ECEGR Lab #8: Introduction to Simulink

Size: px
Start display at page:

Download "ECEGR Lab #8: Introduction to Simulink"

Transcription

1 Page 1 ECEGR Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example, and finally implement a modulation and demodulation circuit in Simulink. Procedure: Part 1: Using the Help menu 1) Start and go to Help -> Matlab Help. Expand the Simulink folder and scan read through the following sections: What is Simulink? Building a Model Setting Simulink Preferences Simulink Basics Figure 1: Matlab Help: What is Simulink?

2 Page 2 Figure 2: Matlab Help: Building a Model 2) Build and simulate the example in the help page Building a Model. Figure 3: Matlab Help: Building a Model Simulink Schematic

3 Page 3 Figure 4: Matlab Help: Building a Model Simulink Output Figure 5: Matlab Help: Setting Simulink Preferences

4 Page 4 Figure 6: Matlab Help: Simulink Basics Figure 7: Matlab Help: Modeling and Simulating Discrete Systems

5 Page 5 Figure 8: Matlab Help: Signal Processing Blockset: Discrete- Time Signals Part 2: Creating and displaying signals 3) Create a model that adds 2 sinusoids, stores the result in the Workspace, and displays the result on the scope. Change the parameters of the Sine Waves, the To Workspace block, the Scope, and the Simulation. Run the model for 0.1 seconds. Figure 9: Simulink Schematic for Adder

6 Page 6 Figure 10: Scope Output (Summation of Two Sine Waves) at Sample Time of 1e-5 First Window: 100 Hz, Amplitude 10 Second Window: 800 Hz, Amplitude 3 Third Window: Summation 4) Plot the twosinewaves variable in the workspace. Figure 11: Matlab Workspace Displaying twosinewaves variable

7 Page 7 Figure 12: Matlab Plot of twosinewaves with respect to time Figure 13: Matlab Plot of twosinewaves with respect to time (zoomed in)

8 Page 8 5) To observe the samples change the sample time for both sine waves to 1e-3 seconds and run the simulation for 0.1 seconds. Figure 14: Scope Output (Summation of Two Sine Waves) at Sample Time of 1e-3 First Window: 100 Hz, Amplitude 10 Second Window: 800 Hz, Amplitude 3 Third Window: Summation 6) Next, leave one of the sample times at 1e-3 seconds and change the other sample time to 5e-3 seconds. Go to Simulation- >Configuration Parameters and change the discrete solver to a variable step. Run the model.

9 Page 9 Figure 15: Scope Output (Summation of Two Sine Waves) with Samples Time of 1e-3 and 1e-5 and Variable Step Solver First Window: 100 Hz, Amplitude 10, Ts=1e-5 Second Window: 800 Hz, Amplitude 3, Ts=1e-3 Third Window: Summation 7) Next, add to our model 3 more blocks: Matrix Sum, Sine Wave block, and Scope. The Sine Wave block can be configured to give you 2 or more different signals by entering vectors for the amplitude and frequency.

10 Page 10 Figure 16: Scope Output (Summation of Two Sine Waves) using the Matrix Sum block First Window: 100 Hz, Amplitude 10, Ts=1e-5 and 800 Hz, Amplitude 3, Ts=1e-3 Second Window: Summation 8) Finally, add to our model 3 more blocks: Matrix Sum, Signal Processing Sine Wave block, and Scope. The Sine Wave block can be configured to give you 2 or more different signals by entering vectors for the amplitude and frequency.

11 Page 11 Figure 17: Scope Output (Summation of Two Sine Waves) using the Matrix Sum block and DSP sine wave block First Window: 100 Hz, Amplitude 10, Ts=1e-5 and 800 Hz, Amplitude 3, Ts=1e-3 Second Window: Summation

