quadrant chopper is -E I to +E I. G 16. Yes. G 17. Figure OW3113. Refer to the circuit shown in Figure Duty cycle = 80%. Ch1 = AI-1 = switching control signal 1. Ch2 = AI-2 = switching control signal 2. Ch3 = E2 = output voltage of the four-quadrant chopper. Ch4 = I2 = output current of the four-quadrant chopper. G 18. Calculated E O = 71 V. Yes. G 19. No. 19

32 Asynchronous and Doubly-Fed Generators G 26. Figure G3111. Refer to the circuit shown in Figure Ch1 = AI-1 = output current of the four-quadrant chopper. Ch2 = AI-2 = output voltage of the four-quadrant chopper. 20

33 Asynchronous and Doubly-Fed Generators G 30. Figure G3112. Refer to the circuit shown in Figure Ch1 = AI-1 = output current of the four-quadrant chopper. Ch2 = AI-2 = output voltage of the four-quadrant chopper. G 31. Because it is a reversible chopper in voltage and in current (it operates in the four quadrants). G 32. In quadrants 2 and 4. ANSWERS TO REVIEW QUESTIONS 1. When electronic switches Q 1 and Q 5 are on, E I is applied to the load and when Q 2 and Q 4 are on, -E I is applied to the load. If the duty cycle is greater than 50% for Q 1, the average output voltage will be positive and if the duty cycle is less than 50%, the average output voltage will be negative. 2. Yes. 3. The four-quadrant operation can provide a positive or a negative DC voltage regardless of the direction in which the current flows. 21

34 Asynchronous and Doubly-Fed Generators 4. The equation relating voltages E O and E I is E O = E I x (2α Q1-1). So -24 = 200 x (2α Q1-1) = 56%. 5. The output voltage is reversible. 22

35 Bibliography Jackson, Herbert W. Introduction to Electric Circuits, 5 th edition, New Jersey: Prentice Hall, 1981 ISBN Wildi, Theodore. Electrical Machines, Drives, and Power Systems, 2 nd edition, New Jersey: Prentice Hall, ISBN

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper

Exercise 6. The Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The boost chopper Exercise 6 The Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the boost chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

Introduction to High-Speed Power Switching

Introduction to High-Speed Power Switching Exercise 3 Introduction to High-Speed Power Switching EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concept of voltage-type and current-type circuits. You will

More information

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper Exercise 8 The Four-Quadrant Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the four-quadrant chopper. DISCUSSION OUTLINE The Discussion of

More information

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION

Exercise 2. The Buck Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE. The buck chopper DISCUSSION Exercise 2 The Buck Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the buck chopper. DISCUSSION OUTLINE The Discussion of this exercise covers

More information

Renewable Energy. DC Power Electronics. Courseware Sample F0

Renewable Energy. DC Power Electronics. Courseware Sample F0 Renewable Energy DC Power Electronics Courseware Sample 86356-F0 A RENEWABLE ENERGY DC POWER ELECTRONICS Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2010 Lab-Volt Ltd. All rights reserved.

More information

Exercise 4. Ripple in Choppers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Ripple

Exercise 4. Ripple in Choppers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Ripple Exercise 4 Ripple in Choppers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with ripple in choppers. DISCUSSION OUTLINE The Discussion of this exercise covers the following

More information

Exercise 7. The Buck/Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Buck/Boost Chopper

Exercise 7. The Buck/Boost Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Buck/Boost Chopper Exercise 7 The Buck/Boost Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the buck/boost chopper. DISCUSSION OUTLINE The Discussion of this

More information

The Single-Phase PWM Inverter with Dual-Polarity DC Bus

The Single-Phase PWM Inverter with Dual-Polarity DC Bus Exercise 2 The Single-Phase PWM Inverter with Dual-Polarity DC Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase PWM inverter with dual-polarity dc

More information

DISCUSSION OF FUNDAMENTALS

DISCUSSION OF FUNDAMENTALS Unit 4 AC s UNIT OBJECTIVE After completing this unit, you will be able to demonstrate and explain the operation of ac induction motors using the Squirrel-Cage module and the Capacitor-Start Motor module.

