Fundamentals of Signals, DSP and Applica7ons in m- Health. By Deepta Rajan FSE Oct 10, 2013.

Size: px
Start display at page:

Download "Fundamentals of Signals, DSP and Applica7ons in m- Health. By Deepta Rajan FSE Oct 10, 2013."

Transcription

1 Fundamentals of Signals, DSP and Applica7ons in m- Health By Deepta Rajan FSE Oct 10, 2013.

2 Outline Signals What are they? Fourier Transform - T/F domain Challenges in Signal Processing The AJDSP App Types of Signals Sensor Signals audio, accelerometer, video Physiological Signals ECG, PPG, GSR Mobile Health Monitoring M- Health apps using AJDSP

3 Signals What are they? Any informa7on is a signal. In the real- word, a signal is any quan7ty that provides informa7on and varies over 7me or space. Examples: speech signal, images, video, weather in Tempe, engine noise, ECG, voltage, current, radio waves, music, moving cars etc! Image source - hyp://en.wikipedia.org/wiki/file:signal_processing_system.png

4 Defini7ons Time period - Time dura7on of one cycle or the number of seconds per cycle. Ex: Time between successive heart beats. Frequency Number of cycles per second. Ex: Number of heart beats per second. Amplitude Magnitude of the pulse. Ex: In a sound wave, it s the magnitude of air pressure. Phase Change in ini7al sinusoidal angle. Sine and Cosine func7ons in- phase or out- of- phase? Bandwidth In a set of con7nuous frequencies, it is the difference between the upper and lower frequency.

5 Sinusoidal Signals sin(! 0 t)=sin(2 f 0 t)=sin 2 t T 0! 0 =2 f 0 =2 t, f 0 = 1 T 0 T 0 Frequency Time Period T 0 0 t EEE Spring 2013 Mahesh K. Banavar II- 5

6 Sinusoidal Signals (2) cos(! 0 t) = cos(2 f 0 t) = cos 2 t T 0! 0 =2 f 0 =2 t T 0, f 0 = 1 T 0 T 0 0 t EEE Spring 2013 Mahesh K. Banavar II- 6

7 Frequencies x 1 (t) =sin(! 1 t) T 1 x 2 (t) =sin(! 2 t) T 2 x 3 (t) =sin(! 3 t) T 3! 1 <! 2 <! 3 T 1 >T 2 >T 3 EEE Spring 2013 Mahesh K. Banavar II- 7

8 Unit Step Func7on Con7nuous- 7me Unit Step Func7on u(t) = ( 1 t 0, 0 else u(t) 1... Defined along a con7nuum of 7me. It s a set of real numbers. Also referred to as Analog Signals. 0 t EEE Spring 2013 Mahesh K. Banavar II- 8

9 Unit Step Func7on Discrete- 7me Unit Step Func7on u(n) = ( 1 n 0, 0 else 1 u(n) 0... n It s a set of integers. Also referred to as Digital Signals. EEE Spring 2013 Mahesh K. Banavar II- 9

10 Sampling and Quan7za7on (a) Sampling Conversion from con7nuous- 7me to discrete- 7me by measuring signal values every few seconds. (a) (b) (b) Quan7za7on Mapping the points on the con7nuous signal to some values. A way of rounding off. Ex: Going from Analog to Digital signal.

11 Time domain and Frequency Domain Time Domain Frequency Domain Amplitude vs Time Amplitude vs Frequency Observa7on: Slowly 7me- varying signals have low- frequency content. Signals with abrupt changes in amplitude have high frequency components. The frequency content of a signal can be es7mated using Fourier methods. EEE Spring 2013 Mahesh K. Banavar I- 11

12 Example Speech signals 1.0 Time domain speech segment TAPE TIME: fundamental frequency Formant Structure Amplitude 0.0 Magnitude (db) Time (ms) Frequency (KHz) 1.0 Time domain speech segment 40 TAPE TIME: Amplitude 0.0 Magnitude (db) Time (ms) Frequency (KHz) EEE Spring 2013 Mahesh K. Banavar I- 12

13 Prototype Filters Low pass filter High Pass filter H LP (!) H HP (!)! c! c!! c! c! Band- pass filter Band- stop filter H BP (!) H BS (!)! c2! c1! c1! c2! c2! c1! c1! c2!! EEE Spring 2013 Mahesh K. Banavar XIV- 13

14 Signal Processing Challenges Denoising Source separa7on Speech recogni7on Peak detec7on Demodula7on Face recogni7on Auto tuning And many more! J

15 Android- Java- DSP (AJDSP) How to use? Watch quick demo hyp:// v=e2xpehprzs0&list=plde6647e29748aade Signal processing modules designed as blocks. Connect blocks to set up simula7ons in the workspace. Topics: filter design Convolu7on mul7rate signal processing the FFT discrete wavelet transform.