12 Figure 18: Schematic for Part 2 Joe McMichael Page 12 Part 3: Computing the Fourier Transform of a Signal 9) Go through the FFT Example you can find by going to: Help- >Matlab Help->Signal Processing Blockset->Transforms->Signals in the Time Domain->Transforming Time-Domain Data into the Frequency Domain. The model is called doc_fft_tut.mdl. Figure 19: Schematic of Doc_fft_tut.mdl Example 10) Draw and run the model for 3 sinusoids with equal amplitude and frequencies of 1000, 2000, and 4000 Hz. Figure out the sample time you need to use to avoid aliasing. Answers to Questions: Nyquist Frequency = 4,000 Hz * 2 = 8 khz

13 Page 13 11) Use the FFT program to investigate the relationship between sampling frequency (Fs), samples/frame, and resolution. Remember to autoscale all plots. Figure 20: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 240 khz Sample Time = e samples/frame

14 Page 14 Figure 21: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 240 khz Sample Time = e samples/frame

15 Page 15 Figure 22: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 40 khz Sample Time = 2.5e samples/frame

16 Page 16 Figure 23: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 40 khz Sample Time = 2.5e samples/frame

17 Page 17 Figure 24: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 8.8 khz Sample Time = e samples/frame

18 Page 18 Figure 25: FFT of Three Sinusoids at 1000 Hz, 2000 Hz, and 4000 Hz Fs = 8.8 khz Sample Time = e samples/frame Answers to Questions: One must pick a sampling rate just above the Nyquist rate in order to achieve higher spectral resolution. Oversampling will often distort the FFT, because the algorithm only calculates a finite number of points. During oversampling, these points will be too far apart (because they must span a higher frequency), and will cause the FFT to have a lower spectral resolution. When a signal is undersampled, it will not meet the Nyquist theorem and will be aliased. Taking more samples per frame will increase the spectral resolution. To achieve the best results, one must sample slightly above the Nyquist rate with a large number of samples/frame.

19 Page 19 For example, at an 8.8 khz sampling rate with 128 samples/frame, the spectral components are wide and slightly off, but with an 8.8 khz sampling rate with 2048 samples/frame, the spectral components are right on, at 1 khz, 2 khz, and 4 khz. The size of the frame increases with a higher sampling frequency. However, above the Nyquist frequency this is unnecessary and can make it hard to see the spectral components. Part 4: Modeling the modulator and demodulator system from previous labs 12) Create a model for the modulation, frequency division multiplexing, and demodulation system that you built in a previous lab. 13) For the modulator and demodulator simply use the multiplier blocks. Model the bandpass filter with the transfer function you had from a previous lab. Model the lowpass filter with a transfer function. Figure 26: Matlab Program for Computing Fourier Coefficients for Bandpass Filter %Compute the Transfer Function Values for a Bandpass Filter %Joe McMichael %November 27th, 2007 clear clc f0 = 20000; BW = 3000; Q = 6.667; Gain = ; C = ; R2 = ; R1 = ; w0 = (2*pi*f0); numerator = -(2*Q*w0) denominator_s2 = 1 denominator_s = w0/q denominator_1 = w0^2

20 Page 20 Figure 27: Matlab Output Computing Fourier Coefficients for Bandpass Filter numerator = e+006 denominator_s2 = 1 denominator_s = e+004 denominator_1 = e+010 >> Figure 28: Matlab Program for Computing Fourier Coefficients for Lowpass Filter %Compute the Transfer Function Values for a Lowpass Filter %Joe McMichael %November 27th, 2007 clear clc fc = 2000; wc = (2*pi*fc); numerator = wc^2 denominator_s2 = 1 denominator_s = 2*0.707*wc denominator_1 = wc^2 Figure 29: Matlab Output Computing Fourier Coefficients for Lowpass Filter numerator = e+008 denominator_s2 = 1 denominator_s = e+004 denominator_1 = e+008 >>

21 Page 21 Figure 30: Simulink Schematic Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz

22 Joe McMichael December 4th, 2007 Page 22 Figure 31: Output in the Time Domain Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz 1st Panel: Output of Adder Circuit 2nd Panel: Output of Bandpass Filter 3rd Panel: Output of Demodulator 4th Panel: Ouput of Low Pass Filter

23 Figure 32: FFT of Adder Circuit Output Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Joe McMichael Page 23

24 Figure 33: FFT of Bandpass Filter Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Bandpass Filter Center = 20 khz Bandwidth = 3 khz Joe McMichael Page 24

25 Figure 34: FFT of Demodulator Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Joe McMichael Page 25

26 Figure 35: FFT of Low Pass Filter Carrier 1: 20 khz Message 1: 1 khz Carrier 2: 10 khz Message 2: 3 khz Cutoff Frequency = 2 khz Joe McMichael Page 26 Modulation & Demodulation Successful!