More information

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation

Exercise 3. Doubly-Fed Induction Generators EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Doubly-fed induction generator operation Exercise 3 Doubly-Fed Induction Generators EXERCISE OBJECTIVE hen you have completed this exercise, you will be familiar with the operation of three-phase wound-rotor induction machines used as doubly-fed

More information

Exercise 1. Basic PWM DC Motor Drive EXERCISE OBJECTIVE DISCUSSION OUTLINE. Block diagram of a basic PWM dc motor drive DISCUSSION

Exercise 1. Basic PWM DC Motor Drive EXERCISE OBJECTIVE DISCUSSION OUTLINE. Block diagram of a basic PWM dc motor drive DISCUSSION Exercise 1 Basic PWM DC Motor Drive EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the most basic type of PWM dc motor drive: the buck chopper dc motor drive. You will

More information

University of Saskatchewan Department of Electrical and Computer Engineering EE Power Electronics Lab Exercise 4

University of Saskatchewan Department of Electrical and Computer Engineering EE Power Electronics Lab Exercise 4 University of Saskatchewan Department of Electrical and Computer Engineering EE 343.3 Power Electronics Lab Exercise 4 Instructor: N. Chowdhury Lab instructors: Jason Pannel and Indra Karmacharya =====================================================================

More information

Bidirectional PWM DC Motor Drive with Regenerative Braking

Bidirectional PWM DC Motor Drive with Regenerative Braking Exercise 2 Bidirectional PWM DC Motor Drive with Regenerative Braking EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with two better types of PWM dc motor drives: the buck-boost

More information

Generator Operation with Speed and Voltage Regulation

Generator Operation with Speed and Voltage Regulation Exercise 3 Generator Operation with Speed and Voltage Regulation EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the speed governor and automatic voltage regulator used

More information

PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter

PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter Exercise 1 PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with six-step 120 modulation. You will know

More information

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator

Voltage-Versus-Speed Characteristic of a Wind Turbine Generator Exercise 1 Voltage-Versus-Speed Characteristic of a Wind Turbine Generator EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the principle of electromagnetic induction.

More information

Operation of a Three-Phase PWM Rectifier/Inverter

Operation of a Three-Phase PWM Rectifier/Inverter Exercise 1 Operation of a Three-Phase PWM Rectifier/Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the block diagram of the three-phase PWM rectifier/inverter.

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 1 Power Diode Single-Phase Rectifiers EXERCISE OBJECTIVE When you have completed this exercise, you will know what a diode is, and how it operates. You will be familiar with two types of circuits

More information

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter)

Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) Exercise 2 Single-Phase Grid-Tied Inverter (PWM Rectifier/Inverter) EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the singlephase grid-tied inverter. DISCUSSION OUTLINE

More information

LVSIM-EMS Help Table of Contents

LVSIM-EMS Help Table of Contents LVSIM-EMS Help Table of Contents LVSIM-EMS Help... 1 Overview of LVSIM-EMS... 7 LVSIM-EMS Toolbar... 8 LVSIM-EMS Menus... 10 File Menu Commands... 10 Virtual Laboratory File (filename.lvsimweb)... 10 New...

More information

9063 Data Acquisition and Control Interface

9063 Data Acquisition and Control Interface 9063 Data Acquisition and Control Interface LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 12/2017 Table of Contents General Description 2 9063 Data Acquisition and Control Interface 4 Variants

More information

Data Acquisition and Control Interface

Data Acquisition and Control Interface Data Acquisition and Control Interface LabVolt Series Datasheet Festo Didactic en 240 V - 50 Hz 05/2018 Table of Contents General Description 2 Model 9063 Data Acquisition and Control Interface 4 Model

More information

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO

MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO DEPARTMENT OF MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO Name Roll No. Subject Teacher MEHRAN UNIVERSITY OF ENGINEERING & TECHNOLOGY, JAMSHORO 1 Name:. Roll No: Score: Signature of Lab Tutor:

More information

Solving Simple AC Circuits Using Circuit Impedance Calculation

Solving Simple AC Circuits Using Circuit Impedance Calculation Exercise 4-1 Solving Simple AC Circuits Using Circuit Impedance Calculation EXERCISE OBJECTIVE When you have completed this exercise, you will be able to resolve simple parallel and series ac circuits

More information

Voltage Compensation of AC Transmission Lines Using a STATCOM

Voltage Compensation of AC Transmission Lines Using a STATCOM Exercise 1 Voltage Compensation of AC Transmission Lines Using a STATCOM EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operating principles of STATCOMs used for

More information

Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics

Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics 15-830 Electric Power Systems 2: Generators, Three-phase Power, and Power Electronics J. Zico Kolter October 9, 2012 1 Generators Basic AC Generator Rotating Magnet Loop of Wire 2 Generator operation Voltage

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information

Speed Feedback and Current Control in PWM DC Motor Drives

Speed Feedback and Current Control in PWM DC Motor Drives Exercise 3 Speed Feedback and Current Control in PWM DC Motor Drives EXERCISE OBJECTIVE When you have completed this exercise, you will know how to improve the regulation of speed in PWM dc motor drives.

