Memorial University of Newfoundland Faculty of Engineering and Applied Science. Lab Manual

Size: px
Start display at page:

Download "Memorial University of Newfoundland Faculty of Engineering and Applied Science. Lab Manual"

Transcription

1 Memorial University of Newfoundland Faculty of Engineering and Applied Science Engineering 6871 Communication Principles Lab Manual Fall 2014

2 Lab 1 AMPLITUDE MODULATION Purpose: 1. Learn how to use Matlab Simulink Toolbox for simulating communication system. 2. Use the Simulink to analyze signals in time and frequency domain. 3. Identify DSB-SC, Large Carrier (LC) amplitude modulated waveforms in time and frequency domain representations. 4. Implement theoretically functional circuits using the Communications Module Design System (CMDS). Equipment List: 1. PC with Matlab (Version R2012a or higher) and Simulink Prelab: 1. Signal Analysis in Time and Frequency Domain Review the Fourier transform for aperiodic and periodic signals. P1. Find the Fourier transform of m(t)=cos(2 *200t) and sketch its Fourier spectrum. 2. Simulink Simulink is a program for simulating signals and dynamic systems. Simulink has two phases of use: model definition and model analysis. A typical session starts by either defining a new model or by recalling a previously defined model, and then proceeds to analyze that model. In order to facilitate the model definition, Simulink has a large library of blocks. Models are created by combining proper blocks from the library and edited in the model window principally using mousedriven operations. An important part of mastering Simulink is to become familiar with manipulations of various model components in these windows. After you create (or define) a model, you can analyze it either by choosing options from the Simulink menus in the model window or by entering commands in the Matlab command window. The progress of an ongoing simulation can be viewed while it is running, and the final results can be made available in the Matlab workspace when the simulation is complete. To Start Simulink: Start Matlab then type simulink on the command line. A Simulink Library Window opens up as shown in figure 1.1. In the lower left part, all the blocks directories are listed, some directories may have subdirectories. If you choose any directory or subdirectory, all the subdirectories or blocks can be seen in the right part of the library window.

3 Figure 1.1 Example: Design a model to analyze the signal m(t)= cos(2 *200t) in time and frequency domain. Steps: 1. Once Matlab is loaded, type simulink at the Matlab prompt. The Simulink library window will appear. 2. In the library window, click on the directory Simulink\Sources, all the signal generator blocks will be listed in the right part of the library window. 3. Choose a block (here Sine Wave), and click the right button of the mouse, a pop-up menu will appear. Select Add to a new model and the OK, you can create a new model window and add the sine wave generator source block in the model window. You can name and save the model as.mdl file.

4 4. In your model window, using the left mouse button, double-click on the sine wave generator block. A new window appears that displays all the properties of your selected block, and you can adjust the block (signal or system) parameters. Here in this example, specify the model fields as follows: Frequency: 2*pi*200 Phase shift: pi/2 Sample time: 1/4000 (it should be less than half of the message signal period at least) Then, the Sine Wave block will produce a signal sin(2 *200t+ /2)=cos(2 *200t). 5. Next, we want to check the Fourier spectrum of the output of the signal generator. You can use a Spectrum Scope block from the directory DSP System Toolbox\ Sinks by dragging it from the library window to your model window. Double-click on the Spectrum Scope block to open the property window shown in Figure 1.2. Figure 1.2 Under Scope Properties : check Buffer input and Specify FFT length boxes For Spectrum Units, choose dbw/hertz