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class Description In this project, MATLAB and Simulink are used to construct a system experiment. The experiment

More information

Experiment 1 Introduction to MATLAB and Simulink

Experiment 1 Introduction to MATLAB and Simulink Experiment 1 Introduction to MATLAB and Simulink INTRODUCTION MATLAB s Simulink is a powerful modeling tool capable of simulating complex digital communications systems under realistic conditions. It includes

More information

Introduction to Simulink

Introduction to Simulink EE 460 Introduction to Communication Systems MATLAB Tutorial #3 Introduction to Simulink This tutorial provides an overview of Simulink. It also describes the use of the FFT Scope and the filter design

More information

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm All problem numbers below refer to those in Haykin & Moher s book. 1. (FT) Problem 2.20. 2. (Convolution) Problem

More information

EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY

EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY NAME:. STUDENT ID:.. ROOM: INTRODUCTION TO AMPLITUDE MODULATION Purpose: The objectives of this laboratory are:. To introduce the spectrum

More information

ES442 Final Project AM & FM De/Modulation Using SIMULINK

ES442 Final Project AM & FM De/Modulation Using SIMULINK ES442 Final Project AM & FM De/Modulation Using SIMULINK Goal: 1. Understand the basics of SIMULINK and how it works within MATLAB. 2. Be able to create, configure and run a simple model. 3. Create a subsystem.

More information

Appendix B. Design Implementation Description For The Digital Frequency Demodulator

Appendix B. Design Implementation Description For The Digital Frequency Demodulator Appendix B Design Implementation Description For The Digital Frequency Demodulator The DFD design implementation is divided into four sections: 1. Analog front end to signal condition and digitize the

More information

Electrical & Computer Engineering Technology

Electrical & Computer Engineering Technology Electrical & Computer Engineering Technology EET 419C Digital Signal Processing Laboratory Experiments by Masood Ejaz Experiment # 1 Quantization of Analog Signals and Calculation of Quantized noise Objective:

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

CME 312-Lab Communication Systems Laboratory

CME 312-Lab Communication Systems Laboratory Objective: By the end of this experiment, the student should be able to: 1. Demonstrate the Modulation and Demodulation of the AM. 2. Observe the relation between modulation index and AM signal envelope.

More information

Experiment # 4. Frequency Modulation

Experiment # 4. Frequency Modulation ECE 416 Fall 2002 Experiment # 4 Frequency Modulation 1 Purpose In Experiment # 3, a modulator and demodulator for AM were designed and built. In this experiment, another widely used modulation technique

More information

CME312- LAB Manual DSB-SC Modulation and Demodulation Experiment 6. Experiment 6. Experiment. DSB-SC Modulation and Demodulation

CME312- LAB Manual DSB-SC Modulation and Demodulation Experiment 6. Experiment 6. Experiment. DSB-SC Modulation and Demodulation Experiment 6 Experiment DSB-SC Modulation and Demodulation Objectives : By the end of this experiment, the student should be able to: 1. Demonstrate the modulation and demodulation process of DSB-SC. 2.