16 Sensor Signals Audio Signal Video Signal Images are 2D signals Accelerometer Signal

17 Mobile Health Monitoring Using mobile devices to es7mate physiological parameters by monitoring the corresponding physiological signals. Several apps available in the market. Examples: Heart Rate Blood Pressure Calorie Counter Pedometer Respiratory Rate Oxygen Satura7on in the blood

18 m- Health Applica7ons Speech Denoising Heart Rate Es7ma7on Oxygen Satura7on (SpO2) Step Counter

19 Speech Denoising

20 ECG Signals Image source: F. T. Sun, C. Kuo, H. T. Cheng, S. Buthpi7ya, P. Collins and M. Griss, Ac7vity- Aware Mental Stress Detec7on Using Physiological Sensors, In Mobile Compu7ng, Applica7ons, and Services, pp , Springer Berlin Heidelberg, 2012.

21 ECG Signals

22 Photoplethysmogram (PPG) Principle: the absorp7on of light by a medium causes the incident light intensity to drop exponen7ally, and the amount of absorp7on is related to the wavelength of light. The PPG corresponds to the change in blood volume with 7me. The PPG typically comprises of two components, a pulsa7le component and a constant component obtained from the measurement of changes in light absorp7on by the skin.

23 HbO2 and Hb Absorp7on Spectra

24 Heart Rate Parameter Es7ma7on Oxygen Satura7on (SpO2)

25 Accelerometer

26

27 References filter which discards high- frequency events while retaining the general shape of the signal was desired. The energy filter first considers the total energy inside the window. To find this quan7ty, the energy of each of the bins (except the DC) is summed. Again, by Parseval s theorem, this sum is equivalent to the total energy of the window less its mean. The total energy is mul7plied by a parameter to the filter, the rela7ve energy threshold, to ayain a threshold energy Why are we not elimina7ng the DC value?

28 SHIMMER Applica>ons Kinema7c - Accelerometers, gyroscopes and magnetometers are included. Physiological - Galvanic Skin Response (GSR), Electrocardiogram (ECG), and Electromyography (EMG) sensors. Ambient sensing - Comprises of temperature and light sensors. AJDSP interfaces with the SHIMMER Accelerometer, ECG, and GSR through Bluetooth. Examples: Energy expenditure es7ma7on in Rheumatoid Arthri7s pa7ents, ECG compression, stress detec7on, mo7on analysis of pa7ents with Parkinson s disease, stroke and epilepsy.

29 Publica>ons Rajan, D. Ranganath, S, Banavar, M. Spanias,A. Health Monitoring Laboratories by interfacing Physiological Sensors to Mobile Android Devices IEEE Fron(ers in Educa(on Conference, Rajan, D. Kalyanasundaram, G. Hu, S. Banavar, M. Spanias,A. Development of mobile sensing apps for DSP applica7ons IEEE DSP Workshop, Ranganath, S. Thiagarajan, J.J.,Ramamurthy, K.N., Hu,S. Banavar, M. Spanias, A. Work in progress: Performing signal analysis laboratories using Android devices. IEEE Fron(ers in Educa(on Conference, Ranganath, S. Thiagarajan, J.J.,Ramamurthy, K.N., Hu,S. Banavar, M. Spanias, A. Undergraduate Signal Processing Laboratories for the Android Opera7ng System. ASEE, Ranganath, S. Rajan, D. Thiagarajan J.J.,Ramamurthy, K.N., Hu,S. Banavar, M. Spanias,A Undergraduate Signal Simula7ons and Anima7ons for the Android Opera7ng System. Journal Ar7cle (in prepara7on).

Sensor, Signal and Information Processing (SenSIP) Center and NSF Industry Consortium (I/UCRC)

Sensor, Signal and Information Processing (SenSIP) Center and NSF Industry Consortium (I/UCRC) Sensor, Signal and Information Processing (SenSIP) Center and NSF Industry Consortium (I/UCRC) School of Electrical, Computer and Energy Engineering Ira A. Fulton Schools of Engineering AJDSP interfaces

More information

JDSP in Education. NSF Phase 3 J-DSP Workshop, UCy Presenter: Mahesh K. Banavar

JDSP in Education. NSF Phase 3 J-DSP Workshop, UCy Presenter: Mahesh K. Banavar JDSP in Education NSF Phase 3 Workshop, UCy Presenter: Mahesh K. Banavar Collaborators: Andreas Spanias, Sai Zhang, Girish Kalyanasumdaram, Deepta Rajan, Paul Curtis, Vitor Weber SenSIP Center, School

More information

Designing m-health Modules with Sensor Interfaces for DSP Education. Deepta Rajan

