Connecting an Alternative Energy Source to the Power Grid by a DSP Controlled DC/AC Inverter

Size: px
Start display at page:

Download "Connecting an Alternative Energy Source to the Power Grid by a DSP Controlled DC/AC Inverter"

Transcription

1 Inaugural IEEE PES Conference and Exposition in Africa Durban, South Africa, - July Connecting an Alternative Energy Source to the Power Grid by a DSP Controlled DC/AC Inverter Yuval Beck, Bishara Bishara, Dror Medini Department Interdisciplinary studies, Faculty of Engineering, University of Tel-Aviv P.O. Box 9, Tel-Aviv 9978, Israel Phone: , Fax: , beck@post.tau.ac.il Abstract In times when environmental issues such as global warming and air pollution are in focus, there are more objections to the use of conventional and nuclear power stations. The use of alternative energy sources such as water turbines, solar cells and wind turbines becomes essential for producing clean energy. In this paper, a novel design of a kw DC/AC Inverter is presented. The inverter is versatile, allowing for the connection of any DC alternative power source such as solar cells, wind turbines, etc, to the AC. Therefore, in peak load times, every household can perform as a clean micro power station. The inverter is implemented as a phase shift synchronous and it is controlled by means of a DSP. Sampling the voltage makes it possible for the Inverter to synchronize with the at a zero angle. Then the DSP synthesizes the AC voltage wave form to be shifted, with respect to the, with a software controllable leading angle. This configuration makes it possible to transfer the clean energy omitted by the alternative power source to the. Energy contribution to the is possible by connecting synchronous s that have 8% efficiency. In addition, the inverter is designed for low cost and its parameters are easy to control via computer software. I. INTRODUCTION In recent years the cost of electricity has risen. Forecasts show that the price will continue to rise drastically. The various reasons for these price increases include the prices of oil, gas and coal, the population growth and manufacturing costs. At times when an electric company has to provide peak power, the costs are even higher. This is due to the increasing residual production costs of the operation of non effective reserve power stations and the losses in distribution lines and transformers that rise in the second power of the current. Moreover, there are rising objections to the operation of conventional and nuclear power station for environmental reasons. The solution to the above mentioned is clean energy produced by solar cells, wind turbines, fuel cells or water turbines. These various energy sources can be stationed in every household and can contribute clean energy to the main power. Connecting a large number of small "clean power stations" to the results in:. reducing the manufacturing costs to the power station;. as a result of the return energy, the power station deals with a reduced load, which means reduction of power losses on the lines;. using a large scale of distributed generation, results in redundancy that increases the reliability of the system;. decreasing the consumers electric bill. These clean energy sources can be connected to a kw DC/AC inverter directly or through a DC bus. The inverter can be connected simply to one of the power sockets in the house and the system operates as a that contributes power to the main. In this paper, a novel design of a kw DC/AC Inverter is presented. The inverter is designed to work as a phase shift synchronous controlled by a DSP. The inverter can be connected to any DC alternative power source. The paper presents the theory, technology and the circuit of the inverter. II. THEORETICAL CONSIDERATIONS Designing a circuit that perform as an interface between a general DC source and the AC power, demands understanding of DC/DC switched mode converters theory, AC/AC conversion and synchronization theory and techniques. The system is based on an H-bridge of power MOSFETs that is synchronized to the power. The control of the bridge is done by a Motorola DSP board DSPF8. The DSP samples the voltage of the and produces a synchronized PWM modulated signal to the MOSFETs gates, generating phase shifted sine wave at the MOSFETs bridge terminals. The synchronization process is based on a well known standard theory. For proper and smooth synchronization three conditions must be satisfied. The voltage of the (clean energy source) must be equal to the s voltage;. The frequencies of the two sources must be equal and. The phase shift between the sources must be zero (for a three phase application phase order must be satisfied too). All these conditions are checked and the generated voltage satisfies these conditions so the inverter can be synchronized to the. After synchronization occurred the phase is shifted as shown in Fig : //$. IEEE