More information

Introduction to Simulink Assignment Companion Document

Introduction to Simulink Assignment Companion Document Introduction to Simulink Assignment Companion Document Implementing a DSB-SC AM Modulator in Simulink The purpose of this exercise is to explore SIMULINK by implementing a DSB-SC AM modulator. DSB-SC AM

More information

Memorial University of Newfoundland Faculty of Engineering and Applied Science. Lab Manual

Memorial University of Newfoundland Faculty of Engineering and Applied Science. Lab Manual Memorial University of Newfoundland Faculty of Engineering and Applied Science Engineering 6871 Communication Principles Lab Manual Fall 2014 Lab 1 AMPLITUDE MODULATION Purpose: 1. Learn how to use Matlab

More information

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 3 Review of Signals and Systems: Part 2 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2 ECE363, Experiment 02, 2018 Communications Lab, University of Toronto Experiment 02: Noise Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will introduce you to some of the characteristics

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2015 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2015 Lecture #5 Bekkeng, 29.1.2015 Content Aliasing Nyquist (Sampling) ADC Filtering Oversampling Triggering Analog Signal Information

More information

Signals and Systems Using MATLAB

Signals and Systems Using MATLAB Signals and Systems Using MATLAB Second Edition Luis F. Chaparro Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh, PA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK

More information

Brief Introduction to Signals & Systems. Phani Chavali

Brief Introduction to Signals & Systems. Phani Chavali Brief Introduction to Signals & Systems Phani Chavali Outline Signals & Systems Continuous and discrete time signals Properties of Systems Input- Output relation : Convolution Frequency domain representation

More information

Experiment 2 Effects of Filtering

Experiment 2 Effects of Filtering Experiment 2 Effects of Filtering INTRODUCTION This experiment demonstrates the relationship between the time and frequency domains. A basic rule of thumb is that the wider the bandwidth allowed for the

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

Sound synthesis with Pure Data

Sound synthesis with Pure Data Sound synthesis with Pure Data 1. Start Pure Data from the programs menu in classroom TC307. You should get the following window: The DSP check box switches sound output on and off. Getting sound out First,

More information

Laboratory Assignment 1 Sampling Phenomena

Laboratory Assignment 1 Sampling Phenomena 1 Main Topics Signal Acquisition Audio Processing Aliasing, Anti-Aliasing Filters Laboratory Assignment 1 Sampling Phenomena 2.171 Analysis and Design of Digital Control Systems Digital Filter Design and

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

Discrete-Time Signal Processing (DTSP) v14

Discrete-Time Signal Processing (DTSP) v14 EE 392 Laboratory 5-1 Discrete-Time Signal Processing (DTSP) v14 Safety - Voltages used here are less than 15 V and normally do not present a risk of shock. Objective: To study impulse response and the

More information

Fourier Signal Analysis

Fourier Signal Analysis Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

More information

Laboratory Assignment 5 Amplitude Modulation

Laboratory Assignment 5 Amplitude Modulation Laboratory Assignment 5 Amplitude Modulation PURPOSE In this assignment, you will explore the use of digital computers for the analysis, design, synthesis, and simulation of an amplitude modulation (AM)

More information

Spectrum Analysis - Elektronikpraktikum

Spectrum Analysis - Elektronikpraktikum Spectrum Analysis Introduction Why measure a spectra? In electrical engineering we are most often interested how a signal develops over time. For this time-domain measurement we use the Oscilloscope. Like

More information

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS

EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS EMBEDDED DOPPLER ULTRASOUND SIGNAL PROCESSING USING FIELD PROGRAMMABLE GATE ARRAYS Diaa ElRahman Mahmoud, Abou-Bakr M. Youssef and Yasser M. Kadah Biomedical Engineering Department, Cairo University, Giza,

More information

Experiment 02: Amplitude Modulation

Experiment 02: Amplitude Modulation ECE316, Experiment 02, 2017 Communications Lab, University of Toronto Experiment 02: Amplitude Modulation Bruno Korst - bkf@comm.utoronto.ca Abstract In this second laboratory experiment, you will see

More information

Lab 4 An FPGA Based Digital System Design ReadMeFirst

Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab Summary This Lab introduces a number of Matlab functions used to design and test a lowpass IIR filter. As you have seen in the previous lab, Simulink

More information

Experiment 6: Multirate Signal Processing

Experiment 6: Multirate Signal Processing ECE431, Experiment 6, 2018 Communications Lab, University of Toronto Experiment 6: Multirate Signal Processing Bruno Korst - bkf@comm.utoronto.ca Abstract In this experiment, you will use decimation and

More information

Figure 1: Block diagram of Digital signal processing

Figure 1: Block diagram of Digital signal processing Experiment 3. Digital Process of Continuous Time Signal. Introduction Discrete time signal processing algorithms are being used to process naturally occurring analog signals (like speech, music and images).