Designing m-health Modules with Sensor Interfaces for DSP Education. Deepta Rajan Designing m-health Modules with Sensor Interfaces for DSP Education by Deepta Rajan A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of Science Approved November 2013

More information

Next Generation Biometric Sensing in Wearable Devices

Next Generation Biometric Sensing in Wearable Devices Next Generation Biometric Sensing in Wearable Devices C O L I N T O M P K I N S D I R E C T O R O F A P P L I C AT I O N S E N G I N E E R I N G S I L I C O N L A B S C O L I N.T O M P K I N S @ S I L

More information

Rhythm Analysis in Music

Rhythm Analysis in Music Rhythm Analysis in Music EECS 352: Machine Percep;on of Music & Audio Zafar Rafii, Winter 24 Some Defini;ons Rhythm movement marked by the regulated succession of strong and weak elements, or of opposite

More information

Introduction to Digital Signal Processing (Discrete-time Signal Processing)

Introduction to Digital Signal Processing (Discrete-time Signal Processing) Introduction to Digital Signal Processing (Discrete-time Signal Processing) Prof. Chu-Song Chen Research Center for Info. Tech. Innovation, Academia Sinica, Taiwan Dept. CSIE & GINM National Taiwan University

More information

Biosignal Analysis Biosignal Processing Methods. Medical Informatics WS 2007/2008

Biosignal Analysis Biosignal Processing Methods. Medical Informatics WS 2007/2008 Biosignal Analysis Biosignal Processing Methods Medical Informatics WS 2007/2008 JH van Bemmel, MA Musen: Handbook of medical informatics, Springer 1997 Biosignal Analysis 1 Introduction Fig. 8.1: The

More information

Fundamentals of neuronal oscillations and synchrony

Fundamentals of neuronal oscillations and synchrony Fundamentals of neuronal oscillations and synchrony Jan-Mathijs Schoffelen Donders Ins*tute, Radboud University, Nijmegen, NL Evoked ac6vity event repeated over many trials + averaged Evoked ac6vity event

More information

BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing

BME 3113, Dept. of BME Lecture on Introduction to Biosignal Processing What is a signal? A signal is a varying quantity whose value can be measured and which conveys information. A signal can be simply defined as a function that conveys information. Signals are represented

More information

Biomedical Instrumentation B2. Dealing with noise

Biomedical Instrumentation B2. Dealing with noise Biomedical Instrumentation B2. Dealing with noise B18/BME2 Dr Gari Clifford Noise & artifact in biomedical signals Ambient / power line interference: 50 ±0.2 Hz mains noise (or 60 Hz in many data sets)

More information

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1 E40M Sound and Music M. Horowitz, J. Plummer, R. Howe 1 LED Cube Project #3 In the next several lectures, we ll study Concepts Coding Light Sound Transforms/equalizers Devices LEDs Analog to digital converters

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

Chapter 3 Data Transmission COSC 3213 Summer 2003

Chapter 3 Data Transmission COSC 3213 Summer 2003 Chapter 3 Data Transmission COSC 3213 Summer 2003 Courtesy of Prof. Amir Asif Definitions 1. Recall that the lowest layer in OSI is the physical layer. The physical layer deals with the transfer of raw

More information

BIOMEDICAL SIGNAL PROCESSING (BMSP) TOOLS

BIOMEDICAL SIGNAL PROCESSING (BMSP) TOOLS BIOMEDICAL SIGNAL PROCESSING (BMSP) TOOLS A Guide that will help you to perform various BMSP functions, for a course in Digital Signal Processing. Pre requisite: Basic knowledge of BMSP tools : Introduction

More information

Digital Signal Processing +

Digital Signal Processing + Digital Signal Processing + Nikil Dutt UC Irvine ICS 212 Winter 2005 + Material adapted from Tony Givargis & Rajesh Gupta Templates from Prabhat Mishra ICS212 WQ05 (Dutt) DSP 1 Introduction Any interesting

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

ENGR 210 Lab 12: Sampling and Aliasing

ENGR 210 Lab 12: Sampling and Aliasing ENGR 21 Lab 12: Sampling and Aliasing In the previous lab you examined how A/D converters actually work. In this lab we will consider some of the consequences of how fast you sample and of the signal processing

More information

Linear Time-Invariant Systems

Linear Time-Invariant Systems Linear Time-Invariant Systems Modules: Wideband True RMS Meter, Audio Oscillator, Utilities, Digital Utilities, Twin Pulse Generator, Tuneable LPF, 100-kHz Channel Filters, Phase Shifter, Quadrature Phase

More information

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1

E40M Sound and Music. M. Horowitz, J. Plummer, R. Howe 1 E40M Sound and Music M. Horowitz, J. Plummer, R. Howe 1 LED Cube Project #3 In the next several lectures, we ll study Concepts Coding Light Sound Transforms/equalizers Devices LEDs Analog to digital converters

More information

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual.