2 III. THE INVERTER DESIGN The inverter presented here is a DC/AC inverter, controlled by a DSP. The inverter is designed to invert different DC voltages (dependent on the clean energy source it is connected to), to a nominal AC voltage synchronized to the power at first. Then, the phase is shifted so there is power flow to the. At first stage a W inverter was designed and built. Later on a kw inverter is to be implemented. A. Block diagram Fig.. The shifted waveform between the and. The inverter consists of four main sub-systems:. AC/AC converter;. DSP board DSPF8;. H-bridge;. Boost converter. The block diagram is presented in Fig. The phase shift between the voltage of the and the voltage wave form of the results in energy flow from the to the. (See the voltage difference between points A and B). The system can be looked at as a general power flow problem through a series impedance. as seen in Fig. E I E AC Clean power dc AC/AC converter BOOST Converter A/D MOTOROLA DSP F8 PWM H-Bridge Fig.. Block diagram of the circuit. Fig.. The connection of the to the. Then the current flow to the can be easily calculated as: where: E I = E () E = E sin( ωt) () E = E sin( ωt δ) the total power flow back to the is then: E P = sinδ () this is with total agreement with the theory of synchronous machines. The clean power DC source is connected to the boost converter. The converter steps up the voltage to a constant voltage which is determined by the sampled AC voltage. The stepped up voltage is then supplied to the H-bridge unit. This unit produces AC voltage that is synchronized with the AC. The H-bridge performance is controlled by the PWM signal generated by the DSP unit. The AC/AC converter is an interface between the power and the DSP unit. It transforms the voltage from V down to the maximum input voltage allowed by the A/D unit in the DSP i.e. V. this converter is a simple transformer with additional voltage divider. The DSP board in this system is used for sampling the voltage of the power, for data processing and generating a PWM signal for controlling the H-bridge. The DSP is a MOTOROLA F8. The DSP was programmed with Metrowerks Code Warrior software. The main circuits of this system are the boost converter and the H-bridge circuits. In the next sections these circuits and their theory is presented.

3 J In IN C R k D.u u N9 T 8 R 7 TRAN_HM D DIODE ZENER (V) 7 U8 Vcc Drive Output R9 Q IRF8 D MUR Out C u J Out ISNS Current Sense Input 8 R7 K R9. n C R k ISET Gnd Compensation C.8u VFB n C R M R k R k Fig.. the boost converter circuit B. The Boost Converter The input DC voltage from the alternative power source is low in amplitude (much lower than the RMS voltage of the ). Therefore, a switched mode boost converter is used for stepping up the low voltage to the nominal voltage. The boost circuit is presented in Fig.. The converter is based on a U8 controller and the converter is a non isolated one, with efficiency of up to 9% and active power factor correction. C. The H-Bridge The H-bridge is the unit that converts the PWM signal generated by the DSP to a V sinusoidal voltage wave. The unit includes the drivers and operates as follows: The PWM modulated signal enters the drivers. For quick operation of the power MOSFETS it is amplified and distributed to the upper and lower MOSFETs gates. The circuit is designed in a manner that at a given time only two FETs on opposite diagonals are switched on. Moreover, we can look at the circuit in a way that we have a positive circuit when Q and Q are switched on and a negative circuit when Q and Q are switched on. When the positive circuit is activated the voltage is pulled up and when the negative circuit is activated the voltage is pulled down. For a noise free sinusoidal wave form at the output, inductors and capacitor are placed. The switching of the H-Bridge is done in a bipolar switched mode as explained ahead. (See Fig..) Fig.. a schematic standard H-Bridge. In Fig.. a standard H-Bridge configuration is presented. In practice the switches are IRFP/TO power MOSFETS. The trigger for the FETs gates is a PWM signal, generated by a reference voltage and a triangle wave as shown in Fig.. A bipolar mode means that both circuits (the positive and the negative as stated before) are switched simultaneously by opposite phases, this means that the inputs of switches A and A are controlled by the V control signal, while switches B and B are controlled by the inverted signal of V control. The load voltage varies accordingly and is in the range of V CC and V CC. (see Fig..).