More information

Electric cars: Technology

Electric cars: Technology Key equations for a boost converter Now that you have an understanding of how the simple DC-DC boost converter works, we summarize the main equations for the converter here. These equations are for continuous

More information

Grid-Tied Home Energy Production Using a Solar or Wind Power Inverter without DC-to-DC Converter

Grid-Tied Home Energy Production Using a Solar or Wind Power Inverter without DC-to-DC Converter Exercise 3 Grid-Tied Home Energy Production Using a Solar or Wind Power Inverter without DC-to-DC Converter EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with grid-tied

More information

The Discussion of this exercise covers the following points: Phasor diagrams related to active and reactive power

The Discussion of this exercise covers the following points: Phasor diagrams related to active and reactive power Exercise 3-2 Apparent Power and the Power Triangle EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with phasor diagrams showing the active power, reactive power, and apparent

More information

Electricity and New Energy. DC Power Electronics. Courseware Sample F0

Electricity and New Energy. DC Power Electronics. Courseware Sample F0 Electricity and New Energy DC Power Electronics Courseware Sample 86356-F0 Order no.: 86356-10 Revision level: 12/2014 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2010 Internet:

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

EE 340L Experiment 6: Synchronous Generator - Operation with the Grid

EE 340L Experiment 6: Synchronous Generator - Operation with the Grid EE 340L Experiment 6: Synchronous Generator - Operation with the Grid The synchronous machine (see Fig. 1) is mechanically coupled to the Four-Quadrant Dynamometer/Power Supply (see Fig. 2) using a timing

More information

AC Power Transmission Training System

AC Power Transmission Training System AC Power Transmission Training System LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 07/2018 Table of Contents General Description 2 Courseware 5 Modular Design Approach 5 Features & Benefits

More information

Exercise 3. Phase Sequence EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Phase sequence fundamentals

Exercise 3. Phase Sequence EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Phase sequence fundamentals Exercise 3 Phase Sequence EXERCISE OBJECTIVE When you have completed this exercise, you will know what a phase sequence is and why it is important to know the phase sequence of a three-phase power system.

More information

DC and AC Power Circuits Training System

DC and AC Power Circuits Training System DC and AC Power Circuits Training System LabVolt Series Datasheet Festo Didactic en 220 V - 60 Hz 06/2018 Table of Contents General Description 2 Courseware 3 Modular Approach 4 elearning Formats 4 Features

More information

AC Power Transmission Training System

AC Power Transmission Training System AC Power Transmission Training System LabVolt Series Datasheet Festo Didactic en 220 V - 60 Hz 07/2018 Table of Contents General Description 2 Courseware 5 Modular Design Approach 5 Features & Benefits

More information

Three-Phase AC Power Circuits

Three-Phase AC Power Circuits Electricity and New Energy Three-Phase AC Power Circuits Student Manual 86360-0 Order no.: 86360-10 First Edition Revision level: 09/2016 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec,

More information

Exercise 4. Angle Tracking Techniques EXERCISE OBJECTIVE

Exercise 4. Angle Tracking Techniques EXERCISE OBJECTIVE Exercise 4 Angle Tracking Techniques EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the principles of the following angle tracking techniques: lobe switching, conical

More information

Single-Phase Power Transformers

Single-Phase Power Transformers ` Electricity and New Energy Single-Phase Power Transformers Course Sample 594132 Order no.: 594132 (Printed version) 594446 (CD-ROM) First Edition Revision level: 10/2018 By the staff of Festo Didactic

More information

UNIT 9 DC Separately-Excited Generator

UNIT 9 DC Separately-Excited Generator UNIT 9 DC Separately-Excited Generator 9-1 No-Load Saturation Characteristic EXERCISE 9-1 OBJECTIVE After completing this exercise, you should be able to demonstrate the operating characteristic of a DC

More information

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field

Exercise 9. Electromagnetism and Inductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Magnetism, magnets, and magnetic field Exercise 9 Electromagnetism and Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the concepts of magnetism, magnets, and magnetic field, as well as electromagnetism

More information

Masterthesis. Variable Speed Wind Turbine equipped with a Synchronous Generator. by Christian Freitag

