GPS Basics. Introduction to the system Application overview. GPS Basics

Size: px
Start display at page:

Download "GPS Basics. Introduction to the system Application overview. GPS Basics"

Transcription

1 GPS Basics Introduction to the system Application overview GPS Basics

2 GPSBasics u-bloxag Title GPS Basics Doc Type BOOK Doc Id Author: Date: GPS-X-0007 Jean-MarieZogg 6/03/00 Formostrecentdocuments,pleasevisitwww.u-blox.com Wereserveallrightsinthisdocumentandintheinformationcontainedtherein.Reproduction,useordisclosuretothirdpartieswithoutexpressauthorityisstrictlyforbidden. Alltrademarksmentionedinthisdocumentarepropertyoftheirrespectiveowners. Copyright 00,u-bloxag THISBOOKISSUBJECTTOCHANGSEATU-BLOX'DISCRETION.U-BLOXASSUMESNORESPONSIBILITYFORANYCLAIMSORDAMAGESARISINGOUTOFTHEUSEOFTHIS BOOK, INCLUDING BUT NOT LIMITED TO CLAIMS OR DAMAGES BASED ON INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS. U-BLOXMAKESNOWARRANTIES,EITHEREXPRESSEDORIMPLIEDWITHRESPECTTOTHEINFORMATIONANDSPECIFICATIONSCONTAINEDINTHISBOOK.PERFORMANCE CHARACTERISTICSLISTEDINTHISBOOKAREESTIMATESONLYANDDONOTCONSTITUTEAWARRANTYORGUARANTEEOFPRODUCTPERFORMANCE. GPS-X-0007 Page

3 GPSBasics u-bloxag GPS Basics Introductiontothesystem Applicationoverview u-blox ag Zuercherstrasse68 CH-8800Thalwil Switzerland Phone: Fax: Internet: GPS-X-0007 Page3

4 GPSBasics u-bloxag Preface by the author Jean-MarieZogg My Way In1990,IwastravellingbytrainfromChurtoBrigintheSwisscantonofValais.Inordertopassthetimeduring thejourney,ihadbroughtafewtradejournalswithme.whilstthumbingthroughanamericanpublication,i cameacrossaspecialistarticleaboutsatellitesthatdescribedanewpositioningandnavigationalsystem.usinga fewussatellites,thisparticularsystem,knownasaglobalpositioningsystemorgps,wasabletodeterminea positionanywhereintheworldtowithinanaccuracyofabout100m(*). Asakeensportsmanandmountaintrekker,Ihadendeduponmanyanoccasioninprecarioussituationsdueto alackoflocalknowledgeandiwasthereforefascinatedbytheprospectofbeingabletodeterminemyposition infogoratnightbyusingarevolutionaryprocessinvolvingagpsreceiver.afterreadingthearticleiwassmitten bythegpsbug. IthenbegantodelvedeeperintotheGlobalPositioningSystem.Iarousedalotofenthusiasmamongststudents atmyuniversityforthisparticularuseofgps,andasaresult,producedvariousitemsofcourseworkaswellas degreepapersonthesubject.feelingthatiwasatruegpsexpert,iconsideredmyselfqualifiedtospreadthe navigationmessage andcompiledspecialistarticlesaboutgpsforvariousmagazinesandnewspapers.asmy specialistknowledgegrew,sodidmyenthusiasmforthesystemandthedegreetowhichibecamehookedon thesubject. Why read this book? Basically, a GPS receiver determines just four variables: longitude, latitude, height and time. Additional information(e.g.speed,directionetc.)canbederivedfromthesefourcomponents.anappreciationoftheway in which the GPS system functions is necessary, in order to develop new, fascinating applications. If one is familiar with the technical background to the GPS system, it then becomes possible to develop and use new positioningandnavigationalequipment.thisbookalsodescribesthelimitationsofthesystem,sothatpeopledo notexpecttoomuchfromit. Beforeyoudecidetoembarkonthistext,IwouldliketowarnyouthatthereisnoknowncurefortheGPSbug andthatyouproceedatyourownperil! GPS-X-0007 Page4

5 GPSBasics u-bloxag How did this book come about? Two years ago, I decided to reduce the amount of time I spent lecturing at the university, in order to take anotherlookatindustry.myaimwastoworkforacompanyprofessionallyinvolvedwithgpsandu-bloxag received me with open arms. The company wanted me to produce a brochure that they could give to their customers.thispresentsynopsisisthereforetheresultofearlierarticlesandnewlycompiledchapters. A heartfelt wish IwishyoueverysuccesswithyourworkwithintheextensiveGPScommunityandtrustthatyouwillsuccessfully navigateyourwaythroughthisfascinatingtechnicalfield.enjoyyourread! Jean-MarieZogg October001 (*):thatwasin1990,positionaldataisnowaccuratetowithinabout10m! GPS-X-0007 Page5

6 GPSBasics u-bloxag Table of contents 1 INTRODUCTION...9 GPS made simple Theprincipleofmeasuringsignaltransittime GeneratingGPSsignaltransittime Determiningapositiononaplane Theeffectandcorrectionoftimeerror Determiningapositionin3-Dspace GPS, THE TECHNOLOGY Descriptionoftheentiresystem Spacesegment Satellitemovement TheGPSsatellites Generatingthesatellitesignal Controlsegment Usersegment THE GPS NAVIGATION MESSAGE Introduction Structureofthenavigationmessage Informationcontainedinthesubframes TLMandHOW Subdivisionofthe5pages Comparisonbetweenephemerisandalmanacdata Calculating position Introduction Calculatingaposition Theprincipleofmeasuringsignaltransittime(evaluationofpseudo-range) Linearisationoftheequation Solvingtheequation Summary Errorconsiderationandsatellitesignal Co-ordinate systems Introduction Geoids Ellipsoidanddatum Spheroid Customisedlocalreferenceellipsoidsanddatum Nationalreferencesystems WorldwidereferenceellipsoidWGS Transformationfromlocaltoworldwidereferenceellipsoid Convertingco-ordinatesystems Planarlandsurveyco-ordinates,projection ProjectionsystemforGermanyandAustria...45 GPS-X-0007 Page6

7 GPSBasics u-bloxag 6.4. Swissprojectionsystem(conformaldoubleprojection) Worldwideco-ordinateconversion Differential-GPS (DGPS) Introduction DGPSbasedonthemeasurementofsignaltransittime DetailedDGPSmethodofoperation DGPSbasedoncarrierphasemeasurement DATA FORMATS AND HARDWARE interfaces Introduction Datainterfaces TheNMEA-0183datainterface TheDGPScorrectiondata(RTCMSC-104) Hardwareinterfaces Antenna Supply Timepulse:1PPSandtimesystems ConvertingtheTTLleveltoRS GPS RECEIVERS BasicsofGPShandheldreceivers GPSreceivermodules BasicdesignofaGPSmodule GPS APPLICATIONS Introduction Descriptionofthevariousapplications Scienceandresearch Commerceandindustry Agricultureandforestry Communicationstechnology Tourism/sport Military Timemeasurement...78 APPENDIX...79 A.1 DGPSservices...79 A.1.1 Introduction...79 A.1. Swipos-NAV(RDSorGSM)...79 A.1.3 A.1.4 AMDS...79 SAPOS...80 A.1.5 ALF...80 A.1.6 dgps...80 A.1.7 RadioBeacons...81 A.1.8 OmnistarandLandstar...81 A.1.9 EGNOS...81 A.1.10 WAAS...81 A. Proprietarydatainterfaces...8 A..1 A.. Introduction...8 SiRFBinaryprotocol...8 GPS-X-0007 Page7

8 GPSBasics u-bloxag A..3 Motorola:binaryformat...85 A..4 A..5 Trimbleproprietaryprotocol...86 NMEAorproprietarydatasets?...86 Resources on the World Wide Web...88 Generaloverviewsandfurtherlinks...88 DifferentialGPS...88 GPSinstitutes...89 GPSantennae...89 GPSnewsgroupsandspecialistjournals...89 List of tables...90 List of illustrations...91 SOURCES...93 GPS-X-0007 Page8

9 GPSBasics u-bloxag 1 INTRODUCTION Longitude: 9 4'3,43'' Latitude: 46 48'37,0'' Altitude: 709,1m Time: 1h33'07'' Figure 1: The basic function of GPS UsingtheGlobalPositioningSystem(GPS,aprocessusedtoestablishapositionatanypointontheglobe)the followingtwovaluescanbedeterminedanywhereonearth(figure1): 1. One s exact location (longitude, latitude and height co-ordinates) accurate to within a range of 0 m to approx.1mm.. Theprecisetime(UniversalTimeCoordinated,UTC)accuratetowithinarangeof60nstoapprox.5ns. Speed and direction of travel (course) can be derived from these co-ordinates as well as the time. The coordinatesandtimevaluesaredeterminedby8satellitesorbitingtheearth. GPS receivers are used for positioning, locating, navigating, surveying and determining the time and are employedbothbyprivateindividuals(e.g.forleisureactivities,suchastrekking,balloonflightsandcross-country skiingetc.)andcompanies(surveying,determiningthetime,navigation,vehiclemonitoringetc.). GPS(thefulldescriptionis:NAVigationSystemwithTimingAndRangingGlobalPositioningSystem,NAVSTAR- GPS)wasdevelopedbytheU.S.DepartmentofDefense(DoD)andcanbeusedbothbyciviliansandmilitary personnel.thecivilsignalsps(standard PositioningService)canbeusedfreelybythegeneralpublic,whilstthe military signal PPS(Precise Positioning Service)can only be used by authorised government agencies. The first satellitewasplacedinorbiton nd February1978,andtherearecurrently8operationalsatellitesorbitingthe Earth at a height of 0,180 km on 6 different orbital planes. Their orbits are inclined at 55 to the equator, ensuringthataleast4satellitesareinradiocommunicationwithanypointontheplanet.eachsatelliteorbits theearthinapproximately1hoursandhasfouratomicclocksonboard. DuringthedevelopmentoftheGPSsystem,particularemphasiswasplacedonthefollowingthreeaspects: 1. Ithadtoprovideuserswiththecapabilityofdeterminingposition,speedandtime,whetherinmotion oratrest.. Ithadtohaveacontinuous,global,3-dimensionalpositioningcapabilitywithahighdegreeofaccuracy, irrespectiveoftheweather. 3. Ithadtoofferpotentialforcivilianuse. GPS-X-0007 Page9

10 GPSBasics u-bloxag TheaimofthisbookistoprovideacomprehensiveoverviewofthewayinwhichtheGPSsystemfunctionsand theapplicationstowhichitcanbeput.thebookisstructuredinsuchawaythatthereadercangraduatefrom simple facts to more complex theory. Important aspects of GPS such as differential GPS and equipment interfacesaswellasdataformatarediscussedinseparatesections.inaddition,thebookisdesignedtoactasan aidinunderstandingthetechnologythatgoesintogpsappliances,modulesandics.frommyownexperience,i knowthatacquiringanunderstandingofthevariouscurrentco-ordinatesystemswhenusinggpsequipment canoftenbeadifficulttask.aseparatechapteristhereforedevotedtotheintroductionofcartography. Thisbookisaimedatusersinterestedintechnology,andspecialistsinvolvedinGPSapplications. GPS-X-0007 Page10

11 GPSBasics u-bloxag GPS MADE SIMPLE If you would like to... o understandhowthedistanceofalightningboltisdetermined o understandhowgpsbasicallyfunctions o knowhowmanyatomicclocksareonboardagpssatellite o knowhowapositiononaplaneisdetermined o understandwhythereneedstobefourgpssatellitestoestablishaposition then this chapter is for you!.1 The principle of measuring signal transit time Atsometimeorotherduringastormynightyouhavealmostcertainlyattemptedtoworkouthowfarawayyou are from a flash of lightning. The distance can be established quite easily(figure ): distance = the time the lightningflashisperceived(starttime)untilthethunderisheard(stoptime)multipliedbythespeedofsound (approx.330m/s).thedifferencebetweenthestartandstoptimeistermedthetransittime. Eye determines the start time Transit time Ear determines the stop time Figure : Determining the distance of a lightning flash distance = transit time the speed of sound TheGPSsystemfunctionsaccordingtoexactlythesameprinciple.Inordertocalculateone sexactposition,all thatneedstobemeasuredisthesignaltransittimebetweenthepointofobservationandfourdifferentsatellites whosepositionsareknown. GPS-X-0007 Page11

12 GPSBasics u-bloxag.1.1 Generating GPS signal transit time 8 satellites inclined at 55 to the equator orbit the Earth every 11 hours and 58 minutes at a height of 0,180 km on 6 differentorbitalplanes(figure3). Each one of these satellites has up to four atomic clocks on board. Atomic clocks are currently the most precise instruments known, losing a maximum of one second every30,000to1,000,000years.inorderto make them even more accurate, they are regularly adjusted or synchronised from variouscontrolpointsonearth.eachsatellite transmitsitsexactpositionanditspreciseon boardclocktimetoearthatafrequencyof MHz.Thesesignalsaretransmitted at the speed of light (300,000 km/s) and thereforerequireapprox.67.3mstoreacha position on the Earth s surface located directly below the satellite. The signals require a further 3.33 us for each excess kilometer of travel. If you wish to establish yourpositiononland(oratseaorintheair), all you require is an accurate clock. By comparing the arrival time of the satellite signal with the on board clock time the moment the signal was emitted, it is possibletodeterminethetransittimeofthat signal(figure4). Satellite and receiver clock display: 0ms 75ms 0ms 50ms 5ms Figure 3: GPS satellites orbit the Earth on 6 orbital planes Satellite and receiver clock display: 67,3ms 75ms 0ms 50ms 5ms Signal Signal transmition (start time) Signal reception (stop time) Figure 4: Determining the transit time GPS-X-0007 Page1

13 GPSBasics u-bloxag ThedistanceStothesatellitecanbedeterminedbyusingtheknowntransittimeτ: distance = travel time the speed of light S=τ c Measuringsignaltransittimeandknowingthedistancetoasatelliteisstillnotenoughtocalculateone sown position in 3-D space. To achieve this, four independent transit timemeasurements are required. It is forthis reasonthatsignalcommunicationwithfourdifferentsatellitesisneededtocalculateone sexactposition.why thisshouldbeso,canbestbeexplainedbyinitiallydeterminingone spositiononaplane..1. Determining a position on a plane Imaginethatyouarewanderingacrossavastplateauandwouldliketoknowwhereyouare.Twosatellitesare orbitingfaraboveyoutransmittingtheirownonboardclocktimesandpositions.byusingthesignaltransittime tobothsatellitesyoucandrawtwocircleswiththeradiis1andsaroundthesatellites.eachradiuscorresponds tothedistancecalculatedtothesatellite.allpossibledistancestothesatellitearelocatedonthecircumference of the circle. If the position above the satellites is excluded, the location of the receiver is at the exact point wherethetwocirclesintersectbeneaththesatellites(figure5), TwosatellitesaresufficienttodetermineapositionontheX/Yplane. Y-co-ordinates Circles S= τ c S1= τ1 c Sat. 1 Sat. YP 0 0 XP Position of the receiver (XP, YP) Figure 5: The position of the receiver at the intersection of the two circles X-co-ordinates GPS-X-0007 Page13

14 GPS Basics u-blox ag In reality, a position has to be determined in three-dimensional space, rather than on a plane. As the difference between a plane and three-dimensional space consists of an extra dimension (height Z), an additional third satellite must be available to determine the true position. If the distance to the three satellites is known, all possible positions are located on the surface of three spheres whose radii correspond to the distance calculated. The position sought is at the point where all three surfaces of the spheres intersect (Figure 6). Position Figure 6: The position is determined at the point where all three spheres intersect All statements made so far will only be valid, if the terrestrial clock and the atomic clocks on board the satellites are synchronised, i.e. signal transit time can be correctly determined..1.3 The effect and correction of time error We have been assuming up until now that it has been possible to measure signal transit time precisely. However, this is not the case. For the receiver to measure time precisely a highly accurate, synchronised clock is needed. If the transit time is out by just 1 µs this produces a positional error of 300m. As the clocks on board all three satellites are synchronised, the transit time in the case of all three measurements is inaccurate by the same amount. Mathematics is the only thing that can help us now. We are reminded when producing calculations that if N variables are unknown, we need N independent equations. If the time measurement is accompanied by a constant unknown error, we will have four unknown variables in 3-D space: longitude (X) latitude (Y) height (Z) time error ( t) It therefore follows that in three-dimensional space four satellites are needed to determine a position. GPS-X-0007 Page 14