5 For Spectrum Type, choose Two-sided ((-Fs/2 Fs/2)) Under Axis Properties : Set Minimum Y-limit as -50, Maximum Y-limit as 0, For Y-axis label, choose Magnitude-squared, db Note: The frequency domain Fourier spectrum is obtained through the Spectrum Scope block, which comprises of a Fast Fourier Transform of 128 samples which also has a buffering of 64 of them in one frame. From the property box of the Spectrum Scope the axis properties can be changed and the Line properties can be changed. The Frequency range can be changed by using the frequency range pop down menu and so can be the y-axis the amplitude scaling changed to either real magnitude or the db (log of magnitude) scale. The upper limit can be specified as shown by the Min and Max Y- limits edit box. The sampling time of the B-FFT scope should match with the sampling time of the input time signal. 6. In order to show the spectrum of the signal, we need to connect the Sine Wave block to Spectrum Scope block. To connect them, first click on block Sine Wave, hold down the control key, and then click on block Spectrum Scope. A connection line will appear between block Sine Wave and block Spectrum Scope. 7. Select the Simulation menu and then run the simulation by clicking Start, and a new window will be opened automatically to show the simulation result. For this example, you will see two impulses which corresponds to the spectrum of a cosine signal. 8. To check the output of the signal generator in time domain. You can add a Scope block from the directory Simulink\ Sinks by dragging it from the library window to your new model window. Double-click on the Scope block to open the result-displaying window, click the second toolbar named parameters to open its property window. Under General, specify: Time range: 0.05 (means showing result for time interval s, you can change it) Sampling: set Sample time: 0 9. Select the Simulation menu and then run the simulation again. After finishing simulation, you can double-click the Scope block to view the signal in time domain. P2. Print your model file and simulation results of signal in time and frequency domain, compare your result with that in P Save your model file to disk as a Matlab.mdl file by selecting Save from the file menu in your model window. This file can be redrawn and simulated on the screen for further editing. Similar operations can be done for other waveforms like the square wave, triangular. 3. Amplitude Modulation a. Double-Sideband Suppressed Carrier (DSB-SC) AM

6 The DSB-SC signal can be written as φ(t)=m(t)cos(ω c t), where m(t) is the message signal, ω c is the carrier frequency. b. Large Carrier (LC) AM The LC AM signal is φ(t)= [m(t)+a] cos(ω c t), where A is the carrier amplitude. The modulation index is defined as μ=m p /A, where m p is the maximum value of m p. Procedure: I. Double-Sideband Suppressed Carrier (DSB-SC) Amplitude Modulation P3. Use Simulink to create a model for implementing DSB-SC amplitude modulation for message signal m(t)=2cos(2 1000t) with a carrier of frequency of 5 khz. Print your model file, both the message signal and modulated signal in time and frequency domain based on Matlab simulation. Explain the DSB-SC effect. Hint: You need to use the Product block under the directory Simulink\Math Operations. You also need to set the waveform parameters to appropriate values. 1 The effect of different carrier frequency P4. Repeat P3 by varying the carrier frequency to 10 khz. How does the modulated signal change in time and frequency domain? 2 The effect of different modulating frequency and amplitude P5. Repeat P3 by varying the message signal m(t) s frequency to 2 khz and amplitude to 20. How does the modulated signal change in time and frequency domain? 3 Change the modulating signal to a square wave P6. Repeat P3 by varying the message signal to a square wave with amplitude to 2, frequency f 0 =1 khz and width of T0/2. How does the modulated signal change in time and frequency domain? Hint: You need to use the Pulse Generator block under the directory Simulink\Sources. You also need to set the waveform parameters to appropriate values (especially pulse type as sample based). II. Large Carrier (LC) Amplitude Modulation P7. Use Simulink to design a model for implementing LC amplitude modulation for message signal m(t)=2cos(2 1000t) with a carrier of frequency of 5 khz and modulation index μ=1. Calculate the value of A. Print your model file, both the message signal and modulated signal in

7 time and frequency domain based on Matlab simulation. Explain the LC AM effect. Is the carrier component suppressed in the frequency domain? Hint: You may need to use the Constant block under the directory Simulink\Sources and the Sum block under the directory Simulink\Math Operations. You also need to set the block parameters to appropriate values. P8. Repeat P7 by varying the modulation index to μ=0.5. How does the modulated signal change in time and frequency domain? P9. Repeat P7 by varying the message signal to a square wave with amplitude to 2 and frequency f 0 =1 khz (width of T0/2). How does the modulated signal change in time and frequency domain? P10. Repeat P7 by varying the message signal to a square wave with amplitude to 1 and frequency f 0 =1 khz (width of T0/2). What is the value of A for which LC AM signal can be converted into a DSB-SC signal? Conclusion:

Introduction to Simulink Assignment Companion Document

Introduction to Simulink Assignment Companion Document Introduction to Simulink Assignment Companion Document Implementing a DSB-SC AM Modulator in Simulink The purpose of this exercise is to explore SIMULINK by implementing a DSB-SC AM modulator. DSB-SC AM

More information

EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY

EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY EXPERIMENT 4 INTRODUCTION TO AMPLITUDE MODULATION SUBMITTED BY NAME:. STUDENT ID:.. ROOM: INTRODUCTION TO AMPLITUDE MODULATION Purpose: The objectives of this laboratory are:. To introduce the spectrum