Masterthesis. Variable Speed Wind Turbine equipped with a Synchronous Generator. by Christian Freitag Masterthesis Variable Speed Wind Turbine equipped with a Synchronous Generator by Christian Freitag Title: Variable Speed Wind Turbines equipped with a Synchronous Generator Semester: 4 th Semester theme:

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

Conventional Paper-II-2013

Conventional Paper-II-2013 1. All parts carry equal marks Conventional Paper-II-013 (a) (d) A 0V DC shunt motor takes 0A at full load running at 500 rpm. The armature resistance is 0.4Ω and shunt field resistance of 176Ω. The machine

More information

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1 Module 7 Electrical Machine Drives Version 2 EE IIT, Kharagpur 1 Lesson 34 Electrical Actuators: Induction Motor Drives Version 2 EE IIT, Kharagpur 2 Instructional Objectives After learning the lesson

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

Sascha Stegen School of Electrical Engineering, Griffith University, Australia

Sascha Stegen School of Electrical Engineering, Griffith University, Australia Sascha Stegen School of Electrical Engineering, Griffith University, Australia Electrical Machines and Drives Motors Generators Power Electronics and Drives Open-loop inverter-fed General arrangement of

More information

Contents. Acknowledgments. About the Author

Contents. Acknowledgments. About the Author Contents Figures Tables Preface xi vii xiii Acknowledgments About the Author xv xvii Chapter 1. Basic Mathematics 1 Addition 1 Subtraction 2 Multiplication 2 Division 3 Exponents 3 Equations 5 Subscripts

More information

Single-Phase Power Transformers

Single-Phase Power Transformers ` Electricity and New Energy Single-Phase Power Transformers Course Sample 579439 Order no.: 579439 (Printed version) 591956 (CD-ROM) First Edition Revision level: 10/2018 By the staff of Festo Didactic

More information

Experiment 2 IM drive with slip power recovery

Experiment 2 IM drive with slip power recovery University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIE SYSTEMS Experiment 2 IM drive with slip power recovery 1. Introduction This experiment introduces

More information

Three-Phase Transformer Banks

Three-Phase Transformer Banks Electricity and New Energy Three-Phase Transformer Banks Student Manual 86379-00 Order no.: 86379-00 Revision level: 01/2015 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2011

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE

1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE 1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE Set the rotation direction of the motor. Understand the V/f (volts per hertz) characteristics. Learn how to use an analog voltage to assign the frequency

More information

Conventional Paper-II-2011 Part-1A

Conventional Paper-II-2011 Part-1A Conventional Paper-II-2011 Part-1A 1(a) (b) (c) (d) (e) (f) (g) (h) The purpose of providing dummy coils in the armature of a DC machine is to: (A) Increase voltage induced (B) Decrease the armature resistance

More information

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers

Exercise 10. Transformers EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to transformers Exercise 10 Transformers EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the basic operating principles of transformers, as well as with the different ratios of transformers:

More information

Experiment DC-DC converter

Experiment DC-DC converter POWER ELECTRONIC LAB Experiment-7-8-9 DC-DC converter Power Electronics Lab Ali Shafique, Ijhar Khan, Dr. Syed Abdul Rahman Kashif 10/11/2015 This manual needs to be completed before the mid-term examination.

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic Capacitor

More information

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments

PE Electrical Machine / Power Electronics. Power Electronics Training System. ufeatures. } List of Experiments Electrical Machine / Power Electronics PE-5000 Power Electronics Training System The PE-5000 Power Electronics Training System consists of 28 experimental modules, a three-phase squirrel cage motor, load,

More information

Simulation of Advanced ELC with Synchronous Generator for Micro Hydropower

Simulation of Advanced ELC with Synchronous Generator for Micro Hydropower Simulation of Advanced ELC with Synchronous Generator for Micro Hydropower Station ANKITA GUPTA 1 Alternate Hydro Energy Centre Indian Institute of Technology, Roorkee, India Email: ankita.iitr.6@gmail.com

More information

Single-Phase AC Power Circuits

Single-Phase AC Power Circuits Electricity and New Energy Single-Phase AC Power Circuits Courseware Sample 86358-F0 Order no.: 86358-10 First Edition Revision level: 06/2017 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec,

More information

Electronic Circuits I Laboratory 03 Rectifiers

Electronic Circuits I Laboratory 03 Rectifiers Electronic Circuits I Laboratory 03 Rectifiers # Student ID Student Name Grade (10) 1 Instructor signature 2 3 4 5 Delivery Date -1 / 18 - Objectives In this experiment, you will get to know a group of