15 GPSBasics u-bloxag.1.4 Determining a position in 3-D space Inordertodeterminethesefourunknownvariables,fourindependentequationsareneeded.Thefourtransit timesrequiredaresuppliedbythefourdifferentsatellites(sat.1tosat.4).the8gpssatellitesaredistributed aroundtheglobeinsuchawaythatatleast4ofthemarealways visible fromanypointonearth(figure7). Despitereceivertimeerrors,apositiononaplanecanbecalculatedtowithinapprox.5 10m. Sat. Sat. 3 Sat. 1 Sat. 4 Signal Figure 7: Four satellites are required to determine a position in 3-D space. GPS-X-0007 Page15

16 GPSBasics u-bloxag 3 GPS, THE TECHNOLOGY If you would like to... o understandwhythreedifferentgpssegmentsareneeded o knowwhatfunctioneachindividualsegmenthas o knowhowagpssatelliteisbasicallyconstructed o knowwhatsortofinformationisrelayedtoearth o understandhowasatellitesignalisgenerated o understandhowgpssignaltransittimeisdetermined o understandwhatcorrelationmeans then this chapter is for you! 3.1 Description of the entire system TheGlobalPositioningSystem(GPS)comprisesthreesegments(Figure8): Thespacesegment(allfunctionalsatellites) Thecontrolsegment(allgroundstationsinvolvedinthemonitoringofthesystem:mastercontrolstation, monitorstations,andgroundcontrolstations) Theusersegment(allcivilandmilitaryGPSusers) GPS-X-0007 Page16

17 GPSBasics u-bloxag Space segment L1 carrier - time pulses - ephemeris - almanac - health - date, time - established ephemeris - calculated almanacs - satellite health - time corrections From the ground station User segment Control segment Figure 8: The three GPS segments As can be seen in Figure 8 there is unidirectional communication between the space segment and the user segment. The three ground control stations are equipped with ground antennae, which enable bidirectional communication. 3. Space segment 3..1 Satellite movement The space segment currently consists of 8 operational satellites (Figure 3) orbiting the Earth on 6 different orbitalplanes(fourtofivesatellitesperplane).theyorbitataheightof0,180kmabovetheearth ssurfaceand areinclinedat55 totheequator.anyonesatellitecompletesitsorbitinaround1hours.duetotherotation of the Earth, a satellite will be at its initial starting position (Figure 9) after approx. 4 hours (3 hours 56 minutestobeprecise). GPS-X-0007 Page17

18 GPSBasics u-bloxag 90 15h 3h Latitude 0 1h 18h 0h 6h 1h 1h 9h Longitude Figure 9: Position of the 8 GPS satellites at 1.00 hrs UTC on 14th April 001 Satellitesignalscanbereceivedanywherewithinasatellite seffectiverange.figure9showstheeffectiverange (shadedarea)ofasatellitelocateddirectlyabovetheequator/zeromeridianintersection. Thedistributionofthe8satellitesatanygiventimecanbeseeninFigure10.Itisduetothisingeniouspattern of distribution and to the great height at which they orbit that communication with at least 4 satellites is ensuredatalltimesanywhereintheworld. 90 Latitude Longitude Figure 10: Position of the 8 GPS satellites at 1.00 hrs UTC on 14th April 001 GPS-X-0007 Page18

19 GPSBasics u-bloxag 3.. The GPS satellites Construction of a satellite All8satellitestransmittimesignalsanddatasynchronisedbyonboardatomicclocksatthesamefrequency ( MHz). The minimum signal strength received on Earth is approx. -158dBW to -160dBW [i]. In accordancewiththespecification,themaximumstrengthisapprox.-153dbw. Figure 11: A GPS satellite 3... The communication link budget analysis Thelinkbudgetanalysis(Table1)betweenasatelliteandauserissuitableforestablishingtherequiredlevelof satellitetransmissionpower.inaccordancewiththespecification,theminimumamountofpowerreceivedmust not fall below 160dBW (-130dBm). In order to ensure this level is maintained, the satellite L1 carrier transmissionpower,modulatedwiththec/acode,mustbe1.9w. Gain(+)/loss(-) Absolutevalue Poweratthesatellitetransmitter 13.4dBW(43.4dBm=1.9W) Satellite antenna gain(due to concentration ofthesignalat14.3 ) RadiatepowerEIRP (EffectiveIntegratedRadiatePower) +13.4dB 6.8dBW(56.8dBm) Lossduetopolarisationmismatch -3.4dB Signalattenuationinspace dB Signalattenuationintheatmosphere -.0dB Gainfromthereceptionantenna +3.0dB Poweratreceiverinput -160dBW(-130dBm=100.0*10-18 W) Table 1: L1 carrier link budget analysis modulated with the C/A code Thereceivedpowerof 160dBWisunimaginablysmall.Themaximumpowerdensityis14.9dBbelowreceiver backgroundnoise[ii]. GPS-X-0007 Page19

20 GPSBasics u-bloxag Satellite signals Thefollowinginformation(navigationmessage)istransmittedbythesatelliteatarateof50bitspersecond[iii]: Satellitetimeandsynchronisationsignals Preciseorbitaldata(ephemeris) Timecorrectioninformationtodeterminetheexactsatellitetime Approximateorbitaldataforallsatellites(almanac) Correctionsignalstocalculatesignaltransittime Dataontheionosphere Informationonsatellitehealth Thetimerequiredtotransmitallthisinformationis1.5minutes.Byusingthenavigationmessagethereceiveris abletodeterminethetransmissiontimeofeachsatellitesignalandtheexactpositionofthesatelliteatthetime oftransmission. Each of the 8 satellites transmits a unique signature assigned to it. This signature consists of an apparent randomsequence(pseudorandomnoisecode,prn)of103zerosandones(figure1) ms/103 1 ms Figure 1: Pseudo Random Noise Lastingamillisecond,thisuniqueidentifieriscontinuallyrepeatedandservestwopurposeswithregardtothe receiver: Identification: the unique signature pattern meansthatthe receiver knows fromwhich satellite the signal originated. Signaltransittimemeasurement 3..3 Generating the satellite signal Simplified block diagram On board the satellites are four highly accurate atomic clocks. The following time pulses and frequencies requiredforday-to-dayoperationarederivedfromtheresonantfrequencyofoneofthefouratomicclocks(figs. 13and14): The50Hzdatapulse The C/A code pulse (Coarse/Acquisition code, PRN-Code, coarse reception code at a frequency of 103 MHz), which modulates the data using an exclusive-or operation (this spreads the data over a 1MHz bandwidth) ThefrequencyofthecivilL1carrier(1575.4MHz) The data modulated by the C/A code modulates the L1 carrier in turn by using Bi-Phase-Shift-Keying(BPSK). Witheverychangeinthemodulateddatathereisa180 changeinthel1carrierphase. GPS-X-0007 Page0

21 GPSBasics u-bloxag Carrier frequency generator MHz L1 carrier Multiplier Transmitted satellite signal (BPSK) PRN code generator 1.03 MHz 1 0 C/A code Data generator (C/A code) 50 Bit/sec 1 0 Data Exclusive-or Data Figure 13: Simplified satellite block diagram Data, 50 bit/s C/A code (PRN-18) 1.03 MBit/s Data modulated by C/A code L1 carrier, MHz BPSK modulated L1 carrier Figure 14: Data structure of a GPS satellite GPS-X-0007 Page1

22 GPSBasics u-bloxag Detailed block system The atomic clocks on board a satellite have a stability greater than [iv]. The basic frequency of 10.3MHz is derived in a satellite from theresonant frequency of one of the four atomicclocks. In turn, the carrier frequency, data frequency, the timing for the generation of pseudo random noise(prn), and the C/A code(course/acquisitioncode),arederivedfromthisbasicfrequency(figure15).asall8satellitestransmiton MHz, a process known as CDMA Multiplex (Code Division Multiple Access) is used. The data is transmitted based on DSSS modulation (Direct Sequence Spread Spectrum Modulation) [v]. The C/A code generatorhasafrequencyof103mhzandaperiodof1,03chips,whichcorrespondstoamillisecond.the C/Acodeused(PRNcode),whichisthesameasagoldcode,andthereforeexhibitsgoodcorrelationproperties, isgeneratedbyafeedbackshiftregister. x MHz Antenna Carrier freq. generator MHz L1 carrier BPSK modulator MHz BPSK Atomic clock Derived basic frequency 10,3MHz 10,3MHz : 10 Time pulse for C/A generator 1.03MHz 1,03MHz C/A code generator 1 period = 1ms = 103 Chips 1,03MHz C/A code exclusive-or 1.03MHz : 04'600 Data pulse generator 50Hz 50Hz Data processing 1 Bit = 0ms 50Hz Data 0/1 Figure 15: Detailed block system of a GPS satellite Data The modulation process described above is referred to as DSSS modulation (Direct Sequence Spread Modulation), the C/A code playing an important part in this process. As all satellites transmit on the same frequency(1575.4mhz),thec/acodecontainstheidentificationandinformationgeneratedbyeachindividual satellite.thec/acodeisanapparentrandomsequenceof103bitsknownaspseudorandomnoise(prn).this signature,whichlastsamillisecondandisuniquetoeachsatellite,isconstantlyrepeated.asatelliteisalways identified,therefore,byitscorrespondingc/acode. GPS-X-0007 Page

23 GPSBasics u-bloxag 3.3 Control segment Thecontrolsegment(OperationalControlSystemOCS)consistsofaMasterControlStationlocatedinthestate ofcolorado,fivemonitorstationsequippedwithatomicclocksthatarespreadaroundtheglobeinthevicinity oftheequator,andthreegroundcontrolstationsthattransmitinformationtothesatellites. Themostimportanttasksofthecontrolsegmentare: Observingthemovementofthesatellitesandcomputingorbitaldata(ephemeris) Monitoringthesatelliteclocksandpredictingtheirbehaviour Synchronisingonboardsatellitetime Relayingpreciseorbitaldatareceivedfromsatellitesincommunication Relayingtheapproximateorbitaldataofallsatellites(almanac) Relayingfurtherinformation,includingsatellitehealth,clockerrorsetc. The control segment also oversees the artificial distortion of signals (SA, Selective Availability), in order to degradethesystem spositionalaccuracyforciviluse.systemaccuracyhadbeenintentionallydegradedupuntil May000forpoliticalandtacticalreasonsbytheU.S.DepartmentofDefense(DoD),thesatelliteoperators.It wasshutdowninmay000,butitcanbestartedupagain,ifnecessary,eitheronaglobalorregionalbasis. 3.4 User segment Thesignalstransmittedbythesatellitestakeapprox.67millisecondstoreachareceiver.Asthesignalstravelat thespeedoflight,theirtransittimedependsonthedistancebetweenthesatellitesandtheuser. Four different signals are generated in the receiver having the same structure as those received from the 4 satellites.bysynchronisingthesignalsgeneratedinthereceiverwiththosefromthesatellites,thefoursatellite signal time shifts t are measured as a timing mark(figure 16). The measured time shifts t of all 4 satellite signalsareusedtodeterminesignaltransittime. 1 ms Satellite signal Receiver signal (synchronised) Synchronisation Receiver time mark t Figure 16: Measuring signal transit time Inordertodeterminethepositionofauser,radiocommunicationwithfourdifferentsatellitesisrequired.The relevantdistancetothesatellitesisdeterminedbythetransittimeofthesignals.thereceiverthencalculatesthe user s latitude ϕ, longitude λ, height h and time t from the range and known position of the four satellites. Expressedinmathematicalterms,thismeansthatthefourunknownvariablesϕ, λ, handtaredeterminedfrom thedistanceandknownpositionofthesefoursatellites,althoughafairlycomplexlevelofiterationisrequired, whichwillbedealtwithingreaterdetailatalaterstage. As mentioned earlier, all 8 satellites transmit on the same frequency, but with a different C/A code. This processisbasicallytermedcodedivisionmultipleaccess(cdma).signalrecoveryandtheidentificationofthe satellitestakesplacebymeansofcorrelation.asthereceiverisabletorecogniseallc/acodescurrentlyinuse, by systematically shifting and comparing every codewith all incoming satellite signals, a complete match will eventually occur(that is to say that the correlation factor CF is one), and a correlation point will be attained (Figure17).Thecorrelationpointisusedtomeasuretheactualsignaltransittimeand,aspreviouslymentioned, toidentifythesatellite. GPS-X-0007 Page3

24 GPSBasics u-bloxag Incoming signal from PRN-18 bit 11 to 40, reference Reference signal from PRN-18 bit 1 to 30, leading Reference signal from PRN-18 bit 11 to 40, in phase Reference signal from PRN-18 bit 1 to 50, trailing Reference signal from PRN-5 Bit 11 to 40, in phase CF = 0.00 Correlation point: CF = 1.00 CF = 0.07 CF = 0.33 Figure 17: Demonstration of the correction process across 30 bits The quality of thecorrelation is expressed here as CF(correlation factor). The valuerange of CF lies between minusoneandplusoneandisonlyplusonewhenbothsignalscompletelymatch(bitsequenceandphase). N 1 CF = [ ( mb) ( ub) ] N i = 1 mb: numberofallmatchedbits ub: numberofallunmatchedbits N: numberofobservedbits. GPS-X-0007 Page4

25 GPSBasics u-bloxag 4 THE GPS NAVIGATION MESSAGE If you would like to... o knowwhatinformationistransmittedtoearthbygpssatellites o understandwhyaminimumperiodoftimeisrequiredtoforthegpssystemtocomeonline o knowwhatdatacanbecalledupwhere o knowwhatframesandsubframesare o understandwhythesamedataistransmittedwithvaryingdegreesofaccuracy then this chapter is for you! 4.1 Introduction The navigation message [vi] is a continuous stream of data transmitted at 50 bits per second. Each satellite relaysthefollowinginformationtoearth: Systemtimeandclockcorrectionvalues Itsownhighlyaccurateorbitaldata(ephemeris) Approximateorbitaldataforallothersatellites(almanac) Systemhealth,etc. The navigation message is needed to calculate the current position of the satellites and to determine signal transittimes. ThedatastreamismodulatedtotheHFcarrierwaveofeachindividualsatellite.Dataistransmittedinlogically groupedunitsknownasframesorpages.eachframeis1500bitslongandtakes30secondstotransmit.the framesaredividedinto5subframes.eachsubframeis300bitslongandtakes6secondstotransmit.inorderto transmitacompletealmanac,5differentframesarerequired(calledpages).transmissiontimefortheentire almanacistherefore1.5minutes.agpsreceivermusthavecollectedthecompletealmanacatleastoncetobe capableoffunctioning(e.g.foritsprimaryinitialisation). GPS-X-0007 Page5