More information

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm

ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm ENSC327 Communication Systems Fall 2011 Assignment #1 Due Wednesday, Sept. 28, 4:00 pm All problem numbers below refer to those in Haykin & Moher s book. 1. (FT) Problem 2.20. 2. (Convolution) Problem

More information

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class Description In this project, MATLAB and Simulink are used to construct a system experiment. The experiment

More information

Introduction to Simulink

Introduction to Simulink EE 460 Introduction to Communication Systems MATLAB Tutorial #3 Introduction to Simulink This tutorial provides an overview of Simulink. It also describes the use of the FFT Scope and the filter design

More information

Experiment 1 Introduction to MATLAB and Simulink

Experiment 1 Introduction to MATLAB and Simulink Experiment 1 Introduction to MATLAB and Simulink INTRODUCTION MATLAB s Simulink is a powerful modeling tool capable of simulating complex digital communications systems under realistic conditions. It includes

More information

ES442 Final Project AM & FM De/Modulation Using SIMULINK

ES442 Final Project AM & FM De/Modulation Using SIMULINK ES442 Final Project AM & FM De/Modulation Using SIMULINK Goal: 1. Understand the basics of SIMULINK and how it works within MATLAB. 2. Be able to create, configure and run a simple model. 3. Create a subsystem.

More information

Lab 1: Simulating Control Systems with Simulink and MATLAB

Lab 1: Simulating Control Systems with Simulink and MATLAB Lab 1: Simulating Control Systems with Simulink and MATLAB EE128: Feedback Control Systems Fall, 2006 1 Simulink Basics Simulink is a graphical tool that allows us to simulate feedback control systems.

More information

Experiment 1 Introduction to Simulink

Experiment 1 Introduction to Simulink 1 Experiment 1 Introduction to Simulink 1.1 Objective The objective of Experiment #1 is to familiarize the students with simulation of power electronic circuits in Matlab/Simulink environment. Please follow

More information

Simulink Implementation of Amplitude Modulation Technique using Matlab

Simulink Implementation of Amplitude Modulation Technique using Matlab Simulink Implementation of Amplitude Modulation Technique using Matlab Mr. Ranjeet R. Suryawanshi 1, Mr. Vikas D. Patil 2 1,2Assistant Professor, Department of Electronics & Telecommunication Engineering,

More information

E x p e r i m e n t 2 S i m u l a t i o n a n d R e a l - t i m e I m p l e m e n t a t i o n o f a S w i t c h - m o d e D C C o n v e r t e r

E x p e r i m e n t 2 S i m u l a t i o n a n d R e a l - t i m e I m p l e m e n t a t i o n o f a S w i t c h - m o d e D C C o n v e r t e r E x p e r i m e n t 2 S i m u l a t i o n a n d R e a l - t i m e I m p l e m e n t a t i o n o f a S w i t c h - m o d e D C C o n v e r t e r IT IS PREFERED that students ANSWER THE QUESTION/S BEFORE

More information

ECE411 - Laboratory Exercise #1

ECE411 - Laboratory Exercise #1 ECE411 - Laboratory Exercise #1 Introduction to Matlab/Simulink This laboratory exercise is intended to provide a tutorial introduction to Matlab/Simulink. Simulink is a Matlab toolbox for analysis/simulation

More information

ECEGR Lab #8: Introduction to Simulink

ECEGR Lab #8: Introduction to Simulink Page 1 ECEGR 317 - Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example,

More information

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2 ECE363, Experiment 02, 2018 Communications Lab, University of Toronto Experiment 02: Noise Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will introduce you to some of the characteristics

More information

LAB #7: Digital Signal Processing

LAB #7: Digital Signal Processing LAB #7: Digital Signal Processing Equipment: Pentium PC with NI PCI-MIO-16E-4 data-acquisition board NI BNC 2120 Accessory Box VirtualBench Instrument Library version 2.6 Function Generator (Tektronix

More information

Experiment 2: Electronic Enhancement of S/N and Boxcar Filtering

Experiment 2: Electronic Enhancement of S/N and Boxcar Filtering Experiment 2: Electronic Enhancement of S/N and Boxcar Filtering Synopsis: A simple waveform generator will apply a triangular voltage ramp through an R/C circuit. A storage digital oscilloscope, or an

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

EECS 307: Lab Handout 2 (FALL 2012)