4 Fig.. wave forms of a bipolar switching. IV. EPERIMENTAL SETUP AND RESULTS A W model was built and the above mentioned units were integrated. The circuit was powered with external power supplies. These power supplies contributed the necessary voltage to the inverter's circuits and emulated the alternative DC clean power source. The inverter's output was connected to a socket of the power. The first experiment was to check whether there is power flow from the inverter to the power. A current meter was connected to the line and it showed current flow, which means that power is flowing to the. Next to control this power flow a program was written for the DSP to control the phase shift between the s voltage and the inverter generated voltage. To calculate this power from the resulting voltage and current measurements we first define the s voltage as in eq(). Then the current is defined as: OUT C u OUT VR U 8 9 7u Hin NC HIN SD HO VB VS NC 7 C u D MBR Q IRFP/TO L INDUCTOR Q IRFP/TO L INDUCTOR C u D MBR LO COM U NC N VSS LIN SD Lin Lin LIN VSS COM C u Q IRFP/TO Q IRFP/TO C u VS VB HIN 9 Hin N LO 7 8 HO NC 7u R R IN IN Fig. 7. The H-bridge circuit The DSP generates a single PWM signal. To switch the H- bridge in a bipolar mode a logic circuit was designed for generating two inverted PWM signals. These signals are injected to the HIN and LIN inputs of the drivers. The logic circuit was also designed to generate dead time between switching to avoid the problem of overlapping between the positive and the negative circuits. This overlapping can cause a substantial power loss and synchronization difficulties. The H-bridge circuit with the supporting drivers is shown in Fig.7. I = I sin( ωt δ) The average power is then: ()

5 T P = i() t v() t dt = T T = EI sin( t)sin( t ) dt T ω ω δ = () = EI The results of the experiments are shown next. First a phase shift was programmed. The resulting voltage waves are presented in Fig. 8. Table I. The measured voltages and currents in respect to different phase shift angles. power current voltage Phase shift 8W.A V. W.A V 77W.9A V 7. 7W.9A V W 8.A 88V Fig. 8. voltage wave of the inverter and with phase shift. V.DISCUSSION AND CONCLUSIONS The AC/DC Inverter concept, design and experimental results are presented in this paper. The research approach was to use clean energy sources such as, solar cells, wind or water turbines, fuel cells etc. for contributing power to the main. The circuit was designed and built to generate AC voltage synchronized and phase shifted to the. The circuit is versatile due to the fact that the control over the phase shift parameter, the sample rate and the PWM, are all controlled by computer software. The controller of these parameters is the DSP. The results show that power was flowing from the inverter to the. The power got to up to W at a angle. In the future a -.kw inverter is to be built and clean energy sources will be connected to it. ACKNOWLEDGMENT The authors wish to thank Freescale semiconductors for their technical support and providing the DSP evaluation board. REFERENCES Fig. 9. voltage wave of the and the current with phase shift. From Fig.8 it is clearly shown that the generated synthesized inverter voltage wave is synchronized with the voltage of the power. Next the current at phase shift was measured. The results are shown in Fig.9. The current measured in these conditions was.a. other voltages and phase shifts were measured and some of the results are summarized in table I. [] Sutanto D. Alternative energy resource from electric transportation. [Conference Paper] st International Conference on Power Electronics Systems and Applications. Proceedings (IEEE Cat. No.E98). Hong Kong Polytechnic Univ., pp.9-. Hong Kong, China. [] Poh Chiang Loh, Holmes DG. A variable band universal flux/charge modulator for VSI and CSI modulation. [Journal Paper] IEEE Transactions on Industry Applications, vol.8, no., May-June, pp.9-7. Publisher: IEEE, USA. [] Twining E, Holmes DG. Grid current regulation of a three-phase voltage source inverter with an LCL input filter. [Journal Paper] IEEE Transactions on Power Electronics, vol.8, no., May, pp Publisher: IEEE, USA.

Development of DC-AC Link Converter for Wind Generator

Development of DC-AC Link Converter for Wind Generator Development of DC-AC Link Converter for Wind Generator A.Z. Ahmad Firdaus *, Riza Muhida *, Ahmed M. Tahir *, A.Z.Ahmad Mujahid ** * Department of Mechatronics Engineering, International Islamic University

More information

3KW Pure Sine Wave Inverter Design for Grid Tie System

3KW Pure Sine Wave Inverter Design for Grid Tie System 3KW Pure Sine Wave Inverter Design for Grid Tie System Soe Wai Tun, Nay Win Zaw, Theingi Win Hlaing Department of Electronic Engineering West Yangon Technological University Abstract - Stand-alone renewable

More information

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

CHAPTER 3 H BRIDGE BASED DVR SYSTEM 23 CHAPTER 3 H BRIDGE BASED DVR SYSTEM 3.1 GENERAL The power inverter is an electronic circuit for converting DC power into AC power. It has been playing an important role in our daily life, as well as

More information

Application Note AN-1075

Application Note AN-1075 Application Note AN-1075 Obtaining Low THD and high PF without A PFC By Cecilia Contenti and Peter Green Table of Contents Page I. Introduction...1 II. Test Results...1 III. Electrical Circuit...2 IV.