26 GPSBasics u-bloxag 4. Structure of the navigation message Aframeis1500bitslongandtakes30secondstotransmit.The1500bitsaredividedintofivesubframeseach of300bits(durationoftransmission6seconds).eachsubframeisinturndividedinto10wordseachcontaining 30 bits. Each subframe begins with a telemetry word and a handover word (HOW). A complete navigation messageconsistsof5frames(pages).thestructureofthenavigationmessageis illustratedindiagrammatic formatinfigure18. Telemetry word (TLM) 30 bits 0.6s 16Bits reserved 8Bits preamble 6Bits parity Handover word (HOW) 30 bits 0.6s 17Bits Time of Week (TOW) 7Bits div., ID 6Bits parity Subpage 300 Bits 6s Word No. Data Word content TLM HOW Frame (page) 1500 bits 30s TLM HOW Sub-frame 1 Sub-frame Sub-frame 3 Sub-frame 4 Sub-frame 5 Satellite clock and health data TLM HOW Ephemeris TLM HOW Ephemeris TLM HOW Partial almanac other data TLM HOW Almanac Navigation message 5 pages/frames bits 1.5 min Figure 18: Structure of the entire navigation message Information contained in the subframes Aframeisdividedintofivesubframes,eachsubframetransmittingdifferentinformation. Subframe1containsthetimevaluesofthetransmittingsatellite,includingtheparametersforcorrecting signaltransitdelayandonboardclocktime,aswellasinformationonsatellitehealthandanestimation ofthepositionalaccuracyofthesatellite.subframe1alsotransmitstheso-called10-bitweeknumber(a rangeofvaluesfrom0to103canberepresentedby10bits).gpstimebeganonsunday,6thjanuary 1980at00:00:00hours.Every104weekstheweeknumberrestartsat0. Subframesand3containtheephemerisdataofthetransmittingsatellite.Thisdataprovidesextremely accurateinformationonthesatellite sorbit. Subframe4containsthealmanacdataonsatellitenumbers5to3(N.B.eachsubframecantransmit datafromonesatelliteonly),thedifferencebetweengpsandutctimeandinformationregardingany measurementerrorscausedbytheionosphere. Subframe5containsthealmanacdataonsatellitenumbers1to4(N.B.eachsubframecantransmit datafromonesatelliteonly).all5pagesaretransmittedtogetherwithinformationonthehealthof satellitenumbers1to4. GPS-X-0007 Page6

27 GPSBasics u-bloxag 4.. TLM and HOW Thefirstwordofeverysingleframe,thetelemetryword(TLM),containsapreamblesequence8bitsinlength ( ) used for synchronization purposes, followed by 16 bits reserved for authorized users. As with all words,thefinal6bitsofthetelemetrywordareparitybits. Thehandoverword(HOW)immediatelyfollowsthetelemetrywordineachsubframe.Thehandoverwordis17 bits in length(a range of values from 0to can be represented using 17 bits) and contains within its structurethestarttimeforthenextsubframe,whichistransmittedastimeoftheweek(tow).thetowcount beginswiththevalue0atthebeginningofthegpsweek(transitionperiodfromsaturday3:59:59hoursto Sunday00:00:00hours)andisincreasedbyavalueof 1every6seconds.Asthereare604,800secondsina week,thecountrunsfrom0to100,799,beforereturningto0.amarkerisintroducedintothedatastream every6secondsandthehowtransmitted,inordertoallowsynchronisationwiththepcode.bitnos.0to areusedinthehandoverwordtoidentifythesubframejusttransmitted Subdivision of the 5 pages Acompletenavigationmessagerequires5pagesandlasts1.5minutes.Apageoraframeisdividedintofive subframes.inthecaseofsubframes1to3,theinformationcontentisthesameforall5pages.thismeansthat areceiverhasthecompleteclockvaluesandephemerisdatafromthetransmittingsatelliteevery30seconds. Thesoledifferenceinthecaseofsubframes4and5ishowtheinformationtransmittedisorganised. Inthecaseofsubframe4,pages,3,4,5,7,8,9and10relaythealmanacdataonsatellitenumbers 5to3.Ineachcase,thealmanacdataforonesatelliteonlyistransferredperpage.Page18transmits thevaluesforcorrectionmeasurementsasaresultofionosphericscintillation,aswellasthedifference betweenutcandgpstime.page5containsinformationontheconfigurationofall3satellites(i.e. blockaffiliation)andthehealthofsatellitenumbers5to3. Inthecaseofsubframe5,pages1to4relaythealmanacdataonsatellitenumbers1to4.Ineach case,thealmanacdataforonesatelliteonlyistransferredperpage.page5transfersinformationon thehealthofsatellitenumbers1to4andtheoriginalalmanactime. GPS-X-0007 Page7

28 GPSBasics u-bloxag 4..4 Comparison between ephemeris and almanac data Usingbothephemerisandalmanacdata,thesatelliteorbitsandthereforetherelevantco-ordinatesofaspecific satellitecanbedeterminedatadefinedpointintime.thedifferencebetweenthevaluestransmittedliesmainly intheaccuracyofthefigures.inthefollowingtable(table),acomparisonismadebetweenthetwosetsof figures. Information Squarerootofthesemimajoraxisof orbitalellipsea Ephemeris No.ofbits 3 Almanac No.ofbits 16 Eccentricityoforbitalellipsee 3 16 Table : Comparison between ephemeris and almanac data ForanexplanationofthetermsusedinTable,seeFigure18. Semimajoraxisoforbitalellipse:a a b Eccentricityoftheorbitalellipse: e = a a b Figure 19: Ephemeris terms GPS-X-0007 Page8

29 GPSBasics u-bloxag 5 CALCULATING POSITION If you would like to... o understandhowco-ordinatesandtimearedetermined o knowwhatpseudo-rangeis o understandwhyagpsreceivermustproduceapositionestimateatthestartofacalculation o understandhowanon-linearequationissolvedusingfourunknownvariables o knowwhatdegreeofaccuracyisguaranteedbythegpssystemoperator then this chapter is for you! 5.1 Introduction Although originally intended for purely military purposes, the GPS system is used today primarily for civil applications,suchassurveying,navigation(air,seaandland),positioning,measuringvelocity,determiningtime, monitoringstationaryandmovingobjects,etc.thesystemoperatorguaranteesthestandardcivilianuserofthe servicethatthefollowingaccuracy(table3)willbeattainedfor95%ofthetime(drmsvalue[vii]): Horizontalaccuracy Verticalaccuracy Timeaccuracy 13m m ~40ns Table 3: Accuracy of the standard civilian service Withadditionaleffortandexpenditure,e.g.severallinkedreceivers(DGPS),longermeasuringtime,andspecial measuringtechniques(phasemeasurement)positionalaccuracycanbeincreasedtowithinacentimetre. 5. Calculating a position 5..1 The principle of measuring signal transit time (evaluation of pseudo-range) InorderforaGPSreceivertodetermineitsposition,ithastoreceivetimesignalsfromfourdifferentsatellites (Sat1...Sat4),toenableittocalculatesignaltransittime t 1... t 4 (Figure0). GPS-X-0007 Page9

30 t t 3 GPSBasics u-bloxag Sat Sat 3 Sat 1 Sat 4 t 1 t 4 User Figure 0: Four satellite signals must be received CalculationsareeffectedinaCartesian,three-dimensionalco-ordinatesystemwithageocentricorigin(Figure 1).TherangeoftheuserfromthefoursatellitesR 1,R,R 3 andr 4 canbedeterminedwiththehelpofsignal transittimes t 1, t, t 3 and t 4 betweenthefoursatellitesandtheuser.asthelocationsx Sat, Y Sat andz Sat ofthe foursatellitesareknown,theuserco-ordinatescanbecalculated. Sat Sat 3 Sat 1 X Sat_, Y Sat_, Z Sat_ t 1 X Sat_1, Y Sat_1, Z Sat_1 Range: R 1 Range: R X Sat_3, Y Sat_3, Z Sat_3 t Z Sat 4 t 3 t 4 User Range: R 3 Range: R 4 X Sat_4, Y Sat_4, Z Sat_4 Origin Z Anw Y Y Anw X Anw X Figure 1: Three dimensional co-ordinate system GPS-X-0007 Page30

31 GPSBasics u-bloxag Duetotheatomicclocksonboardthesatellites,thetimeatwhichthesatellitesignalistransmittedisknown veryprecisely.allsatelliteclocksareadjustedorsynchronisedwitheachanotheranduniversaltimeco-ordinated. Incontrast,thereceiverclockisnotsynchronisedtoUTCandisthereforesloworfastby t 0.Thesign t 0 is positivewhentheuserclockisfast.theresultanttimeerror t 0 causesinaccuraciesinthemeasurementofsignal transittimeandthedistancer.asaresult,anincorrectdistanceismeasuredthatisknownaspseudodistance orpseudo-rangepsr[viii]. tmeasured = t + t 0 (1a) ( t + t ) c PSR = tmeasured c = 0 (a) PSR = R + t0 c (3a) R: truerangeofthesatellitefromtheuser c: speedoflight t: signaltransittimefromthesatellitetotheuser t 0 : differencebetweenthesatelliteclockandtheuserclock PSR: pseudo-range ThedistanceRfromthesatellitetotheusercanbecalculatedinaCartesiansystemasfollows: R = ( XSat XUser) + ( YSat YUser) + ( ZSat ZUser) thus(4)into(3) PSR ( XSat X ) + ( YSat YUser) + ( ZSat Z ) + c t0 = User (4a) User (5a) In order to determine the four unknown variables ( t 0,X Anw,Y Anw and Z Anw ), four independent equations are necessary. Thefollowingisvalidforthefoursatellites(i=1...4): PSR ( XSat_i X ) + ( YSat_i YUser) + ( ZSat_i Z ) + c t0 i = User User (6a) GPS-X-0007 Page31

32 GPSBasics u-bloxag 5.. Linearisation of the equation Thefourequationsunder6aproduceanon-linearsetofequations.Inordertosolvetheset,therootfunctionis firstlinearisedaccordingtothetaylormodel,thefirstpartonlybeingused(figure). f(x) f'(x 0 ) f(x) function f(x 0 ) x X x 0 x Figure : Conversion of the Taylor series Generally(with x = x x0 f' f'' f'' ' 3 = 1!! 3! ): f( x) f( x0 ) + ( x0) x + ( x0) x + ( x0) x +... Simplified(1stpartonly): f( x) f( x 0) + f' ( x0) x = (7a) Inordertolinearisethefourequations(6a),anarbitrarilyestimatedvaluex 0 mustthereforebeincorporatedin thevicinityofx. FortheGPSsystem,thismeansthatinsteadofcalculatingX Anw,Y Anw andz Anw directly,anestimatedpositionx Ges,Y Ges andz Ges isinitiallyused(figure3). Sat Sat 3 Sat 1 X Sat_, Y Sat_, Z Sat_ R Ges_ Z RGes_3 X Sat_3, Y Sat_3, Z Sat_3 Sat 4 R Ges_1 R Ges_4 X Sat_1, Y Sat_1, Z Sat_1 error considerations user estimated position X Sat_4, Y Sat_4, Z Sat_4 estimated position y x z user Y Ges Z Ges X Ges Y X Figure 3: Estimating a position GPS-X-0007 Page3

33 GPSBasics u-bloxag Theestimatedpositionincludesanerrorproducedbytheunknownvariables x, yand z. X Anw =X Ges + x Y Anw =Y Ges + y Z Anw =Z Ges + z (8a) ThedistanceR Ges fromthefoursatellitestotheestimatedpositioncanbecalculatedinasimilarwaytoequation (4a): R Ges _ i ( X _ i Ges) ( _ i Ges) ( _ i Ges) Sat X + Y Sat Y + Z Sat Z = (9a) Equation(9a)combinedwithequations(6a)and(7a)produces: PSR R x + y + x y z Aftercarryingoutpartialdifferentiation,thisgivesthefollowing: PSR ( R ) ( _ i) ( _ i) Ges _ i R Ges R Ges i = Ges _ i + 0 (10a) X X R Y Y R z + c t Z Z R Ges Sat _ i Ges Sat _ i Ges Sat _ i i = RGes _ i + x + y + z + c t0 (11a) Ges _ i Ges _ i Ges _ i 5..3 Solving the equation Aftertransposingthefourequations(11a)(fori=1...4)thefourvariables( x, y, zand t 0 )cannowbe solvedaccordingtotherulesoflinearalgebra: PSR1 R PSR R PSR3 R PSR4 R Ges _ 1 Ges _ Ges _ 3 Ges _ 4 = X X X X X RGes X RGes X RGes X RGes Ges Ges Ges Ges Sat _ 1 Sat _ Sat _ 3 Sat _ 4 _ 1 3 _ 4 YGes Y RGes YGes Y RGes YGes Y RGes YGes Y RGes Sat _ 1 Sat _ Sat _ 3 Sat _ 4 _ 4 _ 1 3 ZGes Z RGes ZGes Z RGes ZGes Z RGes ZGes Z RGes _ Sat _ 1 Sat _ Sat _ 3 Sat _ 4 4 _ 1 3 c c c c x y (1a) z t0 X x X y = z X t0 X X R X R X R X R Ges Ges Ges Ges Ges_1 Ges_ Ges_3 Ges_4 Sat_1 Sat_ Sat_3 Sat_4 YGes Y RGes_1 YGes Y RGes_ YGes Y RGes_3 YGes Y RGes_4 Sat_1 Sat_ Sat_3 Sat_4 ZGes Z R ZGes Z R ZGes Z R ZGes Z R Ges_1 Ges_ Ges_3 Ges_4 Sat_1 Sat_ Sat_3 Sat_4 GPS-X-0007 Page33 c c c c 1 PSR1 R PSR R PSR3 R PSR4 R Ges_1 Ges_ Ges_3 Ges_4 (13a) Thesolutionof x, yand zisusedtorecalculatetheestimatedpositionx Ges,Y Ges andz Ges inaccordancewith equation(8a).

34 GPSBasics u-bloxag X Ges_Neu =X Ges_Alt + x Y Ges_Neu =Y Ges_Alt + y Z Ges_Neu =Z Ges_Alt + z (14a) TheestimatedvaluesX Ges_Neu,Y Ges_Neu andz Ges_Neu cannowbeenteredintothesetofequations(13a)usingthe normaliterativeprocess,untilerrorcomponents x, yand zaresmallerthanthedesirederror(e.g.0.1m). Dependingontheinitialestimation,threetofiveiterativecalculationsaregenerallyrequiredtoproduceanerror componentoflessthan1cm Summary Inordertodetermineaposition,theuser(orhisreceiversoftware)willeitherusethelastmeasurementvalue,or estimateanewpositionandcalculateerrorcomponents( x, yand z)downtozerobyrepeatediteration.this thengives: X Anw =X Ges_Neu Y Anw =Y Ges_Neu Z Anw =Z Ges_Neu (15a) Thecalculatedvalueof t 0 correspondstoreceivertimeerrorandcanbeusedtoadjustthereceiverclock. GPS-X-0007 Page34

35 GPSBasics u-bloxag 5..5 Error consideration and satellite signal Error consideration Errorcomponentsincalculationshavesofarnotbeentakenintoaccount.InthecaseoftheGPSsystem,several causesmaycontributetotheoverallerror: Satellite clocks: although each satellite has four atomic clocks on board, a time error of just 10 ns createsanerrorintheorderof3m. Satelliteorbits:Thepositionofasatelliteisgenerallyknownonlytowithinapprox.1to5m. Speedoflight:thesignalsfromthesatellitetothe usertravelatthespeedoflight.thisslowsdown whentraversingtheionosphereandtroposphereandcanthereforenolongerbetakenasaconstant. Measuring signal transit time: The user can only determine the point in time at which an incoming satellitesignalisreceivedtowithinaperiodofapprox.10-0ns,whichcorrespondstoapositionalerror of3-6m.theerrorcomponentisincreasedfurtherstillasaresultofterrestrialreflection(multipath). Satellite geometry: The ability to determine a position deteriorates if the four satellites used to take measurements are close together. The effect of satellite geometry on accuracy of measurement (see 5..5.)isreferredtoasGDOP(GeometricDilutionOfPrecision). TheerrorsarecausedbyvariousfactorsthataredetailedinTable4,whichincludesinformationonhorizontal errors. 1 sigma (68.3%) and sigma (95.5%) are also given. Accuracy is, for the most part, better than specified,thevaluesapplyingtoanaveragesatelliteconstellation(dopvalue)[ix]. Cause of error Effectsoftheionosphere Satelliteclocks Receivermeasurements Error 4m.1m 0.5m Ephemerisdata.1 Effectsofthetroposphere 0.7 Multipath TotalRMSvalue(unfiltered) 1.4m 5.3m TotalRMSvalue(filtered) 5.1 Verticalerror(1sigma(68.3%)VDOP=.5) 1.8m Vertical error ( sigma (95.5.3%) VDOP=.5) 5.6m Horizontalerror(1sigma(68.3%)HDOP=.0) 10.m Horizontal error ( sigma (95.5%) HDOP=.0) 0.4m Table 4: Cause of errors MeasurementsundertakenbytheUSFederalAviationAdministrationoveralongperiodoftimeindicatethatin thecaseof95%ofallmeasurements,horizontalerrorisunder7.4mandverticalerrorisunder9.0m.inall cases,measurementswereconductedoveraperiodof4hours[iv]. Inmanyinstances,thenumberoferrorsourcescanbeeliminatedorreduced(typicallyto1...m,sigma)by takingappropriatemeasures(differentialgps,dgps). GPS-X-0007 Page35