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual. Lab. #1 Signal Processing & Spectral Analysis Name: Date: Section / Group: NOTE: To help you correctly answer many of the following questions, it may be useful to actually run the cases outlined in the

More information

Data Acquisition Systems. Signal DAQ System The Answer?

Data Acquisition Systems. Signal DAQ System The Answer? Outline Analysis of Waveforms and Transforms How many Samples to Take Aliasing Negative Spectrum Frequency Resolution Synchronizing Sampling Non-repetitive Waveforms Picket Fencing A Sampled Data System

More information

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem Introduction to Wavelet Transform Chapter 7 Instructor: Hossein Pourghassem Introduction Most of the signals in practice, are TIME-DOMAIN signals in their raw format. It means that measured signal is a

More information

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/17s/

More information

Unraveling Zero Crossing and Full Spectrum What does it all mean?

Unraveling Zero Crossing and Full Spectrum What does it all mean? Unraveling Zero Crossing and Full Spectrum What does it all mean? Ian Agranat Wildlife Acoustics, Inc. 2 nd Symposium on Bat Echolocation Research, Tucson AZ March 29, 2017 Let s start with a sound wave

More information

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping Structure of Speech Physical acoustics Time-domain representation Frequency domain representation Sound shaping Speech acoustics Source-Filter Theory Speech Source characteristics Speech Filter characteristics

More information

Analog-Digital Interface

Analog-Digital Interface Analog-Digital Interface Tuesday 24 November 15 Summary Previous Class Dependability Today: Redundancy Error Correcting Codes Analog-Digital Interface Converters, Sensors / Actuators Sampling DSP Frequency

More information

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. Audio DSP basics. Paris Smaragdis. paris.cs.illinois.

URBANA-CHAMPAIGN. CS 498PS Audio Computing Lab. Audio DSP basics. Paris Smaragdis. paris.cs.illinois. UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Audio DSP basics Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Overview Basics of digital audio Signal representations

More information

Wireless Sensor Networks. EP2980

Wireless Sensor Networks. EP2980 Wireless Sensor Networks EP2980 Jonas.Wahslen@sth.kth.se Sensors What to sense? How to sense/measure? Available sensors Technology Medical ECG Pulsoximeter Applications Smart Grid Industrial Automation

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Direct link. Point-to-point. Terminology (1) Chapter 3 Data Transmission Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Spring 2012 03-1 Spring 2012 03-2 Terminology

More information

Outline. J-DSP Overview. Objectives and Motivation. by Andreas Spanias Arizona State University

Outline. J-DSP Overview. Objectives and Motivation. by Andreas Spanias Arizona State University Outline JAVA-DSP () A DSP SOFTWARE TOOL FOR ON-LINE SIMULATIONS AND COMPUTER LABORATORIES by Andreas Spanias Arizona State University Sponsored by NSF-DUE-CCLI-080975-2000-04 New NSF Program Award Starts

More information

Signal Characteristics

Signal Characteristics Data Transmission The successful transmission of data depends upon two factors:» The quality of the transmission signal» The characteristics of the transmission medium Some type of transmission medium

More information

Biomechanical Instrumentation Considerations in Data Acquisition ÉCOLE DES SCIENCES DE L ACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS

Biomechanical Instrumentation Considerations in Data Acquisition ÉCOLE DES SCIENCES DE L ACTIVITÉ PHYSIQUE SCHOOL OF HUMAN KINETICS Biomechanical Instrumentation Considerations in Data Acquisition Data Acquisition in Biomechanics Why??? Describe and Understand a Phenomena Test a Theory Evaluate a condition/situation Data Acquisition

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. Invention of Transistors

EE105 Fall 2015 Microelectronic Devices and Circuits. Invention of Transistors EE105 Fall 2015 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Invention of Transistors - 1947 Bardeen, Shockley, and Brattain at Bell Labs Invented

More information

Qäf) Newnes f-s^j^s. Digital Signal Processing. A Practical Guide for Engineers and Scientists. by Steven W. Smith

Qäf) Newnes f-s^j^s. Digital Signal Processing. A Practical Guide for Engineers and Scientists. by Steven W. Smith Digital Signal Processing A Practical Guide for Engineers and Scientists by Steven W. Smith Qäf) Newnes f-s^j^s / *" ^"P"'" of Elsevier Amsterdam Boston Heidelberg London New York Oxford Paris San Diego

More information

Mobile and Ubiquitous Compu3ng. Wireless Signals. George Roussos.