EECS 307: Lab Handout 2 (FALL 2012) EECS 307: Lab Handout 2 (FALL 2012) I- Audio Transmission of a Single Tone In this part you will modulate a low-frequency audio tone via AM, and transmit it with a carrier also in the audio range. The

More information

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3]

(b) What are the differences between FM and PM? (c) What are the differences between NBFM and WBFM? [9+4+3] Code No: RR220401 Set No. 1 1. (a) The antenna current of an AM Broadcast transmitter is 10A, if modulated to a depth of 50% by an audio sine wave. It increases to 12A as a result of simultaneous modulation

More information

C.8 Comb filters 462 APPENDIX C. LABORATORY EXERCISES

C.8 Comb filters 462 APPENDIX C. LABORATORY EXERCISES 462 APPENDIX C. LABORATORY EXERCISES C.8 Comb filters The purpose of this lab is to use a kind of filter called a comb filter to deeply explore concepts of impulse response and frequency response. The

More information

Lab 8. Signal Analysis Using Matlab Simulink

Lab 8. Signal Analysis Using Matlab Simulink E E 2 7 5 Lab June 30, 2006 Lab 8. Signal Analysis Using Matlab Simulink Introduction The Matlab Simulink software allows you to model digital signals, examine power spectra of digital signals, represent

More information

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad

Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad Faculty of Engineering Electrical Engineering Department Communication Engineering I Lab (EELE 3170) Eng. Adam M. Hammad EXPERIMENT #5 DSB-SC AND SSB MODULATOR Theory The amplitude-modulated signal is

More information

Fig. 1. NI Elvis System

Fig. 1. NI Elvis System Lab 2: Introduction to I Elvis Environment. Objectives: The purpose of this laboratory is to provide an introduction to the NI Elvis design and prototyping environment. Basic operations provided by Elvis

More information

TSKS01 Digital Communication

TSKS01 Digital Communication Lab Memo for TSKS01 Digital Communication Mikael Olofsson Department of EE (ISY) Linköping University, SE-581 83 Linköping, Sweden Autumn 2010 Note: This lab memo is intended for the course TSKS01 Digital

More information

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached

Reference Sources. Prelab. Proakis chapter 7.4.1, equations to as attached Purpose The purpose of the lab is to demonstrate the signal analysis capabilities of Matlab. The oscilloscope will be used as an A/D converter to capture several signals we have examined in previous labs.

More information

Sound synthesis with Pure Data

Sound synthesis with Pure Data Sound synthesis with Pure Data 1. Start Pure Data from the programs menu in classroom TC307. You should get the following window: The DSP check box switches sound output on and off. Getting sound out First,

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

Time-Varying Signals

Time-Varying Signals Time-Varying Signals Objective This lab gives a practical introduction to signals that varies with time using the components such as: 1. Arbitrary Function Generator 2. Oscilloscopes The grounding issues

More information

Experiment 02: Amplitude Modulation

Experiment 02: Amplitude Modulation ECE316, Experiment 02, 2017 Communications Lab, University of Toronto Experiment 02: Amplitude Modulation Bruno Korst - bkf@comm.utoronto.ca Abstract In this second laboratory experiment, you will see

More information

Magnitude and Phase Measurements. Analog Discovery

Magnitude and Phase Measurements. Analog Discovery Magnitude and Phase Measurements Analog Discovery Set up the oscilloscope to measure the signal of the reference voltage (the input voltage from the arbitrary function generator, in this case) and the

More information

Exercise 2-1. PAM Signals EXERCISE OBJECTIVE DISCUSSION OUTLINE. Signal sampling DISCUSSION

Exercise 2-1. PAM Signals EXERCISE OBJECTIVE DISCUSSION OUTLINE. Signal sampling DISCUSSION Exercise 2-1 PAM Signals EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the generation of both natural and flat-top sampled PAM signals. You will verify how the frequency

More information

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal

cosω t Y AD 532 Analog Multiplier Board EE18.xx Fig. 1 Amplitude modulation of a sine wave message signal University of Saskatchewan EE 9 Electrical Engineering Laboratory III Amplitude and Frequency Modulation Objectives: To observe the time domain waveforms and spectra of amplitude modulated (AM) waveforms

More information

II. LAB. * Open the LabVIEW program (Start > All Programs > National Instruments > LabVIEW 2012 > LabVIEW 2012)

II. LAB. * Open the LabVIEW program (Start > All Programs > National Instruments > LabVIEW 2012 > LabVIEW 2012) II. LAB Software Required: NI LabVIEW 2012, NI LabVIEW 4.3 Modulation Toolkit. Functions and VI (Virtual Instrument) from the LabVIEW software to be used in this lab: niusrp Open Tx Session (VI), niusrp