36 GPSBasics u-bloxag DOP (dilution of precision) TheaccuracywithwhichapositioncanbedeterminedusingGPSinnavigationmodedepends,ontheonehand, on the accuracy of the individual pseudo-range measurements, and on the other, on the geometrical configurationofthesatellitesused.thisisexpressedinascalarquantity,whichinnavigationliteratureistermed DOP(DilutionofPrecision). ThereareseveralDOPdesignationsincurrentuse: GDOP:GeometricalDOP(positionin3-Dspace,incl.timedeviationinthesolution) PDOP:PositionalDOP(positionin3-Dspace) HDOP:HorizontalDOP(positiononaplane) VDOP:VerticalDOP(heightonly) TheaccuracyofanymeasurementisproportionatelydependentontheDOPvalue.ThismeansthatiftheDOP valuedoubles,theerrorindeterminingapositionincreasesbyafactoroftwo. PDOP: low (1,5) PDOP: high (5,7) Figure 4: Satellite geometry and PDOP PDOPcanbeinterpretedasareciprocalvalueofthevolumeofatetrahedron,formedbythepositionsofthe satellites and user, as shown in Figure 4. The best geometrical situation occurs when the volume is at a maximumandpdopataminimum. PDOPplayedanimportantpartintheplanningofmeasurementprojectsduringtheearlyyearsofGPS,asthe limiteddeploymentofsatellitesfrequentlyproducedphaseswhensatelliteconstellationsweregeometricallyvery unfavourable.satellitedeploymenttodayissogoodthatpdopandgdopvaluesrarelyexceed3(figure1). GPS-X-0007 Page36

37 GPSBasics u-bloxag Visible satellites Local time Figure 5: GDOP values and the number of satellites expressed as a time function ItisthereforeunnecessarytoplanmeasurementsbasedonPDOPvalues,ortoevaluatethedegreeofaccuracy attainableasaresult,particularlyasdifferentpdopvaluescanariseoverthecourseofafewminutes.inthecase ofkinematicapplicationsandrapidrecordingprocesses,unfavourablegeometricalsituationsthatareshortlived in nature can occur in isolated cases. The relevant PDOP values should therefore be included as evaluation criteriawhenassessingcriticalresults.pdopvaluescanbeshownwithallplanningandevaluationprogrammes suppliedbyleadingequipmentmanufacturers(figure6). HDOP = 1, DOP = 1,3 PDOP = 1,8 HDOP =, DOP = 6,4 PDOP = 6,8 Figure 6: Effect of satellite constellations on the DOP value GPS-X-0007 Page37

38 GPSBasics u-bloxag 6 CO-ORDINATE SYSTEMS If you would like to... o knowwhatageoidis o understandwhytheearthisdepictedprimarilyasanellipsoid o understandwhyover00differentmapreferencesystemsareusedworldwide o knowwhatwgs-84means o understandhowitispossibletoconvertonedatumintoanother o knowwhatcartesianandellipsoidalco-ordinatesare o understandhowmapsofcountriesaremade o knowhowcountryco-ordinatesarecalculatedfromthewgs-84co-ordinates then this chapter is for you! 6.1 Introduction A significant problem when using the GPS system is that there are very many different co-ordinate systems worldwide.asaresult,thepositionmeasuredandcalculatedbythegpssystemdoesnotalwayscoincidewith one ssupposedposition. InordertounderstandhowtheGPSsystemfunctions,itisnecessarytotakealookatthebasicsofthescience thatdealswiththesurveyingandmappingoftheearth ssurface,geodesy.withoutthisbasicknowledge,itis difficulttounderstandwhywithagoodportablegpsreceivertherightcombinationhastobeselectedfrom morethan100differentmapreferencesystems(datum)andapprox.10differentgrids.ifanincorrectchoiceis made,apositioncanbeoutbyseveralhundredmeters. 6. Geoids WehaveknownthattheEarthisroundsinceColumbus.Buthowroundisitreally?Describingtheshapeofthe blueplanetexactlyhasalwaysbeenanimprecisescience.severaldifferentmethodshavebeenattemptedover thecourseofthecenturiestodescribeasexactlyaspossiblethetrueshapeoftheearth.ageoidrepresentsan approximationofthisshape. Inanidealsituation,thesmoothed,averageseasurfaceformspartofalevelsurface,whichinageometrical sense is the surface of the Earth. By analogy with the Greek word for Earth, this surface is described as a geoid(figure7). Ageoidcanonlybedefinedasamathematicalfigurewithalimiteddegreeofaccuracyandnotwithoutafew arbitraryassumptions.thisisbecausethedistributionofthemassoftheearthisunevenand,asaresult,the level surface of the oceans and seas do not lie on the surface of a geometrically definable shape; instead approximationshavetobeused. Differing from the actual shape of the Earth, a geoid is a theoretical body whose surface intersects the gravitationalfieldlineseverywhereatrightangles. A geoid is often used as a reference surface for measuring height. The reference point in Switzerland for measuring height is the Repère Pierre du Niton(RPN, m) in the Geneva harbour basin. This height originatesfrompointtopointmeasurementswiththeportofmarseilles(meanheightabovesealevel0.00m). GPS-X-0007 Page38

39 GPSBasics u-bloxag Land h Sea Geoid Earth Macro image of the earth Geoid (exaggerated form) Figure 7: A geoid is an approximation of the Earth s surface 6.3 Ellipsoid and datum Spheroid Ageoid,however,isadifficultshapetomanipulatewhenconductingcalculations.Asimpler,moredefinable shapeisthereforeneededwhencarryingoutdailysurveyingoperations.suchasubstitutesurfaceisknownasa spheroid.ifthesurfaceofanellipseisrotatedaboutitssymmetricalnorth-southpoleaxis,aspheroidisobtained asaresult.(figure8). Aspheroidisdefinedbytwoparameters: Semimajoraxisa(ontheequatorialplane) Semiminoraxisb(onthenorth-southpoleaxis) Theamountbywhichtheshapedeviatesfromtheidealsphereisreferredtoasflattening(f). a b f = (16a) a North pole Rotation Equatorial plane a b Figure 8: Producing a spheroid South pole GPS-X-0007 Page39

40 GPSBasics u-bloxag 6.3. Customised local reference ellipsoids and datum Local reference ellipsoids Whendealingwithaspheroid,caremustbetakentoensurethatthenaturalperpendiculardoesnotintersect vertically at a point with the ellipsoid, but the geoid. Normal ellipsoidal and natural perpendiculars do not thereforecoincide,theyaredistinguishedby verticaldeflection (Figure30),i.e.pointsontheEarth ssurface are incorrectly projected. In order to keep this deviation to a minimum, each country has developed its own customisednon-geocentricspheroidasareferencesurfaceforcarryingoutsurveyingoperations(figure9).the semiaxes a and b and the mid-point are selected in such a way that the geoid and ellipsoid match national territoriesasaccuratelyaspossible Datum, map reference systems National or international map reference systems based on certain types of ellipsoids are called datums. Depending on the map used when navigating with GPS receivers, care should be taken to ensure that the relevantmapreferencesystemhasbeenenteredintothereceiver. Some examples of these map reference systems from a selection of over 10 are CH-1903 for Switzerland, WGS-84astheglobalstandard,andNAD83forNorthAmerica. Country A Customized ellipsoid for country A Country B Geoid (exaggerated shape) Figure 9: Customised local reference ellipsoid Customized ellipsoid for country B A spheroid is well suited for describing the positional co-ordinates of a point in degrees of longitude and latitude.informationonheightiseitherbasedonthegeoidorthereferenceellipsoid.thedifferencebetween themeasuredorthometricheighth,i.e.basedonthegeoid,andtheellipsoidalheighth,basedonthereference ellipsoid,isknownasgeoidondulationn(figure30) Vertical deviation P h H Earth Geoid N Figure 30: Difference between geoid and ellipsoid Ellipsoid GPS-X-0007 Page40

41 GPSBasics u-bloxag National reference systems Different reference systems are used throughout Europe, and each reference system employed for technical applicationsduringsurveyinghasitsownname.thenon-geocentricellipsoidsthatformthebasisoftheseare summarisedinthefollowingtable(table5).ifthesameellipsoidsareused,theyaredistinguishedfromcountry tocountryinrespectoftheirlocalreferences. Country Name Reference ellipsoid Local reference Semi major axis a (m) Flattening (1:...) Germany Potsdam Bessel1841 Rauenberg France NTF Clarke1880 Pantheon,Paris Italy SI1940 Hayford198 MonteMario,Rome Netherlands RD/NAP Bessel1841 Amersfoort Austria MGI Bessel1841 Hermannskogel Switzerland CH1903 Bessel1841 OldObservatoryBern International Hayford Hayford Countryindependent Table 5: National reference systems Worldwide reference ellipsoid WGS-84 The details displayed and calculations made by a GPS receiver primarily involve the WGS-84(World Geodetic System1984)referencesystem.TheWGS-84co-ordinatesystemisgeocentricallypositionedwithrespecttothe centreoftheearth.suchasystemiscalledecef(earthcentered,earthfixed).thewgs-84co-ordinatesystem is a three-dimensional, right-handed, Cartesian co-ordinate system with its original co-ordinate point at the centreofmass(=geocentric)ofanellipsoid,whichapproximatesthetotalmassoftheearth. The positive X-axis of the ellispoid (Figure 31) lies on the equatorial plane (that imaginary surface which is encompassedbytheequator)andextendsfromthecentreofmassthroughthepointatwhichtheequatorand thegreenwichmeridianintersect(the0meridian).they-axisalsoliesontheequatorialplaneandisoffset90 totheeastofthex-axis.thez-axisliesperpendiculartothexandy-axisandextendsthroughthegeographical northpole. Z North pole Ellipsoid b P Equatorial plane z Origin Y y x a X Greenwich Meridian Equator Figure 31: Illustration of the Cartesian co-ordinates GPS-X-0007 Page41

42 GPSBasics u-bloxag ParametersoftheWGS-84referenceellipsoid Semimajoraxisa(m) Semiminoraxisb(m) Flattening(1:...) 6,378, ,356, , Table 6: The WGS-84 ellipsoid Ellipsoidal co-ordinates (ϕ, λ, h), rather than Cartesian co-ordinates (X, Y, Z) are generally used for further processing(figure3).ϕ correspondstolatitude,λ tolongitudeandhtotheellipsoidalheight,i.e.thelengthof theverticalplinetotheellipsoid. Ellipsoid Z North pole h P Equatorial plane ϕ Y λ X Greenwich Meridian Equator Figure 3: Illustration of the ellipsoidal co-ordinates Transformation from local to worldwide reference ellipsoid Geodetic datum Asarule,referencesystemsaregenerallylocalratherthangeocentricellipsoids.Therelationshipbetweenalocal (e.g.ch-1903)andaglobal,geocentricsystem(e.g.wgs-84)isreferredtoasthegeodeticdatum.intheevent thattheaxesofthelocalandglobalellipsoidareparallel,orcanberegardedasbeingparallelforapplications withinalocalarea,allthatisrequiredfordatumtransitionarethreeshiftparameters,knownasthedatumshift constants X, Y, Z. Afurtherthreeanglesofrotationϕx,ϕy,ϕz andascalingfactorm(figure33)mayhavetobeaddedsothatthe complete transformation formula contains 7 parameters. The geodetic datum specifies the location of a local three-dimensionalcartesianco-ordinatesystemwithregardtotheglobalsystem. GPS-X-0007 Page4

43 GPSBasics u-bloxag Z-CH Z-WGS ϕz ϕy Y-CH Z ϕx X Y X-CH Y-WGS Elongation by factor m X-WGS Figure 33: Geodetic datum Thefollowingtable(Table7)showsexamplesofthevariousdatumparameters.Additionalvaluescanbefound under[x]. Country Name X (m) Y (m) Z (m) ϕx ( ) ϕx ( ) ϕx ( ) m (ppm) Germany Potsdam France NTF Italy SI Netherlands RD/NAP Austria MGI Switzerland CH Table 7: Datum parameters Datum conversion Converting a datum means by definition converting one three-dimensional Cartesian co-ordinate system(e.g. WGS-84)intoanother(e.g.CH-1903)bymeansofthree-dimensionalshift,rotationandextension.Thegeodetic datummustbeknown,inordertoeffecttheconversion.comprehensiveconversionformulaecanbefoundin specialistliterature[xi],orconversioncanbecarriedoutdirectviatheinternet[xii].onceconversionhastaken place,cartesianco-ordinatescanbetransformedintoellipsoidalco-ordinates. GPS-X-0007 Page43

44 GPSBasics u-bloxag GPS-X-0007 Page Converting co-ordinate systems Converting Cartesian to ellipsoidal co-ordinates Cartesian and ellipsoidal co-ordinates can be converted from one representation to the other. Conversion is, however,dependentonthequandrantinwhichoneislocated.theconversionforcentraleuropeisgivenhere asanexample.thismeansthatthex,yandzvaluesarepositive.[xiii] ( ) ( ) ( ) ϕ= b y x a z tan cos a a b a y x b y x a z tan sin b b b a z tan (17a) = x y tan λ 1 (18a) ( ) ( ) [ ] sin a b a 1 a cos y x h ϕ ϕ + = (19a) Converting ellipsoidal to Cartesian co-ordinates Ellipsoidalco-ordinatescanbeconvertedintoCartesianco-ordinates. ( ) [ ] ( ) ( ) λ cos cos h sin a b a 1 a x ϕ + ϕ = (0a) ( ) [ ] ( ) ( ) sin λ cos h sin a b a 1 a y ϕ + ϕ = (1a) ( ) [ ] ( ) ϕ + ϕ = sin h a b a 1 sin a b a 1 a z (a)

45 GPSBasics u-bloxag 6.4 Planar land survey co-ordinates, projection Normally,whencarryingoutordnancesurveys,thepositionofapointPontheEarth ssurfaceisdescribedby theellipsoidalco-ordinatesoflatitude ϕ andlongitudeλ (basedonthereferenceellipsoid)aswellasheight (basedonanellipsoidorgeoid)(figure3). Asgeodeticcalculations(e.g.thedistancebetweentwobuildings)onanellipsoidarenumericallyinconvenient, ellipsoidal projections onto a mathematical plane are used in technical surveying operations. This produces smooth,right-angledxandylandsurveyco-ordinates.mostmapscontainagridenablingapointtobeeasily locatedanywhereinaterrain.inordnancesurveying,planarco-ordinatesareprojectionsofreferenceellipsoid co-ordinatesontoamathematicalplane.projectinganellipsoidontoaplaneisnotpossiblewithoutdistortingit, but it is possible to opt for a method of projection that keeps distortion to a minimum. Standard types of projectionincludecylindricalormercatorprojection,gauss-krügerprojection,utmprojectionandlambertconic projection. If positional data is used in conjunction with maps, special attention must be paid to the type of referencesystemandprojectionusedinproducingthemaps Projection system for Germany and Austria Atpresent,GermanyandAustriaprimarilyuseGauss-Krügerprojection,butbothcountriesareeitherplanning toextendthistoincludeutmprojection(universaltransversalmercatorprojection)orhavealreadymadethe switch Gauss-Krüger projection (Transverse Mercator Projection) Gauss-Krüger projection is a tangential, conformal, transverse Mercator projection. An elliptical cylinder is positioned around the spheroid, the cylinder casing coming into contact with the ellipsoid along its entire Greenwich Meridian and in the vicinity of the poles. In order to keep longitudinal and surface distortion to a minimum, three zones 3 in width are taken from the Bessel ellipsoid. The width of the zone is positioned around the prime meridian. The cylinder is situated at a transverse angle to the ellipsoid, i.e. rotated by 90 (Figure34). Greenwich meridian Mapping of the Greenwich meridians N N Cylinder S Equator S Mapping of the equator Local spheroid (Bessel ellipsoid) Figure 34: Gauss-Krüger projection 1st step: projection onto cylinder Processing the cylinder: map with country co-ordinates Inorderthattheco-ordinatesarenotnegative,particularlythosetothewestoftheprimemeridian,eastingis appliedasacorrectiveprocess(e.g.500km). GPS-X-0007 Page45