More information

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network A Three-Phase AC-AC Buck-Boost Converter using Impedance Network Punit Kumar PG Student Electrical and Instrumentation Engineering Department Thapar University, Patiala Santosh Sonar Assistant Professor

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

An Innovative Option for Electrical Energy Conservation with a Step-Up DCto-DC Power Converter Based Grid Tie Inverter

An Innovative Option for Electrical Energy Conservation with a Step-Up DCto-DC Power Converter Based Grid Tie Inverter An Innovative Option for Electrical Energy Conservation with a Step-Up DCto-DC Power Converter Based Grid Tie Inverter Zaber Hasan Mahmud 1, Dr. Md. Kamrul Hassan 2 Department of Electrical & Electronic

More information

Tel ,

Tel , Optimization and Simulation of IGBT Inverter Using PWM Technique I. Etier a b, Anas Al Tarabsheh a c, R. Alqaisi a a Hashemite University, Electrical Engineering Dept., 13115 Zarqa, Jordan. Tel +962799050723,

More information

Design of Three Phase PWM Voltage Source Inverter for Induction Heater

Design of Three Phase PWM Voltage Source Inverter for Induction Heater Design of Three Phase PWM Voltage Source Inverter for Induction Heater Divya.S.R. 1, Ashwini.K.V.2, Nandish B.M. 3 1,2 UG Student, 3 Assistant Proffesor Department of EEE,JIT,Karnataka,India Abstract:

More information

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Suroso* (Nagaoka University of Technology), and Toshihiko Noguchi (Shizuoka University) Abstract The paper proposes

More information

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter

Simulation and Analysis of a Multilevel Converter Topology for Solar PV Based Grid Connected Inverter Smart Grid and Renewable Energy, 2011, 2, 56-62 doi:10.4236/sgre.2011.21007 Published Online February 2011 (http://www.scirp.org/journal/sgre) Simulation and Analysis of a Multilevel Converter Topology

More information

Cost effective resonant DC-DC converter for hi-power and wide load range operation.

Cost effective resonant DC-DC converter for hi-power and wide load range operation. Cost effective resonant DC-DC converter for hi-power and wide load range operation. Alexander Isurin(sashai@vanner.com) and Alexander Cook(alecc@vanner.com) Vanner Inc, Hilliard, Ohio Abstract- This paper

More information

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 100 CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM 7.1 INTRODUCTION An efficient Photovoltaic system is implemented in any place with minimum modifications. The PV energy conversion

More information

MIC2196 OSRAM LED LIGHTING

MIC2196 OSRAM LED LIGHTING MIC2196 OSRAM LED LIGHTING Osram OSTAR : Micrel LED Driver Advancements Introduction Today s high current LEDs are finding applications that replace conventional lamps including filament and fluorescent

More information

Design and Implementation of Quasi-Z-Source Inverter for Off-grid Photovoltaic Systems

Design and Implementation of Quasi-Z-Source Inverter for Off-grid Photovoltaic Systems Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 3, March 2015,

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

Modular Grid Connected Photovoltaic System with New Multilevel Inverter

Modular Grid Connected Photovoltaic System with New Multilevel Inverter Modular Grid Connected Photovoltaic System with New Multilevel Inverter Arya Sasi 1, Jasmy Paul 2 M.Tech Scholar, Dept. of EEE, ASIET, Kalady, Mahatma Gandhi University, Kottayam, Kerala, India 1 Assistant

More information

The Selective Harmonic Elimination Technique for Harmonic Reduction of Multilevel Inverter Using PSO Algorithm

The Selective Harmonic Elimination Technique for Harmonic Reduction of Multilevel Inverter Using PSO Algorithm The Selective Harmonic Elimination Technique for Harmonic Reduction of Multilevel Inverter Using PSO Algorithm Maruthupandiyan. R 1, Brindha. R 2 1,2. Student, M.E Power Electronics and Drives, Sri Shakthi