Mobile and Ubiquitous Compu3ng. Wireless Signals. George Roussos. Mobile and Ubiquitous Compu3ng Wireless Signals George Roussos g.roussos@dcs.bbk.ac.uk Overview Signal characteris3cs Represen3ng digital informa3on with wireless Transmission and propaga3on Accessing

More information

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing

II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing Class Subject Code Subject II Year (04 Semester) EE6403 Discrete Time Systems and Signal Processing 1.CONTENT LIST: Introduction to Unit I - Signals and Systems 2. SKILLS ADDRESSED: Listening 3. OBJECTIVE

More information

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu Lecture 2: SIGNALS 1 st semester 1439-2017 1 By: Elham Sunbu OUTLINE Signals and the classification of signals Sine wave Time and frequency domains Composite signals Signal bandwidth Digital signal Signal

More information

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 13 Timbre / Tone quality I

Musical Acoustics, C. Bertulani. Musical Acoustics. Lecture 13 Timbre / Tone quality I 1 Musical Acoustics Lecture 13 Timbre / Tone quality I Waves: review 2 distance x (m) At a given time t: y = A sin(2πx/λ) A -A time t (s) At a given position x: y = A sin(2πt/t) Perfect Tuning Fork: Pure

More information

Linguistic Phonetics. Spectral Analysis

Linguistic Phonetics. Spectral Analysis 24.963 Linguistic Phonetics Spectral Analysis 4 4 Frequency (Hz) 1 Reading for next week: Liljencrants & Lindblom 1972. Assignment: Lip-rounding assignment, due 1/15. 2 Spectral analysis techniques There

More information

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels

You know about adding up waves, e.g. from two loudspeakers. AUDL 4007 Auditory Perception. Week 2½. Mathematical prelude: Adding up levels AUDL 47 Auditory Perception You know about adding up waves, e.g. from two loudspeakers Week 2½ Mathematical prelude: Adding up levels 2 But how do you get the total rms from the rms values of two signals

More information

3.2 Measuring Frequency Response Of Low-Pass Filter :

3.2 Measuring Frequency Response Of Low-Pass Filter : 2.5 Filter Band-Width : In ideal Band-Pass Filters, the band-width is the frequency range in Hz where the magnitude response is at is maximum (or the attenuation is at its minimum) and constant and equal

More information

Sound waves. septembre 2014 Audio signals and systems 1

Sound waves. septembre 2014 Audio signals and systems 1 Sound waves Sound is created by elastic vibrations or oscillations of particles in a particular medium. The vibrations are transmitted from particles to (neighbouring) particles: sound wave. Sound waves

More information

Midterm 1. Total. Name of Student on Your Left: Name of Student on Your Right: EE 20N: Structure and Interpretation of Signals and Systems

Midterm 1. Total. Name of Student on Your Left: Name of Student on Your Right: EE 20N: Structure and Interpretation of Signals and Systems EE 20N: Structure and Interpretation of Signals and Systems Midterm 1 12:40-2:00, February 19 Notes: There are five questions on this midterm. Answer each question part in the space below it, using the

More information

Time- frequency Masking

Time- frequency Masking Time- Masking EECS 352: Machine Percep=on of Music & Audio Zafar Rafii, Winter 214 1 STFT The Short- Time Fourier Transform (STFT) is a succession of local Fourier Transforms (FT) Time signal Real spectrogram

More information

Wearables for novel healthcare paradigms Nick Van Helleputte

Wearables for novel healthcare paradigms Nick Van Helleputte Wearables for novel healthcare paradigms Nick Van Helleputte R&D manager biomedical circuits & systems - imec Chronic disease management Chronic disease example: United states 117 million americans suffer

More information

Data Communication. Chapter 3 Data Transmission

Data Communication. Chapter 3 Data Transmission Data Communication Chapter 3 Data Transmission ١ Terminology (1) Transmitter Receiver Medium Guided medium e.g. twisted pair, coaxial cable, optical fiber Unguided medium e.g. air, water, vacuum ٢ Terminology

More information

Spectrum Analysis: The FFT Display

Spectrum Analysis: The FFT Display Spectrum Analysis: The FFT Display Equipment: Capstone, voltage sensor 1 Introduction It is often useful to represent a function by a series expansion, such as a Taylor series. There are other series representations

More information

FFT 1 /n octave analysis wavelet

FFT 1 /n octave analysis wavelet 06/16 For most acoustic examinations, a simple sound level analysis is insufficient, as not only the overall sound pressure level, but also the frequency-dependent distribution of the level has a significant

More information

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory

Electronics Design Laboratory Lecture #11. ECEN 2270 Electronics Design Laboratory Electronics Design Laboratory Lecture # ECEN 7 Electronics Design Laboratory Project Must rely on fully functional Lab circuits, Lab circuit is optional Can re do wireless or replace it with a different