More information

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2)

4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4 Experiment 4: DC Motor Voltage to Speed Transfer Function Estimation by Step Response and Frequency Response (Part 2) 4.1 Introduction This lab introduces new methods for estimating the transfer function

More information

EE25266 ASIC/FPGA Chip Design. Designing a FIR Filter, FPGA in the Loop, Ethernet

EE25266 ASIC/FPGA Chip Design. Designing a FIR Filter, FPGA in the Loop, Ethernet EE25266 ASIC/FPGA Chip Design Mahdi Shabany Electrical Engineering Department Sharif University of Technology Assignment #8 Designing a FIR Filter, FPGA in the Loop, Ethernet Introduction In this lab,

More information

EE 3302 LAB 1 EQIUPMENT ORIENTATION

EE 3302 LAB 1 EQIUPMENT ORIENTATION EE 3302 LAB 1 EQIUPMENT ORIENTATION Pre Lab: Calculate the theoretical gain of the 4 th order Butterworth filter (using the formula provided. Record your answers in Table 1 before you come to class. Introduction:

More information

The Design and Simulation of Embedded FIR Filter based on FPGA and DSP Builder

The Design and Simulation of Embedded FIR Filter based on FPGA and DSP Builder Research Journal of Applied Sciences, Engineering and Technology 6(19): 3489-3494, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: August 09, 2012 Accepted: September

More information

Lab 1B LabVIEW Filter Signal

Lab 1B LabVIEW Filter Signal Lab 1B LabVIEW Filter Signal Due Thursday, September 12, 2013 Submit Responses to Questions (Hardcopy) Equipment: LabVIEW Setup: Open LabVIEW Skills learned: Create a low- pass filter using LabVIEW and

More information

Lab 2: Introduction to Real Time Workshop

Lab 2: Introduction to Real Time Workshop Lab 2: Introduction to Real Time Workshop 1 Introduction In this lab, you will be introduced to the experimental equipment. What you learn in this lab will be essential in each subsequent lab. Document

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction

Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. Amplitude Modulation. A. Introduction. A. Introduction 1. In AM modulation we impart the information of a message signal m(t) on to a sinusoidal carrier c(t). This results in the translation of the message signal to a new frequency range. The motivation for

More information

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts

Instruction Manual for Concept Simulators. Signals and Systems. M. J. Roberts Instruction Manual for Concept Simulators that accompany the book Signals and Systems by M. J. Roberts March 2004 - All Rights Reserved Table of Contents I. Loading and Running the Simulators II. Continuous-Time

More information

Introduction to Lab Instruments

Introduction to Lab Instruments ECE316, Experiment 00, 2017 Communications Lab, University of Toronto Introduction to Lab Instruments Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will review the use of three lab instruments

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 2 ACTIVE FILTERS Issued 9/22/2008 Pre Lab Completed 9/29/2008 Lab Due in Lecture 10/6/2008 Introduction In this lab you will design a

More information

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual.

PART I: The questions in Part I refer to the aliasing portion of the procedure as outlined in the lab manual. Lab. #1 Signal Processing & Spectral Analysis Name: Date: Section / Group: NOTE: To help you correctly answer many of the following questions, it may be useful to actually run the cases outlined in the

More information

Lab 4 An FPGA Based Digital System Design ReadMeFirst

Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab Summary This Lab introduces a number of Matlab functions used to design and test a lowpass IIR filter. As you have seen in the previous lab, Simulink

More information

Fourier Signal Analysis

Fourier Signal Analysis Part 1B Experimental Engineering Integrated Coursework Location: Baker Building South Wing Mechanics Lab Experiment A4 Signal Processing Fourier Signal Analysis Please bring the lab sheet from 1A experiment

More information

Experiment # 4. Frequency Modulation

Experiment # 4. Frequency Modulation ECE 416 Fall 2002 Experiment # 4 Frequency Modulation 1 Purpose In Experiment # 3, a modulator and demodulator for AM were designed and built. In this experiment, another widely used modulation technique

More information

BER Performance with GNU Radio

BER Performance with GNU Radio BER Performance with GNU Radio Digital Modulation Digital modulation is the process of translating a digital bit stream to analog waveforms that can be sent over a frequency band In digital modulation,