46 GPSBasics u-bloxag UTM projection UTMprojection(UniversalTransverseMercatorProjection)isvirtuallyidenticaltoGauss-Krügerprojection.The onlydifferenceisthatthegreenwichmeridianisnotaccurateintermsoflongitude,butprojectedataconstant scaleof0.9996,andthezonesare6 inwidth Swiss projection system (conformal double projection) The conformal projection of a Bessel ellipsoid onto a plane takes place in two stages. The ellipsoid is initially projectedontoasphere,andthenthesphereisprojectedontoaplaneviaacylindersetatanobliqueangle.this process is known as double projection(figure 35). A main point on the ellipsoid(old Observatory in Bern) is positionedontheplanewhenmappingtheoriginalco-ordinatesystem(withoffset:y Ost =600,000mandX Nord = 00,000m). Twodifferentsetsofco-ordinatesaremarkedonthemapofSwitzerland(e.g.scale1:5000): Landco-ordinates(XandYinkilometers)projectedontotheplanewithanaccompanyinggridand thegeographicalco-ordinates(longitudeandlatitudeindegreesandseconds)basedonthebesselellipsoid 00'000 BERN 600'000 Local reference ellipsoid (Bessel ellipsoid) 1st step: projection onto sphere nd step: projection onto sphere Processing the cylinder: map with country co-ordinates Figure 35: The principle of double projection Thesignaltransittimefrom4satellitesmustbeknownbythetimethepositionalco-ordinatesareissued.Only then,afterconsiderablecalculationandconversion,isthepositionissuedinswisslandsurveyco-ordinates). Thesignaltransittimefrom4satellitesmustbeknownbythetimethepositionalco-ordinatesareissued.Only then, after considerable calculation and conversion, is the position issued in Swiss land survey co-ordinates (Figure36). Known signal transit time from 4 satellites Calculation of WGS-84 Cartesian co-ordinaten Conversion into CH-1903 Cartesian co-ordinaten Projection onto sphere Projection onto oblique-angled cylinder Figure 36: From satellite to position GPS-X-0007 Page46

47 GPSBasics u-bloxag Worldwide co-ordinate conversion ThereareseveralpossibilitiesontheInternetforconvertingoneco-ordinatesystemintoanother.[xiv] Converting WGS-84 co-ordinates into CH-1903 co-ordinates, as an example (Takenfrom BezugssystemeinderPraxis (practicalreferencesystems)byursmartianddieteregger,federal OfficeforNationalTopography) Notethattheaccuracyisintheorderof1 meter! 1. Converting longitude and latitude: LongitudeandlatitudeinWGS-84datahavetobeconvertedintosexagesimalseconds[ ]. Example: 1. Whenconverted,latitude (WGS-84)becomes Thisquantityisdesignated asb:b= When converted, longitude (WGS-84) becomes This quantity is designatedasl:l= Calculating auxiliary quantities: Φ = B Λ = L Example: Φ = Λ = Calculating the abscissa (W---E): y 3 y[ m] = ( Λ) ( Λ Φ) (0.36 Λ Φ ) (44.54 Λ ) Example: y= m 4. Calculating the ordinate (S---N): x 3 x[ m] = ( Φ) + ( Λ ) + (76.63 Φ ) ( Λ Φ) + ( Φ ) Example: x= m 5. Calculating the height H: H [ m] = ( Height WGS ) + (.73 Λ) + (6.94 Φ) Example: Afterconversion,height WGS-84 =650.60mproduces:H=600m GPS-X-0007 Page47

48 GPSBasics u-bloxag 7 DIFFERENTIAL-GPS (DGPS) If you would like to... o knowwhatdgpsmeans o knowhowcorrectionvaluesaredeterminedandrelayed o understandhowthed-signalcorrectserroneouspositionalmeasurements o knowwhatdgpsservicesareavailableincentraleurope o knowwhategnosandwaasmean then this chapter is for you! 7.1 Introduction Ahorizontalaccuracyofapprox.0misprobablynotsufficientforeverysituation.Inordertodeterminethe movement of concrete dams down to the nearest millimetre, for example, a greater degree of accuracy is required.inprinciple,areferencereceiverisalwaysusedinadditiontotheuserreceiver.thisislocatedatan accurately measured reference point (i.e. the co-ordinates are known). By continually comparing the user receiverwiththereferencereceiver,manyerrors(evensaones,ifitisswitchedon)canbeeliminated.thisis because a difference in measurementarises, which is known as Differential GPS(DGPS). The process involves twodifferentprinciples: DGPSbasedonthemeasurementofsignaltransittime(achievableaccuracyapprox.1m) DGPSbasedonthephasemeasurementofthecarriersignal(achievableaccuracyapprox.1cm) Inthecaseofdifferentialprocessesinusetoday,ageneraldistinctionisdrawnbetweenthefollowing: LocalareadifferentialGPS RegionalareadifferentialGPS WideareadifferentialGPS SeveralDGPSservicesareintroducedinsectionA DGPS based on the measurement of signal transit time Intheory,theachievablelevelofaccuracybasedontheprocessescurrentlydescribedisapprox.15-0m.For surveyingoperationsrequiringanaccuracyofapprox.1cmandfordemandingfeatsofnavigation,accuracyhas tobeincreased.industryhasdiscoveredastraightforwardandreliablesolutiontothisproblem:differentialgps (DGPS).TheprincipleofDGPSisverysimple.AGPSreferencestationissetupataknown,accuratelysurveyed point.thegpsreferencestationdeterminesaperson spositionbymeansoffoursatellites.astheexactposition ofthereferencestationisknown,itispossibletocalculateanydeviationfromtheactualpositionmeasured.this deviation(differentialposition)alsoholdsgoodforanygpsreceiverswithina00kmradiusofthereference station. The differential position can therefore be used to correct positions measured by other GPS receivers (Figure37).Anydeviationinpositioncaneitherberelayeddirectlybyradio,orcorrectionscansubsequentlybe madeafterthemeasurementshavebeenmade.basedonthisprinciple,accuracytowithinafewmillimeterscan beachieved. GPS-X-0007 Page48

49 GPSBasics u-bloxag Basel Zurich Berne GPS reference station Chur GPS receiver Geneva Figure 37: Principle operation of GPS with a GPS reference station 7..1 Detailed DGPS method of operation Theeffectsoftheionospherearedirectlyresponsibleforinaccuratedata.InDGPS,atechnologyisnowavailable thatcancompensateformostoftheerrors.compensationtakesplaceinthreephases: 1. Determiningthecorrectionvaluesatthereferencestation. RelayingthecorrectionvaluesfromthereferencestationtotheGPSuser 3. Correctingthepseudo-rangemeasuredbytheGPSuser Determining the correction values A reference station whose co-ordinates are precisely known measures signal transit time to all visible GPS satellites(figure38)anddeterminesthepseudo-rangefromthisvariable(actualvalue).becausethepositionof thereferencestationisknownprecisely,itispossibletocalculatethetruedistance(targetvalue)toeachgps satellite.thedifferencebetweenthetruevalueandthepseudo-rangecanbeascertainedbysimplesubtraction and will give the correction value (difference between the actual and target value). The correction value is different for every GPS satellite and will hold good for every GPS user within a radius of a few hundred kilometers. GPS satellite Satellite antenna GPS user 9 4'6" 46 48'41" GPS RF RF receiving antenna RF transmit antenna RF Decoder RTCM SC-104 Reference station Figure 38: Determining the correction values GPS-X-0007 Page49

50 GPSBasics u-bloxag Relaying the correction values As the correction values can be used within awide area to correct measured pseudo-range, they are relayed withoutdelayviaasuitablemedium(transmitter,telephone,radio,etc.)toothergpsusers(figure39). GPS satellite Satellite antenna GPS user 9 4'6" 46 48'41" GPS RF RF receiving antenna RF transmitting antenna RF Decoder RTCM SC-104 Reference station Figure 39: Relaying the corrction values Correcting measured pseudo-range Afterreceivingthecorrectionvalues,aGPSusercandeterminethetruedistanceusingthepseudo-rangehehas measured(figure40).theexactuserpositioncannowbecalculatedfromthetruedistance.allcausesoferror canthereforebeeliminatedwiththeexceptionofthoseemanatingfromreceivernoiseandmutlipath. GPS satellite Satellite antenna GPS user 9 4'6" 46 48'41" GPS RF RF receiving antenna RF transmitting antenna RF Decoder RTCM SC-104 Figure 40: Correcting measured pseudo-range Reference station 7.3 DGPS based on carrier phase measurement When measuring pseudo-range an achievable accuracy of 1 meter is still not adequate for solving problems during surveying operations. In order to be able to carry out measurements to within a few millimeters, the satellite signal carrier phase must be evaluated. The carrier wavelength λ is approx. 19 cm. The range to a satellitecanbedeterminedusingthefollowingmethod(figure41). GPS-X-0007 Page50

51 GPSBasics u-bloxag D = (N. λ) + (ϕ. λ) Wave length λ Phase ϕ t Number of complete cycles N Distance D Satellite Figure 41: The principle of phase measurement User Phasemeasurementisanuncertainprocess,becauseNisunknown.Byobservingseveralsatellitesatdifferent times and by continually comparing the user receiver with the reference receiver (during or after the measurement)apositioncanbedeterminedtowithinafewmillimetersafterhavingsolvednumeroussetsof equations. GPS-X-0007 Page51

52 GPSBasics u-bloxag 8 DATA FORMATS AND HARDWARE INTERFACES If you would like to... o knowwhatnmeaandrtcmmean o knowwhataproprietarydatasetis o knowwhatdatasetisavailableinthecaseofallgpsreceivers o knowwhatanactiveantennais o knowwhethergpsreceivershaveasynchronisedtimingpulse then this chapter is for you! 8.1 Introduction GPS receivers require different signals in order to function (Figure 4). These variables are broadcast after position and time have been successfully calculated and determined. To ensure that the different types of appliances are portable there are either international standards for data exchange(nmea and RTCM), or the manufacturerprovidesdefined(proprietary)formatsandprotocols. Antenna Power supply DGPS signal (RTCM SC-104) GPS receiver Data interface (NMEA-Format) Data interface (Proprietary format) Timing mark (1PPS) Figure 4: Block diagram of a GPS receiver with interfaces 8. Data interfaces 8..1 The NMEA-0183 data interface InordertorelaycomputedGPSvariablessuchasposition,velocity,courseetc.toaperipheral(e.g.computer, screen,transceiver),gpsmoduleshaveaserialinterface(ttlorrs-3level).themostimportantelementsof receiverinformationarebroadcastviathisinterfaceinaspecialdataformat.thisformatisstandardisedbythe NationalMarineElectronicsAssociation(NMEA)toensurethatdataexchangetakesplacewithoutanyproblems. Nowadays,dataisrelayedaccordingtotheNMEA-0183specification.NMEAhasspecifieddatasetsforvarious applications e.g. GNSS (Global Navigation Satellite System), GPS, Loran, Omega, Transit and also for various manufacturers.thefollowingsevendatasetsarewidelyusedwithgpsmodulestorelaygpsinformation[xv]: GPS-X-0007 Page5

53 GPSBasics u-bloxag 1. GGA(GPSFixData,fixeddatafortheGlobalPositioningSystem). GLL(GeographicPosition Latitude/Longitude) 3. GSA(GNSS DOP and Active Satellites, degradation of accuracy and the number of active satellites in the GlobalSatelliteNavigationSystem) 4. GSV(GNSSSatellitesinView,satellitesinviewintheGlobalSatelliteNavigationSystem) 5. RMC(RecommendedMinimumSpecificGNSSData) 6. VTG(CourseoverGroundandGroundSpeed,horizontalcourseandhorizontalvelocity) 7. ZDA(Time&Date) Structure of the NMEA protocol InthecaseofNMEA,therateatwhichdataistransmittedis4800Baudusingprintable8-bitASCIIcharacters. Transmissionbeginswithastartbit(logicalzero),followedbyeightdatabitsandastopbit(logicalone)added attheend.noparitybitsareused. TTL level 1 ( ca. Vcc) 0 ( ca. 0V) Start bit D0 D1 D D3 D4 D5 D6 D7 Stop bit Data bits RS-3 level 0 ( U>0V) 1 ( U<0V) Start bit D0 D1 D D3 D4 D5 D6 D7 Stop bit Figure 43: NMEA format (TTL and RS-3 level) Data bits ThedifferentlevelsmustbetakenintoconsiderationdependingonwhethertheGPSreceiverusedhasaTTLor RS-3interface(Figure43): InthecaseofaTTLlevelinterface,alogicalzerocorrespondstoapprox.0Vandalogicaloneroughlyto theoperatingvoltageofthesystem(+3.3v...+5v) InthecaseofanRS-3interfacealogicalzerocorrespondstoapositivevoltage(+3V...+15V)anda logicaloneanegativevoltage(-3v... 15V). If a GPS module with a TTL level interface is connected to an appliance with an RS-3 interface, a level conversionmustbeeffected(see8.3.4). AfewGPSmodulesallowthebaudratetobeincreased(upto38400bitspersecond). EachGPSdatasetisformedinthesamewayandhasthefollowingstructure: $GPDTS,Inf_1,Inf_,Inf_3,Inf_4,Inf_5,Inf_6,Inf_n*CS<CR><LF> GPS-X-0007 Page53

54 GPSBasics u-bloxag ThefunctionoftheindividualcharactersorcharactersetsisexplainedinTable8. Field Description $ Startofthedataset GP DTS Inf_1bisInf_n InformationoriginatingfromaGPSappliance Datasetidentifier(e.g.RMC) Informationwithnumber1...n(e.g.175.4forcoursedata), Commausedasaseparatorfordifferentitemsofinformation * Asteriskusedasaseparatorforthechecksum CS <CR><LF> Checksum(controlword)forcheckingtheentiredataset Endofthedataset:carriagereturn(<CR>)andlinefeed,(<LF>) Table 8: Description of the individual NMEA DATA SET blocks Themaximumnumberofcharactersusedmustnotexceed79.Forthepurposesofdeterminingthisnumber,the startsign$andendsigns<cr><lf>arenotcounted. ThefollowingNMEAprotocolwasrecordedusingaGPSreceiver(Table9): $GPRMC, ,A, ,N, ,E,000.03,043.4,00601,01.3,W*7D<CR><LF> $GPZDA, ,0,06,001,,*56<CR><LF> $GPGGA, , ,N, ,E,1,08,0.94,00499,M,047,M,,*59<CR><LF> $GPGLL, ,N, ,E, ,A*33<CR><LF> $GPVTG,05.5,T,06.8,M,000.04,N,000.08,K*4C<CR><LF> $GPGSA,A,3,13,0,11,9,01,5,07,04,,,,,1.63,0.94,1.33*04<CR><LF> $GPGSV,,1,8,13,15,08,36,0,80,358,39,11,5,139,43,9,13,044,36*4<CR><LF> $GPGSV,,,8,01,5,187,43,5,5,074,39,07,37,86,40,04,09,306,33*44<CR><LF> $GPRMC, ,A, ,N, ,E,000.04,05.5,00601,01.3,W*7C<CR><LF> $GPZDA, ,0,06,001,,*57<CR><LF> $GPGGA, , ,N, ,E,1,08,0.94,00499,M,047,M,,*58<CR><LF> $GPGLL, ,N, ,E, ,A*3<CR><LF> $GPVTG,014.,T,015.4,M,000.03,N,000.05,K*4F<CR><LF> $GPGSA,A,3,13,0,11,9,01,5,07,04,,,,,1.63,0.94,1.33*04<CR><LF> $GPGSV,,1,8,13,15,08,36,0,80,358,39,11,5,139,43,9,13,044,36*4<CR><LF> $GPGSV,,,8,01,5,187,43,5,5,074,39,07,37,86,40,04,09,306,33*44<CR><LF> Table 9: Recording of an NMEA protocol GPS-X-0007 Page54