More information

REAL-TIME BROADBAND NOISE REDUCTION

REAL-TIME BROADBAND NOISE REDUCTION REAL-TIME BROADBAND NOISE REDUCTION Robert Hoeldrich and Markus Lorber Institute of Electronic Music Graz Jakoministrasse 3-5, A-8010 Graz, Austria email: robert.hoeldrich@mhsg.ac.at Abstract A real-time

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO)

Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Experiment One: Generating Frequency Modulation (FM) Using Voltage Controlled Oscillator (VCO) Modified from original TIMS Manual experiment by Mr. Faisel Tubbal. Objectives 1) Learn about VCO and how

More information

WRIST BAND PULSE OXIMETER

WRIST BAND PULSE OXIMETER WRIST BAND PULSE OXIMETER Vinay Kadam 1, Shahrukh Shaikh 2 1,2- Department of Biomedical Engineering, D.Y. Patil School of Biotechnology and Bioinformatics, C.B.D Belapur, Navi Mumbai (India) ABSTRACT

More information

Memorial University of Newfoundland Faculty of Engineering and Applied Science. Lab Manual

Memorial University of Newfoundland Faculty of Engineering and Applied Science. Lab Manual Memorial University of Newfoundland Faculty of Engineering and Applied Science Engineering 6871 Communication Principles Lab Manual Fall 2014 Lab 1 AMPLITUDE MODULATION Purpose: 1. Learn how to use Matlab

More information

Outline. Introduction to Biosignal Processing. Overview of Signals. Measurement Systems. -Filtering -Acquisition Systems (Quantisation and Sampling)

Outline. Introduction to Biosignal Processing. Overview of Signals. Measurement Systems. -Filtering -Acquisition Systems (Quantisation and Sampling) Outline Overview of Signals Measurement Systems -Filtering -Acquisition Systems (Quantisation and Sampling) Digital Filtering Design Frequency Domain Characterisations - Fourier Analysis - Power Spectral

More information

Digital AudioAmplifiers: Methods for High-Fidelity Fully Digital Class D Systems

Digital AudioAmplifiers: Methods for High-Fidelity Fully Digital Class D Systems Digital AudioAmplifiers: Methods for High-Fidelity Fully Digital Class D Systems P. T. Krein, Director Grainger Center for Electric Machinery and Electromechanics Dept. of Electrical and Computer Engineering

More information

Dr. Salsabeel Alabbady 1

Dr. Salsabeel Alabbady 1 Dr. Salsabeel Alabbady 1 Course Informa6on Syllabus: available on elearning Teaching methods: PP Presenta6ons: available on elarning.ju.edu.jo Videos (interac6ve) Teamwork Evalua6on methods: Team project

More information

* Notebook is excluded. Features KL-720 contains nine modules, including Electrocardiogram Measurement, E lectromyogram Measurement,

* Notebook is excluded. Features KL-720 contains nine modules, including Electrocardiogram Measurement, E lectromyogram Measurement, KL-720 Biomedical Measurement System Supplied by: 011 683 4365 This equipment is intended for students to learn how to design specific measuring circuits and detect the basic physiological signals with

More information

The Calculation of grms. QUALMARK: Accelerating Product Reliability WHITE PAPER

The Calculation of grms. QUALMARK: Accelerating Product Reliability WHITE PAPER WHITE PAPER QUALMARK: Accelerating Product Reliability WWW.QUALMARK.COM 303.254.8800 by Neill Doertenbach The metric of grms is typically used to specify and compare the energy in repetitive shock vibration

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

*Notebook is excluded

*Notebook is excluded Biomedical Measurement Training System This equipment is designed for students to learn how to design specific measuring circuits and detect the basic physiological signals with practical operation. Moreover,

More information

Michael F. Toner, et. al.. "Distortion Measurement." Copyright 2000 CRC Press LLC. <

Michael F. Toner, et. al.. Distortion Measurement. Copyright 2000 CRC Press LLC. < Michael F. Toner, et. al.. "Distortion Measurement." Copyright CRC Press LLC. . Distortion Measurement Michael F. Toner Nortel Networks Gordon W. Roberts McGill University 53.1

More information

Adaptive Fingerprint Binarization by Frequency Domain Analysis

Adaptive Fingerprint Binarization by Frequency Domain Analysis Adaptive Fingerprint Binarization by Frequency Domain Analysis Josef Ström Bartůněk, Mikael Nilsson, Jörgen Nordberg, Ingvar Claesson Department of Signal Processing, School of Engineering, Blekinge Institute