More information

ESE 150 Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 Lab 04: The Discrete Fourier Transform (DFT) LAB 04 In this lab we will do the following: 1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it to the frequency domain 2. Add two sinewaves together of differing

More information

EECS 307: Lab Handout 2 (FALL 2012)

EECS 307: Lab Handout 2 (FALL 2012) EECS 307: Lab Handout 2 (FALL 2012) I- Audio Transmission of a Single Tone In this part you will modulate a low-frequency audio tone via AM, and transmit it with a carrier also in the audio range. The

More information

FM Superheterodyne Receiver

FM Superheterodyne Receiver EE321 Final Project Chun-Hao Lo XiaoKai Sun Background: FM Superheterodyne Receiver Superheterodyne Receiver is the receiver that convert a received signal from the transmitter to an intermediate frequency.

More information

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011 Islamic University of Gaza Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#4 Sampling and Quantization OBJECTIVES: When you have completed this assignment,

More information

Lab 1B LabVIEW Filter Signal

Lab 1B LabVIEW Filter Signal Lab 1B LabVIEW Filter Signal Due Thursday, September 12, 2013 Submit Responses to Questions (Hardcopy) Equipment: LabVIEW Setup: Open LabVIEW Skills learned: Create a low- pass filter using LabVIEW and

More information

L A B 3 : G E N E R A T I N G S I N U S O I D S

L A B 3 : G E N E R A T I N G S I N U S O I D S L A B 3 : G E N E R A T I N G S I N U S O I D S NAME: DATE OF EXPERIMENT: DATE REPORT SUBMITTED: 1/7 1 THEORY DIGITAL SIGNAL PROCESSING LABORATORY 1.1 GENERATION OF DISCRETE TIME SINUSOIDAL SIGNALS IN

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Presentation May 2nd, 2006 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

Project 2 - Speech Detection with FIR Filters

Project 2 - Speech Detection with FIR Filters Project 2 - Speech Detection with FIR Filters ECE505, Fall 2015 EECS, University of Tennessee (Due 10/30) 1 Objective The project introduces a practical application where sinusoidal signals are used to

More information

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM

EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM EE 215 Semester Project SPECTRAL ANALYSIS USING FOURIER TRANSFORM Department of Electrical and Computer Engineering Missouri University of Science and Technology Page 1 Table of Contents Introduction...Page

More information

Final Exam Solutions June 14, 2006

Final Exam Solutions June 14, 2006 Name or 6-Digit Code: PSU Student ID Number: Final Exam Solutions June 14, 2006 ECE 223: Signals & Systems II Dr. McNames Keep your exam flat during the entire exam. If you have to leave the exam temporarily,

More information

Scanning Digital Radar Receiver Project Proposal. Ryan Hamor. Project Advisor: Dr. Brian Huggins

Scanning Digital Radar Receiver Project Proposal. Ryan Hamor. Project Advisor: Dr. Brian Huggins Scanning Digital Radar Receiver Project Proposal by Ryan Hamor Project Advisor: Dr. Brian Huggins Bradley University Department of Electrical and Computer Engineering December 8, 2005 Table of Contents

More information

LAB #7: Digital Signal Processing

LAB #7: Digital Signal Processing LAB #7: Digital Signal Processing Equipment: Pentium PC with NI PCI-MIO-16E-4 data-acquisition board NI BNC 2120 Accessory Box VirtualBench Instrument Library version 2.6 Function Generator (Tektronix

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

ELT COMMUNICATION THEORY

ELT COMMUNICATION THEORY ELT 41307 COMMUNICATION THEORY Matlab Exercise #1 Sampling, Fourier transform, Spectral illustrations, and Linear filtering 1 SAMPLING The modeled signals and systems in this course are mostly analog (continuous

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached Purpose The purpose of the lab is to demonstrate the signal analysis capabilities of Matlab. The oscilloscope will be used as an A/D converter to capture several signals we have examined in previous labs.