More information

HW 6 Due: November 3, 10:39 AM (in class)

HW 6 Due: November 3, 10:39 AM (in class) ECS 332: Principles of Communications 2015/1 HW 6 Due: November 3, 10:39 AM (in class) Lecturer: Prapun Suksompong, Ph.D. Instructions (a) ONE part of a question will be graded (5 pt). Of course, you do

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

Introduction to PSpice

Introduction to PSpice Electric Circuit I Lab Manual 4 Session # 5 Introduction to PSpice 1 PART A INTRODUCTION TO PSPICE Objective: The objective of this experiment is to be familiar with Pspice (learn how to connect circuits,

More information

UNIVERSITY OF WARWICK

UNIVERSITY OF WARWICK UNIVERSITY OF WARWICK School of Engineering ES905 MSc Signal Processing Module (2004) ASSIGNMENT 1 In this assignment, you will use the MATLAB package. In Part (A) you will design some FIR filters and

More information

Hands-On Digital Communication Episode 2: SystemVue Basics and Simulation of a Crystal Radio

Hands-On Digital Communication Episode 2: SystemVue Basics and Simulation of a Crystal Radio Hands-On Digital Communication Episode 2: SystemVue Basics and Simulation of a Crystal Radio By Dennis Silage, K3DS k3ds@arrl.net A hands-on computer simulation of digital communication geared toward Amateur

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 422G - Signals and Systems Laboratory Lab 3 FIR Filters Written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 19, 2015 Objectives:

More information

Laboratory 2: Amplitude Modulation

Laboratory 2: Amplitude Modulation Laboratory 2: Amplitude Modulation Cory J. Prust, Ph.D. Electrical Engineering and Computer Science Department Milwaukee School of Engineering Last Update: 4 December 2018 Contents 0 Laboratory Objectives

More information

3.2 Measuring Frequency Response Of Low-Pass Filter :

3.2 Measuring Frequency Response Of Low-Pass Filter : 2.5 Filter Band-Width : In ideal Band-Pass Filters, the band-width is the frequency range in Hz where the magnitude response is at is maximum (or the attenuation is at its minimum) and constant and equal

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Presentation May 2nd, 2006 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

Lab 12 Laboratory 12 Data Acquisition Required Special Equipment: 12.1 Objectives 12.2 Introduction 12.3 A/D basics

Lab 12 Laboratory 12 Data Acquisition Required Special Equipment: 12.1 Objectives 12.2 Introduction 12.3 A/D basics Laboratory 12 Data Acquisition Required Special Equipment: Computer with LabView Software National Instruments USB 6009 Data Acquisition Card 12.1 Objectives This lab demonstrates the basic principals

More information

Introduction to Modeling of Switched Mode Power Converters Using MATLAB and Simulink

Introduction to Modeling of Switched Mode Power Converters Using MATLAB and Simulink Introduction to Modeling of Switched Mode Power Converters Using MATLAB and Simulink Extensive introductory tutorials for MATLAB and Simulink, including Control Systems Toolbox and Simulink Control Design

More information

Experiment 6: Multirate Signal Processing

Experiment 6: Multirate Signal Processing ECE431, Experiment 6, 2018 Communications Lab, University of Toronto Experiment 6: Multirate Signal Processing Bruno Korst - bkf@comm.utoronto.ca Abstract In this experiment, you will use decimation and

More information

Signal Processing Toolbox

Signal Processing Toolbox Signal Processing Toolbox Perform signal processing, analysis, and algorithm development Signal Processing Toolbox provides industry-standard algorithms for analog and digital signal processing (DSP).

More information

ENGR 210 Lab 12: Sampling and Aliasing

ENGR 210 Lab 12: Sampling and Aliasing ENGR 21 Lab 12: Sampling and Aliasing In the previous lab you examined how A/D converters actually work. In this lab we will consider some of the consequences of how fast you sample and of the signal processing

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series

THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering. EIE2106 Signal and System Analysis Lab 2 Fourier series THE HONG KONG POLYTECHNIC UNIVERSITY Department of Electronic and Information Engineering EIE2106 Signal and System Analysis Lab 2 Fourier series 1. Objective The goal of this laboratory exercise is to

More information

Lab Report #10 Alex Styborski, Daniel Telesman, and Josh Kauffman Group 12 Abstract

Lab Report #10 Alex Styborski, Daniel Telesman, and Josh Kauffman Group 12 Abstract Lab Report #10 Alex Styborski, Daniel Telesman, and Josh Kauffman Group 12 Abstract During lab 10, students carried out four different experiments, each one showing the spectrum of a different wave form.