55 GPSBasics u-bloxag GGA data set TheGGAdataset(GPSFixData)containsinformationontime,longitudeandlatitude,thequalityofthesystem, thenumberofsatellitesusedandtheheight. AnexampleofaGGAdataset: $GPGGA, , ,N, ,E,1,08,0.94,00499,M,047,M,,*58<CR><LF> ThefunctionoftheindividualcharactersorcharactersetsisexplainedinTable10. Field Description $ Startofthedataset GP GGA InformationoriginatingfromaGPSappliance Datasetidentifier UTCpositionaltime:13h03min05.0sec Latitude: min N Northerlylatitude(N=north,S=south) Latitude: min E 1 08 Easterlylongitude(E=east,W=west) GPSqualitydetails(0=noGPS,1=GPS,=DGPS) Numberofsatellitesusedinthecalculation 0.94 HorizontalDilutionofPrecision(HDOP) M 047 M,, 0000 Antennaheightdata(geoidheight) Unitofheight(M=meter) Heightdifferentialbetweenanellipsoidandgeoid Unitofdifferentialheight(M=meter) AgeoftheDGPSdata(inthiscasenoDGPSisused) IdentificationoftheDGPSreferencestation * Separatorforthechecksum 58 <CR><LF> Checksumforverifyingtheentiredataset Endofthedataset Table 10: Description of the individual GGA data set blocks GPS-X-0007 Page55

56 GPSBasics u-bloxag GLL data set TheGLLdataset(geographicposition latitude/longitude)containsinformationonlatitudeandlongitude,time andhealth. ExampleofaGLLdataset: $GPGLL, ,N, ,E, ,A*3<CR><LF> ThefunctionoftheindividualcharactersorcharactersetsisexplainedinTable11. Field Description $ Startofthedataset GP GLL InformationoriginatingfromaGPSappliance Datasetidentifier Latitude: min N Northerlylatitude(N=north,S=south) Longitude: min E Easterlylongitude(E=east,W=west) UTCpositionaltime:13h03min05.0sec A Datasetquality:Ameansvalid(V=invalid) * Separatorforthechecksum 3 <CR><LF> Checksumforverifyingtheentiredataset Endofthedataset Table 11: Description of the individual GGL data set blocks GPS-X-0007 Page56

57 GPSBasics u-bloxag GSA data set TheGSAdataset(GNSSDOPandActiveSatellites)containsinformationonthemeasuringmode(Dor3D),the number of satellites used to determine the position and the accuracy of themeasurements(dop:dilution of Precision). AnexampleofaGSAdataset: $GPGSA,A,3,13,0,11,9,01,5,07,04,,,,,1.63,0.94,1.33*04<CR><LF> ThefunctionoftheindividualcharactersorsetsofcharactersisdecribedinTable1. Field Description $ Startofthedataset GP GSA A ,,,,, InformationoriginatingfromaGPSappliance Datasetidentifier Calculatingmode(A=automaticselectionbetweenD/3Dmode,M=manualselection betweend/3dmode) Calculatingmode(1=none,=D,3=3D) IDnumberofthesatellitesusedtocalculateposition IDnumberofthesatellitesusedtocalculateposition IDnumberofthesatellitesusedtocalculateposition IDnumberofthesatellitesusedtocalculateposition IDnumberofthesatellitesusedtocalculateposition IDnumberofthesatellitesusedtocalculateposition IDnumberofthesatellitesusedtocalculateposition IDnumberofthesatellitesusedtocalculateposition DummyforadditionalIDnumbers(currentlynotused) 1.63 PDOP(PositionDilutionofPrecision) 0.94 HDOP(HorizontalDilutionofPrecision) 1.33 VDOP(VerticalDilutionofPrecision) * Separatorforthechecksum 04 <CR><LF> Checksumforverifyingtheentiredataset Endofthedataset Table 1: Description of the individual GSA data set blocks GPS-X-0007 Page57

58 GPSBasics u-bloxag GSV data set The GSV data set (GNSS Satellites in View) contains information on the number of satellites in view, their identification,theirelevationandazimuth,andthesignal-to-noiseratio. AnexampleofaGSVdataset: $GPGSV,,,8,01,5,187,43,5,5,074,39,07,37,86,40,04,09,306,33*44<CR><LF> ThefunctionoftheindividualcharactersorcharactersetsisexplainedinTable13. Field Description $ Startofthedataset GP GSV 09 InformationoriginatingfromaGPSappliance Datasetidentifier TotalnumberofGVSdatasetstransmitted(upto1...9) CurrentnumberofthisGVSdataset(1...9) Totalnumberofsatellitesinview Identificationnumberofthefirstsatellite Elevation( ) Azimuth( ) Signal-to-noiseratioindb-Hz(1...99,nullwhennottracking) Identificationnumberofthesecondsatellite Elevation( ) Azimuth( ) Signal-to-noiseratioindB-Hz(1...99,nullwhennottracking) Identificationnumberofthethirdsatellite Elevation( ) Azimuth( ) Signal-to-noiseratioindb-Hz(1...99,nullwhennottracking) Identificationnumberofthefourthsatellite Elevation( ) Azimuth( ) Signal-to-noiseratioindb-Hz(1...99,nullwhennottracking) * Separatorforthechecksum 44 <CR><LF> Checksumforverifyingtheentiredataset Endofthedataset Table 13: Description of the individual GSV data set blocks GPS-X-0007 Page58

59 GPSBasics u-bloxag RMC data set The RMC data set(recommended Minimum Specific GNSS) contains information on time, latitude, longitude andheight,systemstatus,speed,courseanddate.thisdatasetisrelayedbyallgpsreceivers. AnexampleofanRMCdataset: $GPRMC, ,A, ,N, ,E,000.04,05.5,00601,01.3,W*7C<CR><LF> ThefunctionoftheindividualcharactersorcharactersetsisexplainedinTable14. Field Description $ Startofthedataset GP RMC InformationoriginatingfromaGPSappliance Datasetidentifier Timeofreception(worldtimeUTC):13h03min04.0sec A Datasetquality:Asignifiesvalid(V=invalid) Latitude: min N Northerlylatitude(N=north,S=south) Longitude: min E Easterlylongitude(E=east,W=west) Speed:0.04knots 05.5 Course: Date:0thJune Adjusteddeclination:1.3 W Westerlydirectionofdeclination(E=east) * Separatorforthechecksum 7C <CR><LF> Checksumforverifyingtheentiredataset Endofthedataset Table 14: Description of the individual RMC data set blocks GPS-X-0007 Page59

60 GPSBasics u-bloxag VTG data set TheVGTdataset(CourseoverGroundandGroundSpeed)containsinformationoncourseandspeed. AnexampleofaVTGdataset: $GPVTG,014.,T,015.4,M,000.03,N,000.05,K*4F<CR><LF> ThefunctionoftheindividualcharactersorcharactersetsisexplainedinTable15. Field Description $ Startofthedataset GP VTG InformationoriginatingfromaGPSappliance Datasetidentifier 014. Course14. (T)withregardtothehorizontalplane T Angularcoursedatarelativetothemap Course15.4 (M)withregardtothehorizontalplane M Angularcoursedatarelativetomagneticnorth Horizontalspeed(N) N Speedinknots Horizontalspeed(Km/h) K Speedinkm/h * Separatorforthechecksum 4F <CR><LF> Checksumforverifyingtheentiredataset Endofthedataset Table 15: Description of the individual VTG data set blocks GPS-X-0007 Page60

61 GPSBasics u-bloxag ZDA data set TheZDAdataset(timeanddate)containsinformationonUTCtime,thedateandlocaltime. AnexampleofaZDAdataset: $GPZDA, ,0,06,001,,*57<CR><LF> ThefunctionoftheindividualcharactersorcharactersetsisexplainedinTable16. Field Description $ Startofthedataset GP ZDA InformationoriginatingfromaGPSappliance Datasetidentifier UTCtime:13h03min05.sec Day(00 31) Month(1 1) Year Reservedfordataonlocaltime(h),notspecifiedhere Reservedfordataonlocaltime(min),notspecifiedhere * Separatorforthechecksum 57 <CR><LF> Checksumforverifyingtheentiredataset Endofthedataset Table 16: Description of the individual ZDA data set blocks Calculating the checksum Thechecksumisdeterminedbyanexclusive-oroperationinvolvingall8databits(excludingstartandstopbits) fromalltransmittedcharacters,includingseparators.theexclusive-oroperationcommencesafterthestartofthe dataset($sign)andendsbeforethechecksumseparator(asterisk:*). The 8-bit result is divided into sets of 4 bits (nibbles) and each nibble is converted into the appropriate hexadecimalvalue(0...9,a...f).thechecksumconsistsofthetwohexadecimalvaluesconvertedintoascii characters. GPS-X-0007 Page61

62 GPSBasics u-bloxag Theprincipleofchecksumcalculationcanbeexplainedwiththehelpofabriefexample: ThefollowingNMEAdatasethasbeenreceivedandthechecksum(CS)mustbeverifiedforitscorrectness. $GPRTE,1,1,c,0*07 (07 isthechecksum) Procedure: 1. Onlythecharactersbetween$and*areincludedintheanalysis:GPRTE,1,1,c,0. These13ASCIIcharactersareconvertedinto8bitvalues(seeTable17) 3. Eachindividualbitofthe13ASCIIcharactersislinkedtoanexclusive-oroperation(N.B.Ifthenumberof onesisuneven,theexclusive-orvalueisone) 4. Theresultisdividedintotwonibbles 5. Thehexadecimalvalueofeachnibbleisdetermined 6. BothhexadecimalcharactersaretransmittedasASCIIcharacterstoformthechecksum Character ASCII (8 bit value) G P R T E , Directionto proceed, , C , Exclusive-or value Nibble Hexadecimalvalue 0 7 ASCIICScharacters (meetsrequirements!) 0 7 Table 17: Determining the checksum in the case of NMEA data sets GPS-X-0007 Page6

63 GPSBasics u-bloxag 8.. The DGPS correction data (RTCM SC-104) The RTCM SC-104 standard is used to transmit correction values. RTCM SC-104 stands for Radio Technical CommissionforMaritimeServicesSpecialCommittee104 andiscurrentlyrecognisedaroundtheworldasthe industrystandard[xvi].therearetwoversionsofthertcmrecommendedstandardsfordifferentialnavstar GPSService Version.0(issuedinJanuary1990) Version.1(issuedinJanuary1994) Version.1isareworkedversionof.0andisdistinguished,inparticular,bythefactthatitprovidesadditional informationforrealtimenavigation(realtimekinematic,rtk). Both versions are divided into 63 message types, numbers 1,, 3 and 9 being used primarily for corrections basedoncodemeasurements The RTCM message header Each message type is divided into words of 30 bits and, in each instance, begins with a uniform header comprising two words(word 1 and WORD ). From the information contained in the header it is apparent whichmessagetypefollows[xvii]andwhichreferencestationhasdeterminedthecorrectiondata(figure44 from[xviii]). Figure 44: Construction of the RTCM message header Contents Name Description PREAMBLE Preamble Preamble MESSAGETYPE: Messagetype Messagetypeidentifier STATIONID ReferencestationIDNo. Referencestationidentification PARITY Errorcorrectioncode Parity MODIFIEDZ-COUNT ModifiedZ-count Modified Z-Count, incremental timecounter SEQUENCENO. FramesequenceNo. Sequentialnumber LENGTHOFFRAME Framelength Lengthofframe STATIONHEALTH Referencestationhealth Technicalstatusofthereference station Table 18: Contents of the RTCM message header GPS-X-0007 Page63

64 GPSBasics u-bloxag Thespecificdatacontentforthemessagetype(WORD3...WORDn)followstheheader,ineachcase RTCM message type 1 Message type 1 transmits pseudo-range correction data (PSR correction data, range correction) for all GPS satellites visible to the reference station, based on the most up-to-date orbital data (ephemeris). Type 1 additionallycontainstherate-of-changecorrectionvalue(figure45,extractfrom[xix],onlyword3toword6 isshown). Figure 45: Construction of RTCM message type 1 GPS-X-0007 Page64

65 GPSBasics u-bloxag Contents Name Description SCALEFACTOR Pseudo-rangecorrectionvaluescalefactor PSRscalefactor UDRE Userdifferentialrangeerrorindex Userdifferentialrangeerror index SATELLITEID SatelliteIDNo. Satelliteidentification PSEUDORANGE CORRECTION RANGE-RATE CORRECTION Pseudo-rangecorrectionvalue Pseudo-rangerate-of-changecorrectionvalue Effectiverangecorrection Rate-of-changeofthe correctiondata ISSUEOFDATA DataissueNo. Issueofdata PARITY Errorcorrectioncode Checkbits Table 19: Contents of RTCM message type 1 GPS-X-0007 Page65

66 GPSBasics u-bloxag RTCM message type to 9 Messagetypesto9aredistinguishedprimarilybytheirdatacontent: Message type transmits delta PSR correction data, based on previous orbital data. This information is requiredwheneverthegpsuserhasbeenunabletoupdatehissatelliteorbitalinformation.inmessagetype,thedifferencebetweencorrectionvaluesbasedonthepreviousandupdatedephemerisistransmitted. Message type 3 transmitsthethreedimensionalco-ordinatesofthereferencestation. Message type 9relaysthesameinformationasmessagetype1,butonlyforalimitednumberofsatellites (max.3).dataisonlytransmittedfromthosesatelliteswhosecorrectionvalueschangerapidly. InorderfortheretobeanoticeableimprovementinaccuracyusingDGPS,thecorrectiondatarelayedshould notbeolderthanapprox.10to60seconds(differentvaluesaresupplieddependingontheserviceoperator,the exactvaluealsodependsontheaccuracyrequired,seealso[xx]).accuracydecreasesasthedistancebetween thereferenceanduserstationincreases.trialmeasurementsusingthecorrectionsignalsbroadcastbythelw transmitterinmainflingen,germany,(seesectiona1.3)producedanerrorrateof mwithinaradiusof 50km,and1 3mwithinaradiusof600km[xxi]. 8.3 Hardware interfaces Antenna GPS modules can either be operated with a passive or active antenna. Active antennae, i.e. with a built-in preamplifier(lna:lownoiseamplifier)arepoweredfromthegpsmodule,thecurrentbeingprovidedbythe HFsignalline.Formobilenavigationalpurposescombinedantennae(e.g.GSM/FMandGPS)aresupplied.GPS antennaereceiveright-handedcircularpolarisedwaves. Twotypesofantennaareobtainableonthemarket,PatchantennaeandHelixantennae.Patchantennaeare flat,generallyhaveaceramicandmetallisedbodyandaremountedonametalbaseplate.inordertoensurea sufficiently high degree of selectivity, the base to Patch surface ratio has to be adjusted. Patch antennae are oftencastinahousing(figure46),[xxii]). Helixantennaearecylindricalinshape(Figure47,[xxiii])andhaveahighergainthanthePatchantennae. Figure 46: Open and cast Patch antennae Figure 47: Basic structural shape of a Helix antennae GPS-X-0007 Page66

Essentials of Satellite Navigation

Essentials of Satellite Navigation u-blox AG Zürcherstrasse 68 8800 Thalwil Switzerland www.u-blox.com Phone +41 44 722 7444 Fax +41 44 722 7447 info@u-blox.com Compendium Theory and Principles Systems and Applications Overview your position