More information

AC : FIR FILTERS FOR TECHNOLOGISTS, SCIENTISTS, AND OTHER NON-PH.D.S

AC : FIR FILTERS FOR TECHNOLOGISTS, SCIENTISTS, AND OTHER NON-PH.D.S AC 29-125: FIR FILTERS FOR TECHNOLOGISTS, SCIENTISTS, AND OTHER NON-PH.D.S William Blanton, East Tennessee State University Dr. Blanton is an associate professor and coordinator of the Biomedical Engineering

More information

Agilent Vector Signal Analysis Basics. Application Note

Agilent Vector Signal Analysis Basics. Application Note Agilent Vector Signal Analysis Basics Application Note Table of Contents Vector signal Analysis 3 VSA measurement advantages 4 VSA measurement concepts and theory of operation 6 Data windowing leakage

More information

Amplitude Modulation Chapter 2. Modulation process

Amplitude Modulation Chapter 2. Modulation process Question 1 Modulation process Modulation is the process of translation the baseband message signal to bandpass (modulated carrier) signal at frequencies that are very high compared to the baseband frequencies.

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Instructor s Portion Wei Lin Department of Biomedical Engineering Stony Brook University Summary Uses This experiment requires the student

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Amplitude Amplitude Discrete Fourier Transform (DFT) DFT transforms the time domain signal samples to the frequency domain components. DFT Signal Spectrum Time Frequency DFT is often used to do frequency

More information

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab6: Signal processing and filter design

BIOE 198MI Biomedical Data Analysis. Spring Semester Lab6: Signal processing and filter design BIOE 198MI Biomedical Data Analysis. Spring Semester 2018. Lab6: Signal processing and filter design Problem Statement: In this lab, we are considering the problem of designing a window-based digital filter

More information

EE452 Senior Capstone Project: Integration of Matlab Tools for DSP Code Generation. Kwadwo Boateng Charles Badu. May 8, 2006

EE452 Senior Capstone Project: Integration of Matlab Tools for DSP Code Generation. Kwadwo Boateng Charles Badu. May 8, 2006 EE452 Senior Capstone Project: Integration of Matlab Tools for DSP Code Generation Kwadwo Boateng Charles Badu May 8, 2006 Bradley University College of Engineering and Technology Electrical and Computer

More information

Modulating Signal by Matlab. Amplitude modulation(am)

Modulating Signal by Matlab. Amplitude modulation(am) Modulating Signal by Matlab Amplitude modulation(am) f(t)=(a+m(t))*cos(2*pi*fc) y = ammod(x,fc,fs) y = ammod(x,fc,fs,ini_phase) y = ammod(x,fc,fs,ini_phase,carramp) y = ammod(x,fc,fs) uses the message

More information

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Contents Slide 1 Single-Sideband Modulation Slide 2 SSB by DSBSC-AM and Filtering Slide 3 SSB by DSBSC-AM and Filtering (cont.) Slide

More information

Signal Processing. Level IV/V CITE, BTS/DUT/Licence. i_5. i_6 LOWPASS. 5 in2. w0 =6000rad/s xi =.8; G =3 lp2a1. mul0. Filtre passe-bas.

Signal Processing. Level IV/V CITE, BTS/DUT/Licence. i_5. i_6 LOWPASS. 5 in2. w0 =6000rad/s xi =.8; G =3 lp2a1. mul0. Filtre passe-bas. Signal Processing Level IV/V CITE, BTS/DUT/Licence. Modulation FSK à phase continue i_8 Tension de commande V1 Interrupt SCOPE AD-DA EVENT Fs = 1E5 Hz 1:1.15 i_4 Modulation FSK à phase continue LOWPASS

More information

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday.