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 10 Single Sideband Modulation We will discuss, now we will continue

More information

LTSpice Basic Tutorial

LTSpice Basic Tutorial Index: I. Opening LTSpice II. Drawing the circuit A. Making Sure You Have a GND B. Getting the Parts C. Placing the Parts D. Connecting the Circuit E. Changing the Name of the Part F. Changing the Value

More information

HW 6 Due: November 9, 4 PM

HW 6 Due: November 9, 4 PM Name ID3 ECS 332: Principles of Communications 2018/1 HW 6 Due: November 9, 4 PM Lecturer: Prapun Suksompong, Ph.D. Instructions (a) This assignment has 10 pages. (b) (1 pt) Work and write your answers

More information

Innovative Communications Experiments Using an Integrated Design Laboratory

Innovative Communications Experiments Using an Integrated Design Laboratory Innovative Communications Experiments Using an Integrated Design Laboratory Frank K. Tuffner, John W. Pierre, Robert F. Kubichek University of Wyoming Abstract In traditional undergraduate teaching laboratory

More information

Use of the LTI Viewer and MUX Block in Simulink

Use of the LTI Viewer and MUX Block in Simulink Use of the LTI Viewer and MUX Block in Simulink INTRODUCTION The Input-Output ports in Simulink can be used in a model to access the LTI Viewer. This enables the user to display information about the magnitude

More information

Gentec-EO USA. T-RAD-USB Users Manual. T-Rad-USB Operating Instructions /15/2010 Page 1 of 24

Gentec-EO USA. T-RAD-USB Users Manual. T-Rad-USB Operating Instructions /15/2010 Page 1 of 24 Gentec-EO USA T-RAD-USB Users Manual Gentec-EO USA 5825 Jean Road Center Lake Oswego, Oregon, 97035 503-697-1870 voice 503-697-0633 fax 121-201795 11/15/2010 Page 1 of 24 System Overview Welcome to the

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY An Overview of Modulation Techniques: chapter 3.1 3.3.1 2 Introduction (3.1) Analog Modulation Amplitude Modulation Phase and

More information

ISDS210A ISDS210B. Multi VirAnalyzer. InstruStar Electronic Technology

ISDS210A ISDS210B. Multi VirAnalyzer. InstruStar Electronic Technology Multi VirAnalyzer ISDS210A(B) Model User Guide 2013-8-1 1 contents ISDS210A 1.Introduction Introduction 1 2.Feature Description 1 3.Software Installation 3 3. 1 Insta lla t io n pac kag e 3 3.2 Hardware

More information

DFT: Discrete Fourier Transform & Linear Signal Processing

DFT: Discrete Fourier Transform & Linear Signal Processing DFT: Discrete Fourier Transform & Linear Signal Processing 2 nd Year Electronics Lab IMPERIAL COLLEGE LONDON Table of Contents Equipment... 2 Aims... 2 Objectives... 2 Recommended Textbooks... 3 Recommended

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

LAB 2 SPECTRUM ANALYSIS OF PERIODIC SIGNALS

LAB 2 SPECTRUM ANALYSIS OF PERIODIC SIGNALS Eastern Mediterranean University Faculty of Engineering Department of Electrical and Electronic Engineering EENG 360 Communication System I Laboratory LAB 2 SPECTRUM ANALYSIS OF PERIODIC SIGNALS General

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

Introduction to NetLab ECT practical # 1

Introduction to NetLab ECT practical # 1 Introduction to NetLab ECT practical # 1 NetLab is the UniSA remote laboratory which you can access at URL: http://netlab.unisa.edu.au/. Its main page is shown in Figure 1. Click on the "Click Here to

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

Lab 1: First Order CT Systems, Blockdiagrams, Introduction

Lab 1: First Order CT Systems, Blockdiagrams, Introduction ECEN 3300 Linear Systems Spring 2010 1-18-10 P. Mathys Lab 1: First Order CT Systems, Blockdiagrams, Introduction to Simulink 1 Introduction Many continuous time (CT) systems of practical interest can

More information

Crest Factor Reduction

Crest Factor Reduction June 2007, Version 1.0 Application Note 396 This application note describes crest factor reduction and an Altera crest factor reduction solution. Overview A high peak-to-mean power ratio causes the following