More information

Four-Quadrant Dynamometer/Power Supply

Four-Quadrant Dynamometer/Power Supply Four-Quadrant Dynamometer/Power Supply LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 05/2018 Table of Contents General Description 3 Four-Quadrant Dynamometer/Power Supply 4 Model Variants 5

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual

UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING. Electrical Engineering Science. Laboratory Manual UNIVERSITY OF TECHNOLOGY, JAMAICA SCHOOL OF ENGENEERING Electrical Engineering Science Laboratory Manual Table of Contents Experiment #1 OHM S LAW... 3 Experiment # 2 SERIES AND PARALLEL CIRCUITS... 8

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

AC Drive Technology. An Overview for the Converting Industry. Siemens Industry, Inc All rights reserved.

AC Drive Technology. An Overview for the Converting Industry.  Siemens Industry, Inc All rights reserved. AC Drive Technology An Overview for the Converting Industry www.usa.siemens.com/converting Siemens Industry, Inc. 2016 All rights reserved. Answers for industry. AC Drive Technology Drive Systems AC Motors

More information

PHY 351/651 LABORATORY 5 The Diode Basic Properties and Circuits

PHY 351/651 LABORATORY 5 The Diode Basic Properties and Circuits Reading Assignment Horowitz, Hill Chap. 1.25 1.31 (p35-44) Data sheets 1N4007 & 1N4735A diodes Laboratory Goals PHY 351/651 LABORATORY 5 The Diode Basic Properties and Circuits In today s lab activities,

More information

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form JOHANN MINIBÖCK power electronics consultant Purgstall 5 A-3752 Walkenstein AUSTRIA Phone: +43-2913-411

More information

AC Power Transmission Training System Add- On to ( )

AC Power Transmission Training System Add- On to ( ) AC Power Transmission Training System Add- On to 8006 587433 (89252-00) LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 03/2019 Table of Contents General Description 2 List of Equipment 2 List

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A30203 Class : II B. Tech I Semester Branch

More information

Lesson 1 of Chapter Three Single Phase Half and Fully Controlled Rectifier

Lesson 1 of Chapter Three Single Phase Half and Fully Controlled Rectifier Lesson of Chapter hree Single Phase Half and Fully Controlled Rectifier. Single phase fully controlled half wave rectifier. Resistive load Fig. :Single phase fully controlled half wave rectifier supplying

More information

EXPERIMENT 5 : DIODES AND RECTIFICATION

EXPERIMENT 5 : DIODES AND RECTIFICATION EXPERIMENT 5 : DIODES AND RECTIFICATION Component List Resistors, one of each o 2 1010W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic

More information

Power Circuits and Transformers

Power Circuits and Transformers Electricity and New Energy Power Circuits and Transformers Student Manual 30328-00 Order no.: 30328-00 Revision level: 11/2014 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 1995

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (I max = 1A, PIV = 400V) Diodes Center tap transformer (35.6V pp, 12.6 V RMS ) 100 F Electrolytic Capacitor

More information

EE 340L Experiment 6: Synchronous Generator - Stand-Alone Operation

EE 340L Experiment 6: Synchronous Generator - Stand-Alone Operation EE 340L Experiment 6: Synchronous Generator - Stand-Alone Operation The synchronous machine (see Fig. 1) is mechanically coupled to the Four-Quadrant Dynamometer/Power Supply (see Fig. 2) using a timing

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information

Contents. About the Authors. Abbreviations and Symbols

Contents. About the Authors. Abbreviations and Symbols About the Authors Preface Abbreviations and Symbols xi xiii xv 1 Principal Laws and Methods in Electrical Machine Design 1 1.1 Electromagnetic Principles 1 1.2 Numerical Solution 9 1.3 The Most Common

More information

Three-Phase AC Power Circuits

Three-Phase AC Power Circuits Electricity and New Energy Three-Phase AC Power Circuits Course Sample 57978 Order no.: 57978 (Printed version) 591861 (CD-ROM) First Edition Revision level: 09/2018 By the staff of Festo Didactic Festo

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Equipment List Dual Channel Oscilloscope R, 330, 1k, 10k resistors P, Tri-Power Supply V, 2x Multimeters D, 4x 1N4004: I max = 1A, PIV = 400V Silicon Diode P 2 35.6V pp (12.6 V

More information

Harmonic Reduction using Thyristor 12-Pulse Converters

Harmonic Reduction using Thyristor 12-Pulse Converters Exercise 5 Harmonic Reduction using Thyristor 12-Pulse Converters EXERCISE OBJECTIVE When you have completed this exercise, you will understand what a thyristor 12- pulse converter is and how it operates.