More information

Chapter 1: Introduction

Chapter 1: Introduction 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction to Power Processing Power input Switching converter

More information

SINGLE PHASE MULTI STRING FIVE LEVEL INVERTER FOR DISTRIBUTED ENERGY SOURCES

SINGLE PHASE MULTI STRING FIVE LEVEL INVERTER FOR DISTRIBUTED ENERGY SOURCES Vol. 2, No. 4, April 23, PP: 38-43, ISSN: 2325-3924 (Online) Research article SINGLE PHASE MULTI STRING FIVE LEVEL INVERTER FOR DISTRIBUTED ENERGY SOURCES A. Suga, Mrs. K. Esakki Shenbaga Loga 2. PG Scholar,

More information

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER

CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 8 CHAPTER 6 IMPLEMENTATION OF FPGA BASED CASCADED MULTILEVEL INVERTER 6.1 INTRODUCTION In this part of research, a proto type model of FPGA based nine level cascaded inverter has been fabricated to improve

More information

Efficiency Optimized, EMI-Reduced Solar Inverter Power Stage

Efficiency Optimized, EMI-Reduced Solar Inverter Power Stage 12th WSEAS International Conference on CIRCUITS, Heraklion, Greece, July 22-24, 28 Efficiency Optimized, EMI-Reduced Solar Inverter Power Stage K. H. Edelmoser, Institute of Electrical Drives and Machines

More information

University of Washington Department of Electrical Engineering EE 351: Introduction to Energy Devices and Systems. Lab 1: Power Electronic Converters

University of Washington Department of Electrical Engineering EE 351: Introduction to Energy Devices and Systems. Lab 1: Power Electronic Converters University of Washington Department of Electrical Engineering EE 351: Introduction to Energy Devices and Systems Lab 1: Power Electronic Converters Introduction With the development of power electronic

More information

Performance comparison of Quasi-Z-Source inverter with conventional Z-source inverter

Performance comparison of Quasi-Z-Source inverter with conventional Z-source inverter International Journal of Electrical Engineering. ISSN 0974-2158 Volume 8, Number 3 (2015), pp. 225-238 International Research Publication House http://www.irphouse.com Performance comparison of Quasi-Z-Source

More information

An Interleaved Flyback Inverter for Residential Photovoltaic Applications

An Interleaved Flyback Inverter for Residential Photovoltaic Applications An Interleaved Flyback Inverter for Residential Photovoltaic Applications Bunyamin Tamyurek and Bilgehan Kirimer ESKISEHIR OSMANGAZI UNIVERSITY Electrical and Electronics Engineering Department Eskisehir,

More information

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

ELECTRONIC GIANT. EG3013 Datasheet. Half-Bridge Driver. Copyright 2012 by EGmicro Corporation REV 1.0

ELECTRONIC GIANT. EG3013 Datasheet. Half-Bridge Driver. Copyright 2012 by EGmicro Corporation REV 1.0 ELECTRONIC GIANT EG33 Datasheet Copyright 22 by EGmicro Corporation REV. EG33 datasheet Contents. Features... 2 2. General Description... 2 3. Applications... 2 4. Device Information... 3 4.. Pin map...

More information

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion Mrs.Nagajothi Jothinaga74@gmail.com Assistant Professor Electrical & Electronics Engineering Sri Vidya College of Engineering

More information

A Half Bridge Inverter with Ultra-Fast IGBT Module Modeling and Experimentation

A Half Bridge Inverter with Ultra-Fast IGBT Module Modeling and Experimentation ELECTRONICS, VOL. 13, NO. 2, DECEMBER 29 51 A Half Bridge Inverter with Ultra-Fast IGBT Module Modeling and Experimentation Dinko Vukadinović, Ljubomir Kulišić, and Mateo Bašić Abstract This paper presents

More information

Performance Analysis of Modified Z- Source Inverter for Renewable Energy System Using Modified Space Vector Pulse Width Modulation

Performance Analysis of Modified Z- Source Inverter for Renewable Energy System Using Modified Space Vector Pulse Width Modulation Performance Analysis of Modified Z- Source Inverter for Renewable Energy System Using Modified Space Vector Pulse Width Modulation K. Mahendran Department of Electrical and Electronics Engineering, Vivekananda

More information

ELECTRONIC GIANT. EG3012 Datasheet. Half-Bridge Driver. Copyright 2012 by EGmicro Corporation REV 1.0

ELECTRONIC GIANT. EG3012 Datasheet. Half-Bridge Driver. Copyright 2012 by EGmicro Corporation REV 1.0 ELECTRONIC GIANT EG32 Datasheet Copyright 22 by EGmicro Corporation REV. EG32 datasheet Contents. Features... 2 2. General Description... 2 3. Applications... 2 4. Device Information... 3 4.. Pin map...