More information

DIGITAL SIGNAL PROCESSING TOOLS VERSION 4.0

DIGITAL SIGNAL PROCESSING TOOLS VERSION 4.0 (Digital Signal Processing Tools) Indian Institute of Technology Roorkee, Roorkee DIGITAL SIGNAL PROCESSING TOOLS VERSION 4.0 A Guide that will help you to perform various DSP functions, for a course in

More information

Lab 3 FFT based Spectrum Analyzer

Lab 3 FFT based Spectrum Analyzer ECEn 487 Digital Signal Processing Laboratory Lab 3 FFT based Spectrum Analyzer Due Dates This is a three week lab. All TA check off must be completed prior to the beginning of class on the lab book submission

More information

Physics 115 Lecture 13. Fourier Analysis February 22, 2018

Physics 115 Lecture 13. Fourier Analysis February 22, 2018 Physics 115 Lecture 13 Fourier Analysis February 22, 2018 1 A simple waveform: Fourier Synthesis FOURIER SYNTHESIS is the summing of simple waveforms to create complex waveforms. Musical instruments typically

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Lab 1: FFT, Spectral Leakage, Zero Padding Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic amiri@mail.muni.cz

More information

COMMUNICATION LABORATORY

COMMUNICATION LABORATORY LAB 6: (PAM) PULSE AMPLITUDE MODULATION/DEMODULAT ION ON MATLAB/SIMULINK STUDENT NAME: STUDENT ID: SUBMISSION DATE : 15.04.2013 1/8 1. TECHNICAL BACKGROUND In pulse amplitude modulation, the amplitude

More information

UNIVERSITY OF WARWICK

UNIVERSITY OF WARWICK UNIVERSITY OF WARWICK School of Engineering ES905 MSc Signal Processing Module (2010) AM SIGNALS AND FILTERING EXERCISE Deadline: This is NOT for credit. It is best done before the first assignment. You

More information

Measuring Modulations

Measuring Modulations I N S T I T U T E O F C O M M U N I C A T I O N E N G I N E E R I N G Telecommunications Laboratory Measuring Modulations laboratory guide Table of Contents 2 Measurement Tasks...3 2.1 Starting up the

More information

EC310 Security Exercise 20

EC310 Security Exercise 20 EC310 Security Exercise 20 Introduction to Sinusoidal Signals This lab demonstrates a sinusoidal signal as described in class. In this lab you will identify the different waveform parameters for a pure

More information

EECS 216 Winter 2008 Lab 2: FM Detector Part II: In-Lab & Post-Lab Assignment

EECS 216 Winter 2008 Lab 2: FM Detector Part II: In-Lab & Post-Lab Assignment EECS 216 Winter 2008 Lab 2: Part II: In-Lab & Post-Lab Assignment c Kim Winick 2008 1 Background DIGITAL vs. ANALOG communication. Over the past fifty years, there has been a transition from analog to

More information

RF Blockset For Use with Simulink

RF Blockset For Use with Simulink RF Blockset For Use with Simulink Modeling Simulation Implementation User s Guide Version 1 How to Contact The MathWorks www.mathworks.com Web comp.soft-sys.matlab Newsgroup www.mathworks.com/contact_ts.html

More information

Spectrum Analysis: The FFT Display

Spectrum Analysis: The FFT Display Spectrum Analysis: The FFT Display Equipment: Capstone, voltage sensor 1 Introduction It is often useful to represent a function by a series expansion, such as a Taylor series. There are other series representations

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

EE 462G Laboratory #1 Measuring Capacitance

EE 462G Laboratory #1 Measuring Capacitance EE 462G Laboratory #1 Measuring Capacitance Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated 8/31/2007 by

More information

Lab 9 Fourier Synthesis and Analysis

Lab 9 Fourier Synthesis and Analysis Lab 9 Fourier Synthesis and Analysis In this lab you will use a number of electronic instruments to explore Fourier synthesis and analysis. As you know, any periodic waveform can be represented by a sum

More information

Data Acquisition Systems. Signal DAQ System The Answer?

Data Acquisition Systems. Signal DAQ System The Answer? Outline Analysis of Waveforms and Transforms How many Samples to Take Aliasing Negative Spectrum Frequency Resolution Synchronizing Sampling Non-repetitive Waveforms Picket Fencing A Sampled Data System

More information