More information

GPS (Introduction) References. Terms

GPS (Introduction) References. Terms GPS (Introduction) WCOM2, GPS, 1 Terms NAVSTAR GPS ( Navigational Satellite Timing and Ranging - Global Positioning System) is a GNSS (Global Navigation Satellite System), developed by the US-DoD in 197x

More information

GPS Glossary Written by Carl Carter SiRF Technology 2005

GPS Glossary Written by Carl Carter SiRF Technology 2005 GPS Glossary Written by Carl Carter SiRF Technology 2005 This glossary provides supplementary information for students of GPS Fundamentals. While many of the terms can have other definitions from those

More information

Challenges and Solutions for GPS Receiver Test

Challenges and Solutions for GPS Receiver Test Challenges and Solutions for GPS Receiver Test Presenter: Mirin Lew January 28, 2010 Agenda GPS technology concepts GPS and GNSS overview Assisted GPS (A-GPS) Basic tests required for GPS receiver verification

More information

GPS (Introduction) References. Terms

GPS (Introduction) References. Terms GPS (Introduction) MSE, Rumc, GPS, 1 Terms NAVSTAR GPS ( Navigational Satellite Timing and Ranging - Global Positioning System) is a GNSS (Global Navigation Satellite System), developed by the US-DoD in

More information

UNIT 1 - introduction to GPS

UNIT 1 - introduction to GPS UNIT 1 - introduction to GPS 1. GPS SIGNAL Each GPS satellite transmit two signal for positioning purposes: L1 signal (carrier frequency of 1,575.42 MHz). Modulated onto the L1 carrier are two pseudorandom

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

Global Navigation Satellite Systems II

Global Navigation Satellite Systems II Global Navigation Satellite Systems II AERO4701 Space Engineering 3 Week 4 Last Week Examined the problem of satellite coverage and constellation design Looked at the GPS satellite constellation Overview

More information

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic 1.0 Introduction OpenSource GPS is open source software that runs a GPS receiver based on the Zarlink GP2015 / GP2021 front end and digital processing chipset. It is a fully functional GPS receiver which

More information

Errors in GPS. Errors in GPS. Geodetic Co-ordinate system. R. Khosla Fall Semester

Errors in GPS. Errors in GPS. Geodetic Co-ordinate system. R. Khosla Fall Semester Errors in GPS Errors in GPS GPS is currently the most accurate positioning system available globally. Although we are talking about extreme precision and measuring distances by speed of light, yet there

More information

The Global Positioning System

The Global Positioning System The Global Positioning System 5-1 US GPS Facts of Note DoD navigation system First launch on 22 Feb 1978, fully operational in 1994 ~$15 billion (?) invested to date 24 (+/-) Earth-orbiting satellites

More information

GPS Global Positioning System

GPS Global Positioning System GPS Global Positioning System 10.04.2012 1 Agenda What is GPS? Basic consept History GPS receivers How they work Comunication Message format Satellite frequencies Sources of GPS signal errors 10.04.2012

More information

Global Positioning Systems (GPS) Trails: the achilles heel of mapping from the air / satellites

Global Positioning Systems (GPS) Trails: the achilles heel of mapping from the air / satellites Global Positioning Systems (GPS) Trails: the achilles heel of mapping from the air / satellites Google maps updated regularly by local users using GPS Also: http://openstreetmaps.org GPS applications

More information

GPS Milestones, cont. GPS Milestones. The Global Positioning Sytem, Part 1 10/10/2017. M. Helper, GEO 327G/386G, UT Austin 1. US GPS Facts of Note

GPS Milestones, cont. GPS Milestones. The Global Positioning Sytem, Part 1 10/10/2017. M. Helper, GEO 327G/386G, UT Austin 1. US GPS Facts of Note The Global Positioning System US GPS Facts of Note DoD navigation system First launch on 22 Feb 1978, fully operational in 1994 ~$15 billion (?) invested to date 24 (+/-) Earth-orbiting satellites (SVs)

More information

Resection. We can measure direction in the real world! Lecture 10: Position Determination. Resection Example: Isola, Slovenia. Professor Keith Clarke

Resection. We can measure direction in the real world! Lecture 10: Position Determination. Resection Example: Isola, Slovenia. Professor Keith Clarke Geography 12: Maps and Spatial Reasoning Lecture 10: Position Determination We can measure direction in the real world! Professor Keith Clarke Resection Resection Example: Isola, Slovenia Back azimuth

More information

Chapter 6 GPS Relative Positioning Determination Concepts

Chapter 6 GPS Relative Positioning Determination Concepts Chapter 6 GPS Relative Positioning Determination Concepts 6-1. General Absolute positioning, as discussed earlier, will not provide the accuracies needed for most USACE control projects due to existing

More information

What is a GPS How does GPS work? GPS Segments GPS P osition Position Position Accuracy Accuracy Accuracy GPS A pplications Applications Applications

What is a GPS How does GPS work? GPS Segments GPS P osition Position Position Accuracy Accuracy Accuracy GPS A pplications Applications Applications What is GPS? What is a GPS How does GPS work? GPS Segments GPS Position Accuracy GPS Applications What is GPS? The Global Positioning System (GPS) is a precise worldwide radio-navigation system, and consists

More information

TEST YOUR SATELLITE NAVIGATION PERFORMANCE ON YOUR ANDROID DEVICE GLOSSARY

TEST YOUR SATELLITE NAVIGATION PERFORMANCE ON YOUR ANDROID DEVICE GLOSSARY TEST YOUR SATELLITE NAVIGATION PERFORMANCE ON YOUR ANDROID DEVICE GLOSSARY THE GLOSSARY This glossary aims to clarify and explain the acronyms used in GNSS and satellite navigation performance testing

More information

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney GPS and Recent Alternatives for Localisation Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney Global Positioning System (GPS) All-weather and continuous signal system designed

More information

GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018

GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018 GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) ECE 2526E Tuesday, 24 April 2018 MAJOR GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) Global Navigation Satellite System (GNSS) includes: 1. Global Position System

More information

RESOLUTION MSC.112(73) (adopted on 1 December 2000) ADOPTION OF THE REVISED PERFORMANCE STANDARDS FOR SHIPBORNE GLOBAL POSITIONING SYSTEM (GPS)

RESOLUTION MSC.112(73) (adopted on 1 December 2000) ADOPTION OF THE REVISED PERFORMANCE STANDARDS FOR SHIPBORNE GLOBAL POSITIONING SYSTEM (GPS) MSC 73/21/Add.3 RESOLUTION MSC.112(73) FOR SHIPBORNE GLOBAL POSITIONING SYSTEM THE MARITIME SAFETY COMMITTEE, RECALLING Article (28(b) of the Convention on the International Maritime Organization concerning

More information

Introduction to Geographic Information Science. Last Lecture. Today s Outline. Geography 4103 / GNSS/GPS Technology

Introduction to Geographic Information Science. Last Lecture. Today s Outline. Geography 4103 / GNSS/GPS Technology Geography 4103 / 5103 Introduction to Geographic Information Science GNSS/GPS Technology Last Lecture Geoids Ellipsoid Datum Projection Basics Today s Outline GNSS technology How satellite based navigation

More information

GPS. Essentials of Satellite Navigation. Compendium. locate, communicate, accelerate. Abstract

GPS. Essentials of Satellite Navigation. Compendium. locate, communicate, accelerate. Abstract GPS Essentials of Satellite Navigation Compendium locate, communicate, accelerate Abstract Theory and Principles of Satellite Navigation. Overview of GPS/GNSS Systems and Applications. www.u-blox.com Document

More information

GLOBAL POSITIONING SYSTEMS. Knowing where and when

GLOBAL POSITIONING SYSTEMS. Knowing where and when GLOBAL POSITIONING SYSTEMS Knowing where and when Overview Continuous position fixes Worldwide coverage Latitude/Longitude/Height Centimeter accuracy Accurate time Feasibility studies begun in 1960 s.

More information

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS GPS: The Basics Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University Expected Learning Outcomes for GPS Explain the acronym GPS Name 3 important tdt dates in history of GPS

More information

Introduction to Global Navigation Satellite System (GNSS) Signal Structure

Introduction to Global Navigation Satellite System (GNSS) Signal Structure Introduction to Global Navigation Satellite System (GNSS) Signal Structure Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp

More information

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009

Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 Global Positioning System: what it is and how we use it for measuring the earth s movement. May 5, 2009 References Lectures from K. Larson s Introduction to GNSS http://www.colorado.edu/engineering/asen/

More information

Security of Global Navigation Satellite Systems (GNSS) GPS Fundamentals GPS Signal Spoofing Attack Spoofing Detection Techniques

Security of Global Navigation Satellite Systems (GNSS) GPS Fundamentals GPS Signal Spoofing Attack Spoofing Detection Techniques Security of Global Navigation Satellite Systems (GNSS) GPS Fundamentals GPS Signal Spoofing Attack Spoofing Detection Techniques Global Navigation Satellite Systems (GNSS) Umbrella term for navigation

More information

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC

PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC PRINCIPLES AND FUNCTIONING OF GPS/ DGPS /ETS ER A. K. ATABUDHI, ORSAC GPS GPS, which stands for Global Positioning System, is the only system today able to show you your exact position on the Earth anytime,

More information

Power Requirements. Features

Power Requirements. Features Datasheet Positional accuracy (CEP50) autonomous positional error less than 2.5 meters SiRF Star IV GPS chip Satellite-based augmentation systems: WAAS, EGNOS, MSAS, GAGAN High sensitivity navigation engine

More information

The GLOBAL POSITIONING SYSTEM James R. Clynch February 2006

The GLOBAL POSITIONING SYSTEM James R. Clynch February 2006 The GLOBAL POSITIONING SYSTEM James R. Clynch February 2006 I. Introduction What is GPS The Global Positioning System, or GPS, is a satellite based navigation system developed by the United States Defense

More information

Mobile Positioning in Wireless Mobile Networks

Mobile Positioning in Wireless Mobile Networks Mobile Positioning in Wireless Mobile Networks Peter Brída Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina SLOVAKIA Outline Why Mobile Positioning?

More information

Fundamentals of GPS Navigation

Fundamentals of GPS Navigation Fundamentals of GPS Navigation Kiril Alexiev 1 /76 2 /76 At the traditional January media briefing in Paris (January 18, 2017), European Space Agency (ESA) General Director Jan Woerner explained the knowns

More information

Introduction to the Global Positioning System

Introduction to the Global Positioning System GPS for Fire Management - 2004 Introduction to the Global Positioning System Pre-Work Pre-Work Objectives Describe at least three sources of GPS signal error, and identify ways to mitigate or reduce those

More information

GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION

GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION June 2, 1995 June 2, 1995 GPS SPS Signal Specification TABLE OF CONTENTS SECTION 1.0 The GPS Standard Positioning Service...1

More information

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16]

1. Discuss in detail the Design Consideration of a Satellite Communication Systems. [16] Code No: R05410409 Set No. 1 1. Discuss in detail the Design Consideration of a Satellite Communication Systems. 2. (a) What is a Geosynchronous Orbit? Discuss the advantages and disadvantages of these

More information

APPENDIX GPS TERMINOLOGY

APPENDIX GPS TERMINOLOGY APPENDIX GPS TERMINOLOGY Almanac Data transmitted by a GPS satellite which includes orbital information on all the satellites, clock correction, and atmospheric delay parameters. These data are used to

More information

SUP500F8. Low-Power High-Performance Low-Cost 167 Channel GPS Smart Antenna Module. Features. Applications

SUP500F8. Low-Power High-Performance Low-Cost 167 Channel GPS Smart Antenna Module. Features. Applications SUP500F8 Features 167 Channel GPS L1 C/A Code Perform 16 million time-frequency hypothesis testing per second Open sky hot start 1 sec Open sky cold start 29 sec Cold start sensitivity -148dBm Signal detection

More information

NR402 GIS Applications in Natural Resources

NR402 GIS Applications in Natural Resources NR402 GIS Applications in Natural Resources Lesson 5 GPS/GIS integration Global Positioning System (GPS)..a global navigation system that everyone can use What is GPS? How does it work? How accurate is

More information

Global Positioning System (GPS) Positioning Errors During Ionospheric Scintillation Event. Keywords: GPS; scintillation; positioning error

Global Positioning System (GPS) Positioning Errors During Ionospheric Scintillation Event. Keywords: GPS; scintillation; positioning error Jurnal Teknologi Full paper Global Positioning System (GPS) Positioning Errors During Ionospheric Scintillation Event Y. H. Ho a*, S. Abdullah b, M. H. Mokhtar b a Faculty of Electronic and Computer Engineering,

More information

Lecture # 7 Coordinate systems and georeferencing

Lecture # 7 Coordinate systems and georeferencing Lecture # 7 Coordinate systems and georeferencing Coordinate Systems Coordinate reference on a plane Coordinate reference on a sphere Coordinate reference on a plane Coordinates are a convenient way of

More information

Data acquisition and integration 3.

Data acquisition and integration 3. University of West Hungary, Faculty of Geoinformatics Bányai László Data acquisition and integration 3. module DAI3 Global Navigation Satellite System SZÉKESFEHÉRVÁR 2010 The right to this intellectual

More information

Introduction. Global Positioning System. GPS - Intro. Space Segment. GPS - Intro. Space Segment - Contd..

Introduction. Global Positioning System. GPS - Intro. Space Segment. GPS - Intro. Space Segment - Contd.. Introduction Global Positioning System Prof. D. Nagesh Kumar Dept. of Civil Engg., IISc, Bangalore 560 012, India URL: http://www.civil.iisc.ernet.in/~nagesh GPS is funded and controlled by U. S. Department

More information

RECOMMENDATION ITU-R M *

RECOMMENDATION ITU-R M * Rec. ITU-R M.823-3 1 RECOMMENDATION ITU-R M.823-3 * Technical characteristics of differential transmissions for global navigation satellite systems from maritime radio beacons in the frequency band 283.5-315

More information

Problem Areas of DGPS

Problem Areas of DGPS DYNAMIC POSITIONING CONFERENCE October 13 14, 1998 SENSORS Problem Areas of DGPS R. H. Prothero & G. McKenzie Racal NCS Inc. (Houston) Table of Contents 1.0 ABSTRACT... 2 2.0 A TYPICAL DGPS CONFIGURATION...

More information

Satellite Navigation Principle and performance of GPS receivers

Satellite Navigation Principle and performance of GPS receivers Satellite Navigation Principle and performance of GPS receivers AE4E08 GPS Block IIF satellite Boeing North America Christian Tiberius Course 2010 2011, lecture 3 Today s topics Introduction basic idea

More information

Introduction to the Global Positioning System

Introduction to the Global Positioning System GPS for ICS - 2003 Introduction to the Global Positioning System Pre-Work Pre-Work Objectives Describe at least three sources of GPS signal error, and ways to mitigate or reduce those errors. Identify

More information

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON

ESTIMATION OF IONOSPHERIC DELAY FOR SINGLE AND DUAL FREQUENCY GPS RECEIVERS: A COMPARISON ESTMATON OF ONOSPHERC DELAY FOR SNGLE AND DUAL FREQUENCY GPS RECEVERS: A COMPARSON K. Durga Rao, Dr. V B S Srilatha ndira Dutt Dept. of ECE, GTAM UNVERSTY Abstract: Global Positioning System is the emerging

More information

MOBILE COMPUTING 1/28/18. Location, Location, Location. Overview. CSE 40814/60814 Spring 2018

MOBILE COMPUTING 1/28/18. Location, Location, Location. Overview. CSE 40814/60814 Spring 2018 MOBILE COMPUTING CSE 40814/60814 Spring 018 Location, Location, Location Location information adds context to activity: location of sensed events in the physical world location-aware services location

More information

2 INTRODUCTION TO GNSS REFLECTOMERY

2 INTRODUCTION TO GNSS REFLECTOMERY 2 INTRODUCTION TO GNSS REFLECTOMERY 2.1 Introduction The use of Global Navigation Satellite Systems (GNSS) signals reflected by the sea surface for altimetry applications was first suggested by Martín-Neira

More information

GPS Module AGP3363. Product Datasheet & Design Guide <V1.0>

GPS Module AGP3363. Product Datasheet & Design Guide <V1.0> GPS Module AGP3363 Product Datasheet & Design Guide AMOD Technology Co.,LTD Subject to changes in technology, design and availability URL: http://www.amod.com.tw Add. 8F., No. 46, Lane 10, Jihu

More information

Introduction to NAVSTAR GPS

Introduction to NAVSTAR GPS Introduction to NAVSTAR GPS Charlie Leonard, 1999 (revised 2001, 2002) The History of GPS Feasibility studies begun in 1960 s. Pentagon appropriates funding in 1973. First satellite launched in 1978. System

More information

Global Positioning Systems - GPS

Global Positioning Systems - GPS Global Positioning Systems - GPS GPS Why? What is it? How does it work? Differential GPS How can it help me? GPS Why?? Where am I? How do I get there? Where are you, and how do I get to You? WHO CARES???