More information

EE 309 Signal and Linear System Analysis

EE 309 Signal and Linear System Analysis Course Overview and Introduction Course Overview Course Web Page: Directly: mercury.pr.erau.edu/~bruders/ Canvas Required Textbook: "Engineering Signals and Systems, 2nd Edition" by Fawwaz T. Ulaby and

More information

Chapter 3. Data Transmission

Chapter 3. Data Transmission Chapter 3 Data Transmission Reading Materials Data and Computer Communications, William Stallings Terminology (1) Transmitter Receiver Medium Guided medium (e.g. twisted pair, optical fiber) Unguided medium

More information

Sound Synthesis Methods

Sound Synthesis Methods Sound Synthesis Methods Matti Vihola, mvihola@cs.tut.fi 23rd August 2001 1 Objectives The objective of sound synthesis is to create sounds that are Musically interesting Preferably realistic (sounds like

More information

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido

The Discrete Fourier Transform. Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido The Discrete Fourier Transform Claudia Feregrino-Uribe, Alicia Morales-Reyes Original material: Dr. René Cumplido CCC-INAOE Autumn 2015 The Discrete Fourier Transform Fourier analysis is a family of mathematical

More information

FX Basics. Filtering STOMPBOX DESIGN WORKSHOP. Esteban Maestre. CCRMA - Stanford University August 2013

FX Basics. Filtering STOMPBOX DESIGN WORKSHOP. Esteban Maestre. CCRMA - Stanford University August 2013 FX Basics STOMPBOX DESIGN WORKSHOP Esteban Maestre CCRMA - Stanford University August 2013 effects modify the frequency content of the audio signal, achieving boosting or weakening specific frequency bands

More information

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link.

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link. Chapter 3 Data Transmission Terminology (1) Transmitter Receiver Medium Guided medium e.g. twisted pair, optical fiber Unguided medium e.g. air, water, vacuum Corneliu Zaharia 2 Corneliu Zaharia Terminology

More information

JOURNAL OF OBJECT TECHNOLOGY

JOURNAL OF OBJECT TECHNOLOGY JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2009 Vol. 9, No. 1, January-February 2010 The Discrete Fourier Transform, Part 5: Spectrogram

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

Lab Report #10 Alex Styborski, Daniel Telesman, and Josh Kauffman Group 12 Abstract

Lab Report #10 Alex Styborski, Daniel Telesman, and Josh Kauffman Group 12 Abstract Lab Report #10 Alex Styborski, Daniel Telesman, and Josh Kauffman Group 12 Abstract During lab 10, students carried out four different experiments, each one showing the spectrum of a different wave form.

More information

WAVELETS: BEYOND COMPARISON - D. L. FUGAL

WAVELETS: BEYOND COMPARISON - D. L. FUGAL WAVELETS: BEYOND COMPARISON - D. L. FUGAL Wavelets are used extensively in Signal and Image Processing, Medicine, Finance, Radar, Sonar, Geology and many other varied fields. They are usually presented

More information

Physics 115 Lecture 13. Fourier Analysis February 22, 2018

Physics 115 Lecture 13. Fourier Analysis February 22, 2018 Physics 115 Lecture 13 Fourier Analysis February 22, 2018 1 A simple waveform: Fourier Synthesis FOURIER SYNTHESIS is the summing of simple waveforms to create complex waveforms. Musical instruments typically

More information

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer

ECEn 487 Digital Signal Processing Laboratory. Lab 3 FFT-based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT-based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed by Friday, March 14, at 3 PM or the lab will be marked

More information

Quadrature amplitude modula.on

Quadrature amplitude modula.on Quadrature amplitude modula.on message ( waveform) Today s topics concern with the and de transminer Watcharapan Suwansan.suk Sampler Quan.zer Source Modulator analog sequence symbol sequence interface

More information

System Identification & Parameter Estimation

System Identification & Parameter Estimation System Identification & Parameter Estimation Wb2301: SIPE lecture 4 Perturbation signal design Alfred C. Schouten, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE 3/9/2010 Delft University of Technology

More information

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202)

Department of Electronic Engineering NED University of Engineering & Technology. LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Department of Electronic Engineering NED University of Engineering & Technology LABORATORY WORKBOOK For the Course SIGNALS & SYSTEMS (TC-202) Instructor Name: Student Name: Roll Number: Semester: Batch:

More information

HRV spectrum bands & single peak Coherence

HRV spectrum bands & single peak Coherence HRV spectrum bands & single peak Coherence HRV Coherence was originally defined as the size of the biggest LF peak compared to the amplitude of the broad HRV spectra (VLF+LF+HF). This way of analysis assumes