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday. L105/205 Phonetics Scarborough Handout 7 10/18/05 Reading: Johnson Ch.2.3.3-2.3.6, Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday Spectral Analysis 1. There are

More information

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION

ECE 203 LAB 2 PRACTICAL FILTER DESIGN & IMPLEMENTATION Version 1. 1 of 7 ECE 03 LAB PRACTICAL FILTER DESIGN & IMPLEMENTATION BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 Labs ECE 0 Advanced MATLAB ECE 03 MATLAB Signals & Systems EXPECTED KNOWLEDGE Understanding

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Modulation and Demodulation Introduction A communication system

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 3 FIR Filters Written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 19, 2015 Objectives:

More information

Discrete-time Signals & Systems

Discrete-time Signals & Systems Discrete-time Signals & Systems S Wongsa Dept. of Control Systems and Instrumentation Engineering, KMU JAN, 2010 1 Overview Signals & Systems Continuous & Discrete ime Sampling Sampling in Frequency Domain

More information

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 2017 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date

More information

Sampling and Signal Processing

Sampling and Signal Processing Sampling and Signal Processing Sampling Methods Sampling is most commonly done with two devices, the sample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquires a continuous-time signal

More information

Frequency Domain Representation of Signals

Frequency Domain Representation of Signals Frequency Domain Representation of Signals The Discrete Fourier Transform (DFT) of a sampled time domain waveform x n x 0, x 1,..., x 1 is a set of Fourier Coefficients whose samples are 1 n0 X k X0, X

More information

Final Exam Solutions June 7, 2004

Final Exam Solutions June 7, 2004 Name: Final Exam Solutions June 7, 24 ECE 223: Signals & Systems II Dr. McNames Write your name above. Keep your exam flat during the entire exam period. If you have to leave the exam temporarily, close

More information

Introduction to Lab Instruments

Introduction to Lab Instruments ECE316, Experiment 00, 2017 Communications Lab, University of Toronto Introduction to Lab Instruments Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will review the use of three lab instruments

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Experiment 1 Introduction to Simulink

Experiment 1 Introduction to Simulink 1 Experiment 1 Introduction to Simulink 1.1 Objective The objective of Experiment #1 is to familiarize the students with simulation of power electronic circuits in Matlab/Simulink environment. Please follow

More information

Lecture Schedule: Week Date Lecture Title

Lecture Schedule: Week Date Lecture Title http://elec3004.org Sampling & More 2014 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date Lecture Title 1 2-Mar Introduction 3-Mar

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

Subtractive Synthesis. Describing a Filter. Filters. CMPT 468: Subtractive Synthesis

Subtractive Synthesis. Describing a Filter. Filters. CMPT 468: Subtractive Synthesis Subtractive Synthesis CMPT 468: Subtractive Synthesis Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University November, 23 Additive synthesis involves building the sound by

More information

Project I: Phase Tracking and Baud Timing Correction Systems

Project I: Phase Tracking and Baud Timing Correction Systems Project I: Phase Tracking and Baud Timing Correction Systems ECES 631, Prof. John MacLaren Walsh, Ph. D. 1 Purpose In this lab you will encounter the utility of the fundamental Fourier and z-transform

More information

Topic. Filters, Reverberation & Convolution THEY ARE ALL ONE

Topic. Filters, Reverberation & Convolution THEY ARE ALL ONE Topic Filters, Reverberation & Convolution THEY ARE ALL ONE What is reverberation? Reverberation is made of echoes Echoes are delayed copies of the original sound In the physical world these are caused

More information

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar Biomedical Signals Signals and Images in Medicine Dr Nabeel Anwar Noise Removal: Time Domain Techniques 1. Synchronized Averaging (covered in lecture 1) 2. Moving Average Filters (today s topic) 3. Derivative

More information

Lab 1: Simulating Control Systems with Simulink and MATLAB

Lab 1: Simulating Control Systems with Simulink and MATLAB Lab 1: Simulating Control Systems with Simulink and MATLAB EE128: Feedback Control Systems Fall, 2006 1 Simulink Basics Simulink is a graphical tool that allows us to simulate feedback control systems.

More information

Data Acquisition Systems. Signal DAQ System The Answer?