More information

Global Positioning Systems -GPS

Global Positioning Systems -GPS Global Positioning Systems -GPS GPS Why? What is it? How does it work? Differential GPS How can it help me? GPS Why?? Where am I? How do I get there? Where are you, and how do I get to You? WHO CARES???

More information

EM-401. GPS ENGINE BOARD with Active Antenna PRODUCT GUIDE. Globalsat Technology Corporation (Taiwan)

EM-401. GPS ENGINE BOARD with Active Antenna PRODUCT GUIDE. Globalsat Technology Corporation (Taiwan) EM-401 GPS ENGINE BOARD with Active Antenna PRODUCT GUIDE Globalsat Technology Corporation (Taiwan) www.globalsat.com.tw USGlobalSat, Inc. (USA) www.usglobalsat.com Page 1 of 1 EM-401 GPS BOARD with Active

More information

GPS POSITIONING GUIDE

GPS POSITIONING GUIDE GPS POSITIONING GUIDE (July 1993) Third printing July 1995 This product is available from: Natural Resources Canada* Geomatics Canada Geodetic Survey Division Information Services 615 Booth Street Ottawa,

More information

Mitigate Effects of Multipath Interference at GPS Using Separate Antennas

Mitigate Effects of Multipath Interference at GPS Using Separate Antennas Mitigate Effects of Multipath Interference at GPS Using Separate Antennas Younis H. Karim AlJewari #1, R. Badlishah Ahmed *2, Ali Amer Ahmed #3 # School of Computer and Communication Engineering, Universiti

More information

Sources of Error in Satellite Navigation Positioning

Sources of Error in Satellite Navigation Positioning http://www.transnav.eu the International Journal on Marine Navigation and Safety of Sea Transportation Volume 11 Number 3 September 2017 DOI: 10.12716/1001.11.03.04 Sources of Error in Satellite Navigation

More information

The Global Positioning System

The Global Positioning System The Global Positioning System Principles of GPS positioning GPS signal and observables Errors and corrections Processing GPS data GPS measurement strategies Precision and accuracy E. Calais Purdue University

More information

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt

METIS Second Master Training & Seminar. Augmentation Systems Available in Egypt METIS Second Master Training & Seminar Augmentation Systems Available in Egypt By Eng. Ramadan Salem M. Sc. Surveying and Geodesy Email: ramadan_salem@link.net Page 1 Augmentation Systems Available in

More information

ANTARIS GPS Evaluation Kit

ANTARIS GPS Evaluation Kit u-blox AG Zürcherstrasse 68 8800 Thalwil Switzerland www.u-blox.com Phone +41 1722 7444 Fax +41 1722 7447 info@u-blox.com ANTARIS User s Guide Abstract This document describes the content and use of the

More information

Channel Modeling ETIN10. Wireless Positioning

Channel Modeling ETIN10. Wireless Positioning Channel Modeling ETIN10 Lecture no: 10 Wireless Positioning Fredrik Tufvesson Department of Electrical and Information Technology 2014-03-03 Fredrik Tufvesson - ETIN10 1 Overview Motivation: why wireless

More information

GPS Technical Overview N5TWP NOV08. How Can GPS Mislead

GPS Technical Overview N5TWP NOV08. How Can GPS Mislead GPS Technical Overview How Can GPS Mislead 1 Objectives Components of GPS Satellite Acquisition Process Position Determination How can GPS Mislead 2 Components of GPS Control Segment Series of monitoring

More information

Lecture 04. Elements of Global Positioning Systems

Lecture 04. Elements of Global Positioning Systems Lecture 04 Elements of Global Positioning Systems Elements of GPS: During the last lecture class we talked about Global Positioning Systems and its applications. With so many innumerable applications of

More information

RESOLUTION MSC.233(82) (adopted on 5 December 2006) ADOPTION OF THE PERFORMANCE STANDARDS FOR SHIPBORNE GALILEO RECEIVER EQUIPMENT

RESOLUTION MSC.233(82) (adopted on 5 December 2006) ADOPTION OF THE PERFORMANCE STANDARDS FOR SHIPBORNE GALILEO RECEIVER EQUIPMENT MSC 82/24/Add.2 RESOLUTION MSC.233(82) THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) of the Convention on the International Maritime Organization concerning the functions of the Committee, RECALLING

More information

Fundamentals of Global Positioning System Receivers

Fundamentals of Global Positioning System Receivers Fundamentals of Global Positioning System Receivers A Software Approach SECOND EDITION JAMES BAO-YEN TSUI A JOHN WILEY & SONS, INC., PUBLICATION Fundamentals of Global Positioning System Receivers Fundamentals

More information

EM-406 GPS RECEIVER ENGINE BOARD PRODUCT GUIDE

EM-406 GPS RECEIVER ENGINE BOARD PRODUCT GUIDE EM-406 GPS RECEIVER ENGINE BOARD PRODUCT GUIDE GlobalSat Technology Corporation 16, No.186,Chien 1 Road, 235Chung Ho City,Taipei Hsien, Taiwan,R.O.C. www.globalsat.com.tw USGlobalSat, Inc. (USA Sales)

More information

GPS Basics. Introduction to GPS (Global Positioning System) Version 1.0 English

GPS Basics. Introduction to GPS (Global Positioning System) Version 1.0 English 20 30 40 50 GPS Basics Introduction to GPS (Global Positioning System) Version 1.0 English Contents Preface... 4 1. What is GPS and what does it do?... 5 2. System Overview... 6 2.1 The Space Segment...

More information

GLOBAL POSITIONING SYSTEMS

GLOBAL POSITIONING SYSTEMS GLOBAL POSITIONING SYSTEMS GPS & GIS Fall 2017 Global Positioning Systems GPS is a general term for the navigation system consisting of 24-32 satellites orbiting the Earth, broadcasting data that allows

More information

NMEA2000- Par PGN. Mandatory Request, Command, or Acknowledge Group Function Receive/Transmit PGN's

NMEA2000- Par PGN. Mandatory Request, Command, or Acknowledge Group Function Receive/Transmit PGN's PGN Number Category Notes - Datum Local geodetic datum and datum offsets from a reference datum. T The Request / Command / Acknowledge Group type of 126208 - NMEA - Request function is defined by first

More information

GNSS 101 Bringing It Down To Earth

GNSS 101 Bringing It Down To Earth GNSS 101 Bringing It Down To Earth Steve Richter Frontier Precision, Inc. UTM County Coordinates NGVD 29 State Plane Datums Scale Factors Projections Session Agenda GNSS History & Basic Theory Coordinate

More information

2. GPS and GLONASS Basic Facts

2. GPS and GLONASS Basic Facts 2. GPS and GLONASS Basic Facts In 1973 the U.S. Department of Defense decided to establish, develop, test, acquire, and deploy a spaceborne Global Positioning System (GPS). The result of this decision

More information

An Introduction to GPS

An Introduction to GPS An Introduction to GPS You are here The GPS system: what is GPS Principles of GPS: how does it work Processing of GPS: getting precise results Yellowstone deformation: an example What is GPS? System to

More information

Localization. of mobile devices. Seminar: Mobile Computing. IFW C42 Tuesday, 29th May 2001 Roger Zimmermann

Localization. of mobile devices. Seminar: Mobile Computing. IFW C42 Tuesday, 29th May 2001 Roger Zimmermann Localization of mobile devices Seminar: Mobile Computing IFW C42 Tuesday, 29th May 2001 Roger Zimmermann Overview Introduction Why Technologies Absolute Positioning Relative Positioning Selected Systems

More information

Fundamentals of Global Positioning System Receivers

Fundamentals of Global Positioning System Receivers Fundamentals of Global Positioning System Receivers Fundamentals of Global Positioning System Receivers: A Software Approach James Bao-Yen Tsui Copyright 2000 John Wiley & Sons, Inc. Print ISBN 0-471-38154-3

More information

Math 215 Project 1 (25 pts) : Using Linear Algebra to solve GPS problem

Math 215 Project 1 (25 pts) : Using Linear Algebra to solve GPS problem Due 11:55pm Fri. Sept. 28 NAME(S): Math 215 Project 1 (25 pts) : Using Linear Algebra to solve GPS problem 1 Introduction The age old question, Where in the world am I? can easily be solved nowadays by

More information

Appendix D Brief GPS Overview

Appendix D Brief GPS Overview Appendix D Brief GPS Overview Global Positioning System (GPS) Theory What is GPS? The Global Positioning System (GPS) is a satellite-based navigation system, providing position information, accurate to

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

Entity Tracking and Surveillance using the Modified Biometric System, GPS-3

Entity Tracking and Surveillance using the Modified Biometric System, GPS-3 Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 9 (2013), pp. 1115-1120 Research India Publications http://www.ripublication.com/aeee.htm Entity Tracking and Surveillance

More information

GPS Engine Board FGPMMOSL3

GPS Engine Board FGPMMOSL3 GPS Engine Board with MTK Chipset FGPMMOSL3 The document is the exclusive property of and should not be distributed, reproduced, or any other format without prior Copyright 2007 All right reserved. 1 History

More information

GT-720F (Flash version) Fast Acquisition Enhanced Sensitivity 65 Channel GPS Sensor Module

GT-720F (Flash version) Fast Acquisition Enhanced Sensitivity 65 Channel GPS Sensor Module GT-720F (Flash version) Fast Acquisition Enhanced Sensitivity 65 Channel GPS Sensor Module The GT-720F is a compact all-in-one GPS module solution intended for a broad range of Original Equipment Manufacturer

More information

GNSS & Coordinate Systems

GNSS & Coordinate Systems GNSS & Coordinate Systems Matthew McAdam, Marcelo Santos University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, NB May 29, 2012 Santos, 2004 msantos@unb.ca 1 GNSS GNSS

More information

GPS SMART ANTENNA (GWG4287SX)

GPS SMART ANTENNA (GWG4287SX) GPS SMART ANTENNA (GWG4287SX) SiRFSTARIII /LPx Specifications are subject to change without notice KOREA ELECTRIC TERMINAL CO., LTD. All right reserved http://www.ket.com 1. Introduction 1.1 Over view

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9 Satellite Communications Chapter 9 Satellite-Related Terms Earth Stations antenna systems on or near earth Uplink transmission from an earth station to a satellite Downlink transmission from a satellite

More information

SPS Gold Code Generation and Implementation for IRNSS User Receiver

SPS Gold Code Generation and Implementation for IRNSS User Receiver RESEARCH ARTICLE OPEN ACCESS SPS Gold Code Generation and Implementation for IRNSS User Receiver Shachi Varku 1, Swetha A 2, Sharanya S Konandur 3, Dileep D 4, Aklpita L Kulkarni 5 1,2,3,5 (Department

More information

Radionavigation Systems

Radionavigation Systems Radionavigation Systems Börje Forssell 1 ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xiii Part I: Terrestrial Systems 1 1 The f undamentais of terrestrial navigation 3 1.1 The shape of

More information

CH GPS/GLONASS/GALILEO/SBAS Signal Simulator. General specification Version 0.2 Eng. Preliminary

CH GPS/GLONASS/GALILEO/SBAS Signal Simulator. General specification Version 0.2 Eng. Preliminary CH-380 GPS/GLONASS/GALILEO/SBAS Signal Simulator General specification Version 0.2 Eng Preliminary Phone: +7 495 665 648 Fax: +7 495 665 649 navis@navis.ru NAVIS-UKRAINE Mazura str. 4 Smela, Cherkassy

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access 4.9 Async. CDMA: Gold codes and GPS 1 Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 Asynchronous

More information

GPS Engine Board USB Interface

GPS Engine Board USB Interface GPS Engine Board USB Interface Specification DGM-U2525B Page 1 of 14 1. Introduction 1.1. Overview The DGM-U2525B is a high sensitivity ultra low power consumption cost efficient, compact size GPS engine

More information

What is GPS? GPS Position Accuracy. GPS Applications. What is a GPS. How does GPS work? GPS Segments

What is GPS? GPS Position Accuracy. GPS Applications. What is a GPS. How does GPS work? GPS Segments What is GPS? What is a GPS How does GPS work? GPS Segments GPS Position Accuracy GPS Applications 1 What is GPS? The Global Positioning System (GPS) is a precise worldwide radio-navigation system, and

More information

GPS for. Land Surveyors. Jan Van Sickle. Fourth Edition. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, an Informa business

GPS for. Land Surveyors. Jan Van Sickle. Fourth Edition. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, an Informa business GPS for Land Surveyors Fourth Edition Jan Van Sickle CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an Informa business Contents Preface

More information

What is it? History. Other systems. How does it work? Trilateration GEOG 201 4/28/2010. Instructor: Pesses 1. {06} The Global Positioning System

What is it? History. Other systems. How does it work? Trilateration GEOG 201 4/28/2010. Instructor: Pesses 1. {06} The Global Positioning System What is it? {06} The Global Positioning System G.P.S. = Global Positioning System Different from G.I.S. (Geographic Information Systems) Map Interpretation & GPS Spring 2010 M. Pesses History Conceived

More information

GPS Error and Biases

GPS Error and Biases Component-I(A) - Personal Details Role Name Affiliation Principal Investigator Prof.MasoodAhsanSiddiqui Department of Geography, JamiaMilliaIslamia, New Delhi Paper Coordinator, if any Dr. Mahaveer Punia

More information

36. Global Positioning System

36. Global Positioning System 36. Introduction to the Global Positioning System (GPS) Why do we need GPS? Position: a basic need safe sea travel, crowed skies, resource management, legal questions Positioning: a challenging job local

More information

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi

Principal Investigator Co-Principal Investigator Co-Principal Investigator Prof. Talat Ahmad Vice-Chancellor Jamia Millia Islamia Delhi Subject Paper No and Title Module No and Title Module Tag Geology Remote Sensing and GIS Concepts of Global Navigation Satellite RS & GIS XXXIII Principal Investigator Co-Principal Investigator Co-Principal

More information

UniTraQ OEM Module. GT-310F (Flash version) Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module. Features

UniTraQ OEM Module. GT-310F (Flash version) Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module. Features UniTraQ OEM Module Features 12 parallel channel GPS receiver 4000 simultaneous time-frequency search bins SBAS (WAAS, EGNOS) support Programmable Flash version -140dBm acquisition sensitivity -150dBm tracking

More information

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003.

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. MODERNIZATION PLAN OF GPS IN 21 st CENTURY AND ITS IMPACTS ON SURVEYING APPLICATIONS G. M. Dawod Survey Research

More information

Technical Manual. Flash version

Technical Manual. Flash version Series Flash version Model: GT-525 Technical Manual All right reserved, 2009 2F., No.136, Ziqiang S. Rd., Zhubei City, Hsinchu County 30264, Taiwan (R.O.C.) TEL:886-3-6578491 FAX:886-3-6578492 MADE IN

More information

Table of Contents. Frequently Used Abbreviation... xvii

Table of Contents. Frequently Used Abbreviation... xvii GPS Satellite Surveying, 2 nd Edition Alfred Leick Department of Surveying Engineering, University of Maine John Wiley & Sons, Inc. 1995 (Navtech order #1028) Table of Contents Preface... xiii Frequently

More information