More information

ELECTRONIC GIANT. EG3113 Datasheet. Half-Bridge Driver. Copyright 2017 by EGmicro Corporation REV 1.0

ELECTRONIC GIANT. EG3113 Datasheet. Half-Bridge Driver. Copyright 2017 by EGmicro Corporation REV 1.0 ELECTRONIC GIANT EG33 Datasheet Copyright 27 by EGmicro Corporation REV. EG33 datasheet Contents. Features... 2 2. General Description... 2 3. Applications... 2 4. Device Information... 3 4.. Pin map...

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

Modelling of Five-Level Inverter for Renewable Power Source

Modelling of Five-Level Inverter for Renewable Power Source RESEARCH ARTICLE OPEN ACCESS Modelling of Five-Level Inverter for Renewable Power Source G Vivekananda*, Saraswathi Nagla**, Dr. A Srinivasula Reddy *Assistant Professor, Electrical and Computer Department,

More information

Push-pull resonant DC-DC isolated converter

Push-pull resonant DC-DC isolated converter BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 61, No. 4, 2013 DOI: 10.2478/bpasts-2013-0082 Dedicated to Professor M.P. Kaźmierkowski on the occasion of his 70th birthday Push-pull

More information

IX Evaluation Board User s Guide INTEGRATED CIRCUITS DIVISION. 1. Introduction. 1.1 Features:

IX Evaluation Board User s Guide INTEGRATED CIRCUITS DIVISION. 1. Introduction. 1.1 Features: IX844 Evaluation Board User s Guide. Introduction IXYS Integrated Circuits Division's IX844 evaluation board contains all the necessary circuitry to demonstrate the features of a high voltage gate driver

More information

Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles

Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles Generating Isolated Outputs in a Multilevel Modular Capacitor Clamped DC-DC Converter (MMCCC) for Hybrid Electric and Fuel Cell Vehicles Faisal H. Khan 1, Leon M. Tolbert 2 1 Electric Power Research Institute

More information

ECE1750, Spring dc-ac power conversion

ECE1750, Spring dc-ac power conversion ECE1750, Spring 2018 dc-ac power conversion (inverters) 1 H-Bridge Inverter Basics Creating AC from DC Single-phase H-bridge bid (voltage Switching rules source) inverter topology: Either A+ or A is closed,

More information

Integrated Power Hybrid IC for Appliance Motor Drive Applications

Integrated Power Hybrid IC for Appliance Motor Drive Applications Integrated Power Hybrid IC for Appliance Motor Drive Applications PD-97277 Rev A IRAM336-025SB Series 3 Phase Inverter HIC 2A, 500V Description International Rectifier s IRAM336-025SB is a multi-chip Hybrid

More information

A Fuel Cell Fed Single Stage Boost Inverter with Unique Impedance Network

A Fuel Cell Fed Single Stage Boost Inverter with Unique Impedance Network A Fuel Cell Fed Single Stage Boost Inverter with Unique Impedance Network K.Sruthi 1, C.B Saravanan 2 PG Student [PE&ED], Dept. of EEE, SVCET, Chittoor, Andhra Pradesh, India 1 Associate professor, Dept.

More information

Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application

Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application Design of Single Phase Pure Sine Wave Inverter for Photovoltaic Application Yash Kikani School of Technology, Pandit Deendayal Petroleum University, India yashkikani004@gmail.com Abstract:- This paper

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction Power semiconductor devices constitute the heart of the modern power electronics, and are being extensively used in power electronic converters in the form of a

More information

Control of Power Converters for Distributed Generation

Control of Power Converters for Distributed Generation Mechatronics Industrial Advisory Board 2004 Control of Power Converters for Distributed Generation Ph.D. Student: Min Dai Advisor: Prof. Ali Keyhani Department of Electrical and Computer Engineering The