Data Acquisition Systems. Signal DAQ System The Answer? Outline Analysis of Waveforms and Transforms How many Samples to Take Aliasing Negative Spectrum Frequency Resolution Synchronizing Sampling Non-repetitive Waveforms Picket Fencing A Sampled Data System

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

Sampling and aliasing Amplitude modulation

Sampling and aliasing Amplitude modulation Sampling and aliasing Amplitude modulation Signals and codes (SK) Department of Transport Telematics Faculty of Transportation Sciences, CTU in Prague Exercise 3 Exercise content Aliasing Computing aliases

More information

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction 1. In AM modulation we impart the information of a message signal m(t) on to a sinusoidal carrier c(t). This results in the translation of the message signal to a new frequency range. The motivation for

More information

SAMPLING AND RECONSTRUCTING SIGNALS

SAMPLING AND RECONSTRUCTING SIGNALS CHAPTER 3 SAMPLING AND RECONSTRUCTING SIGNALS Many DSP applications begin with analog signals. In order to process these analog signals, the signals must first be sampled and converted to digital signals.

More information

6 Sampling. Sampling. The principles of sampling, especially the benefits of coherent sampling

6 Sampling. Sampling. The principles of sampling, especially the benefits of coherent sampling Note: Printed Manuals 6 are not in Color Objectives This chapter explains the following: The principles of sampling, especially the benefits of coherent sampling How to apply sampling principles in a test

More information

ELEC3104: Digital Signal Processing Session 1, 2013

ELEC3104: Digital Signal Processing Session 1, 2013 ELEC3104: Digital Signal Processing Session 1, 2013 The University of New South Wales School of Electrical Engineering and Telecommunications LABORATORY 1: INTRODUCTION TO TIMS AND MATLAB INTRODUCTION

More information

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5

FYS3240 PC-based instrumentation and microcontrollers. Signal sampling. Spring 2017 Lecture #5 FYS3240 PC-based instrumentation and microcontrollers Signal sampling Spring 2017 Lecture #5 Bekkeng, 30.01.2017 Content Aliasing Sampling Analog to Digital Conversion (ADC) Filtering Oversampling Triggering

More information

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals

DSP First. Laboratory Exercise #7. Everyday Sinusoidal Signals DSP First Laboratory Exercise #7 Everyday Sinusoidal Signals This lab introduces two practical applications where sinusoidal signals are used to transmit information: a touch-tone dialer and amplitude

More information

Experiment 8: Sampling

Experiment 8: Sampling Prepared By: 1 Experiment 8: Sampling Objective The objective of this Lab is to understand concepts and observe the effects of periodically sampling a continuous signal at different sampling rates, changing

More information

FFT Analyzer. Gianfranco Miele, Ph.D

FFT Analyzer. Gianfranco Miele, Ph.D FFT Analyzer Gianfranco Miele, Ph.D www.eng.docente.unicas.it/gianfranco_miele g.miele@unicas.it Introduction It is a measurement instrument that evaluates the spectrum of a time domain signal applying

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Fourier Theory & Practice, Part I: Theory (HP Product Note )

Fourier Theory & Practice, Part I: Theory (HP Product Note ) Fourier Theory & Practice, Part I: Theory (HP Product Note 54600-4) By: Robert Witte Hewlett-Packard Co. Introduction: This product note provides a brief review of Fourier theory, especially the unique

More information

Experiment 4 Sampling and Aliasing

Experiment 4 Sampling and Aliasing Experiment 4 ampling and Aliasing INTRODUCTION One of the basic processes found in digital communications is sampling. Continuous signals from analog sources such as voice, music, video or other forms

More information

OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE. EEE 403 Digital Signal Processing 10 Periodic Sampling

OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE. EEE 403 Digital Signal Processing 10 Periodic Sampling OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE EEE 403 Digital Signal Processing 10 Periodic Sampling Fall 2013 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr 12/20/2013

More information

Signal Processing. Introduction

Signal Processing. Introduction Signal Processing 0 Introduction One of the premiere uses of MATLAB is in the analysis of signal processing and control systems. In this chapter we consider signal processing. The final chapter of the

More information

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts Instruction Manual for Concept Simulators that accompany the book Signals and Systems by M. J. Roberts March 2004 - All Rights Reserved Table of Contents I. Loading and Running the Simulators II. Continuous-Time

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information