More information

ON-LINE LABORATORIES FOR SPEECH AND IMAGE PROCESSING AND FOR COMMUNICATION SYSTEMS USING J-DSP

ON-LINE LABORATORIES FOR SPEECH AND IMAGE PROCESSING AND FOR COMMUNICATION SYSTEMS USING J-DSP ON-LINE LABORATORIES FOR SPEECH AND IMAGE PROCESSING AND FOR COMMUNICATION SYSTEMS USING J-DSP A. Spanias, V. Atti, Y. Ko, T. Thrasyvoulou, M.Yasin, M. Zaman, T. Duman, L. Karam, A. Papandreou, K. Tsakalis

More information

MITOCW MITRES_6-007S11lec18_300k.mp4

MITOCW MITRES_6-007S11lec18_300k.mp4 MITOCW MITRES_6-007S11lec18_300k.mp4 [MUSIC PLAYING] PROFESSOR: Last time, we began the discussion of discreet-time processing of continuous-time signals. And, as a reminder, let me review the basic notion.

More information

Chapter 1. Electronics I - Introduc1on. Electronics vs. Microelectronics. Discrete Circuits vs. Integrated Circuits. Source: B.

Chapter 1. Electronics I - Introduc1on. Electronics vs. Microelectronics. Discrete Circuits vs. Integrated Circuits. Source: B. Chapter 1 Electronics I - Introduc1on 1 Electronics vs. Microelectronics Discrete Circuits vs. Integrated Circuits Limit the component count to achieve a small board area Available resistors are in the

More information

Lab 3 FFT based Spectrum Analyzer

Lab 3 FFT based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed prior to the beginning of class on the lab book submission

More information

Data and Computer Communications Chapter 3 Data Transmission

Data and Computer Communications Chapter 3 Data Transmission Data and Computer Communications Chapter 3 Data Transmission Eighth Edition by William Stallings Transmission Terminology data transmission occurs between a transmitter & receiver via some medium guided

More information

ECEGR Lab #8: Introduction to Simulink

ECEGR Lab #8: Introduction to Simulink Page 1 ECEGR 317 - Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example,

More information

I am very pleased to teach this class again, after last year s course on electronics over the Summer Term. Based on the SOLE survey result, it is clear that the format, style and method I used worked with

More information

Lecture #2. EE 313 Linear Systems and Signals

Lecture #2. EE 313 Linear Systems and Signals Lecture #2 EE 313 Linear Systems and Signals Preview of today s lecture What is a signal and what is a system? o Define the concepts of a signal and a system o Why? This is essential for a course on Signals

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Acoustics, signals & systems for audiology. Week 4. Signals through Systems

Acoustics, signals & systems for audiology. Week 4. Signals through Systems Acoustics, signals & systems for audiology Week 4 Signals through Systems Crucial ideas Any signal can be constructed as a sum of sine waves In a linear time-invariant (LTI) system, the response to a sinusoid

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

Physical Layer: Outline

Physical Layer: Outline 18-345: Introduction to Telecommunication Networks Lectures 3: Physical Layer Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Physical Layer: Outline Digital networking Modulation Characterization

More information

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples.

Modulation. Digital Data Transmission. COMP476 Networked Computer Systems. Analog and Digital Signals. Analog and Digital Examples. Digital Data Transmission Modulation Digital data is usually considered a series of binary digits. RS-232-C transmits data as square waves. COMP476 Networked Computer Systems Analog and Digital Signals

More information

Complex Sounds. Reading: Yost Ch. 4

Complex Sounds. Reading: Yost Ch. 4 Complex Sounds Reading: Yost Ch. 4 Natural Sounds Most sounds in our everyday lives are not simple sinusoidal sounds, but are complex sounds, consisting of a sum of many sinusoids. The amplitude and frequency

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

Teaching Digital Filter Design Techniques Used in High-Fidelity Audio Applications

Teaching Digital Filter Design Techniques Used in High-Fidelity Audio Applications Teaching Digital Filter Design Techniques Used in High-Fidelity Audio Applications Venkatraman Atti, Andreas Spanias, Constantinos Panayiotou, Yu Song E-mail: [atti, spanias, costasp, yu.song] @asu.edu

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Chapter 5. Signal Analysis. 5.1 Denoising fiber optic sensor signal

Chapter 5. Signal Analysis. 5.1 Denoising fiber optic sensor signal Chapter 5 Signal Analysis 5.1 Denoising fiber optic sensor signal We first perform wavelet-based denoising on fiber optic sensor signals. Examine the fiber optic signal data (see Appendix B). Across all

More information

Digital Signal Processing Lecture 1 - Introduction

Digital Signal Processing Lecture 1 - Introduction Digital Signal Processing - Electrical Engineering and Computer Science University of Tennessee, Knoxville August 20, 2015 Overview 1 2 3 4 Basic building blocks in DSP Frequency analysis Sampling Filtering

More information