More information

Exercise 6. Range and Angle Tracking Performance (Radar-Dependent Errors) EXERCISE OBJECTIVE

Exercise 6. Range and Angle Tracking Performance (Radar-Dependent Errors) EXERCISE OBJECTIVE Exercise 6 Range and Angle Tracking Performance EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the radardependent sources of error which limit range and angle tracking

More information

Exercise 12. Semiconductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to semiconductors. The diode

Exercise 12. Semiconductors EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Introduction to semiconductors. The diode Exercise 12 Semiconductors EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of a diode. You will learn how to use a diode to rectify ac voltage to produce

More information

8010-7A Home Energy Production Training System

8010-7A Home Energy Production Training System 8010-7A Home Energy Production Training System LabVolt Series Datasheet Festo Didactic en 240 V - 50 Hz 04/2018 Table of Contents General Description 2 Courseware 4 Modular Design Approach 5 Features &

More information

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications Shilpa G.K #1, Plasin Francis Dias *2 #1 Student, Department of E&CE,

More information

Dynamic Power Factor Correction Using a STATCOM

Dynamic Power Factor Correction Using a STATCOM Exercise 2 Dynamic Power Factor Correction Using a STATCOM EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the reasoning behind the usage of power factor correction

More information

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION Exercise 2-2 Antenna Driving System EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the mechanical aspects and control of a rotating or scanning radar antenna. DISCUSSION

More information

Power Electronics. Prof. B. G. Fernandes. Department of Electrical Engineering. Indian Institute of Technology, Bombay.

Power Electronics. Prof. B. G. Fernandes. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Power Electronics Prof. B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 28 So far we have studied 4 different DC to DC converters. They are; first

More information

EE 410/510: Electromechanical Systems Chapter 5

EE 410/510: Electromechanical Systems Chapter 5 EE 410/510: Electromechanical Systems Chapter 5 Chapter 5. Induction Machines Fundamental Analysis ayssand dcontrol o of Induction Motors Two phase induction motors Lagrange Eqns. (optional) Torque speed

More information

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering -

UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - UNIVERSITY OF TECHNOLOGY, JAMAICA School of Engineering - Electrical Engineering Science Laboratory Manual Table of Contents Safety Rules and Operating Procedures... 3 Troubleshooting Hints... 4 Experiment

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Nicolò Antonante Kristian Bergaplass Mumba Collins

Nicolò Antonante Kristian Bergaplass Mumba Collins Norwegian University of Science and Technology TET4190 Power Electronics for Renewable Energy Mini-project 19 Power Electronics in Motor Drive Application Nicolò Antonante Kristian Bergaplass Mumba Collins

More information

ECE 5671/6671 LAB 6. Wound-Field Synchronous Generators

ECE 5671/6671 LAB 6. Wound-Field Synchronous Generators ECE 5671/6671 LAB 6 Wound-Field Synchronous Generators 1.0 Introduction This lab is designed to explore the characteristics of Wound Field Synchronous Generators (WFSG). The WFSG of this lab is obtained

More information

EE401,EC401,DEE19,DETE19

EE401,EC401,DEE19,DETE19 EE401,EC401,DEE19,DETE19 IV SEMESTER DIPLOMA EXAMINATION, JANUARY 2013 LINEAR & DIGITAL ICs Time: 3 Hours Max. Marks: 75 GROUP A : Answer any three questions. (Question No. 1 is compulsory) Q.1 What is

More information

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY UNIT 1 DC MACHINES PART A 1. State Faraday s law of Electro magnetic induction and Lenz law. 2. Mention the following functions in DC Machine (i)

More information

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I

Three-Phase Induction Motors. By Sintayehu Challa ECEg332:-Electrical Machine I Three-Phase Induction Motors 1 2 3 Classification of AC Machines 1. According to the type of current Single Phase and Three phase 2. According to Speed Constant Speed, Variable Speed and Adjustable Speed

More information

EE 350: Electric Machinery Fundamentals

EE 350: Electric Machinery Fundamentals EE 350: Electric Machinery Fundamentals Lecture Schedule See Time Table Course Type, Semester Fundamental Engineering, Fifth Credit Hours Three + One Pre-requisite Physics Instructor Dr. Muhammad Asghar

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information