More information

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application Vol.3, Issue.1, Jan-Feb. 2013 pp-530-537 ISSN: 2249-6645 Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application B.D.S Prasad, 1 Dr. M Siva Kumar 2 1 EEE, Gudlavalleru Engineering

More information

Power Factor Correction of LED Drivers with Third Port Energy Storage

Power Factor Correction of LED Drivers with Third Port Energy Storage Power Factor Correction of LED Drivers with Third Port Energy Storage Saeed Anwar Mohamed O. Badawy Yilmaz Sozer sa98@zips.uakron.edu mob4@zips.uakron.edu ys@uakron.edu Electrical and Computer Engineering

More information

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER

CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 17 CHAPTER 2 DESIGN AND MODELING OF POSITIVE BUCK BOOST CONVERTER WITH CASCADED BUCK BOOST CONVERTER 2.1 GENERAL Designing an efficient DC to DC buck-boost converter is very much important for many real-time

More information

HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER

HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER Data Sheet No. 60206 HIGH SPEED, 100V, SELF OSCILLATING 50% DUTY CYCLE, HALF-BRIDGE DRIVER Features Simple primary side control solution to enable half-bridge DC-Bus Converters for 48V distributed systems

More information

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter 3.1 Introduction DC/DC Converter efficiently converts unregulated DC voltage to a regulated DC voltage with better efficiency and high power density.

More information

Abstract. Keywords: Electric vehicle; Modelling; Pulse Width Modulation (PWM) inverters; MOSFET circuits.

Abstract. Keywords: Electric vehicle; Modelling; Pulse Width Modulation (PWM) inverters; MOSFET circuits. Design and Simulate Single Phase Inverter for Smoke Free Cars Used in Golf Course J. Tavalaei, A. A. Mohd Zin, M. Moradi Faculty of Electrical Engineering, Universiti Teknologi Malaysia Abstract It is

More information

STUDY OF CIRCULATING CURRENT PHENOMENA IN MULTIPLE PARALLEL INVERTERS OPERATING IN MICROGRID

STUDY OF CIRCULATING CURRENT PHENOMENA IN MULTIPLE PARALLEL INVERTERS OPERATING IN MICROGRID STUDY OF CIRCULATING CURRENT PHENOMENA IN MULTIPLE PARALLEL INVERTERS OPERATING IN MICROGRID 1 RUPALI P. NALAWADE, 2 PRASAD M. JOSHI 1 Student, 2 Professor, Department of electrical engineering, Government

More information

Analysis of Current Source PWM Inverter for Different Levels with No-Insulating Switching Device

Analysis of Current Source PWM Inverter for Different Levels with No-Insulating Switching Device Analysis of Current Source PWM Inverter for Different Levels with No-Insulating Switching Device Kumar Abhishek #1, K.Parkavi Kathirvelu *2, R.Balasubramanian #3 Department of Electrical & Electronics

More information

PULSE CONTROLLED INVERTER

PULSE CONTROLLED INVERTER APPLICATION NOTE PULSE CONTROLLED INVERTER by J. M. Bourgeois ABSTRACT With the development of insulated gate transistors, interfacing digital control with a power inverter is becoming easier and less

More information

Survey on Nanogrid Converters

Survey on Nanogrid Converters Indian Journal of Science and Technology, Vol 8(24), DOI: 10.17485/ijst/2015/v8i24/80880, September 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Survey on Nanogrid Converters I. S. Sree Devi

More information

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES

A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES A NOVEL APPROACH TO ENHANCE THE POWER QUALITY USING CMLI BASED CUSTOM POWER DEVICES 1 M. KAVITHA, 2 A. SREEKANTH REDDY & 3 D. MOHAN REDDY Department of Computational Engineering, RGUKT, RK Valley, Kadapa

More information

Application of GaN Device to MHz Operating Grid-Tied Inverter Using Discontinuous Current Mode for Compact and Efficient Power Conversion

Application of GaN Device to MHz Operating Grid-Tied Inverter Using Discontinuous Current Mode for Compact and Efficient Power Conversion IEEE PEDS 2017, Honolulu, USA 12-15 December 2017 Application of GaN Device to MHz Operating Grid-Tied Inverter Using Discontinuous Current Mode for Compact and Efficient Power Conversion Daichi Yamanodera

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: [Chakradhar et al., 3(6): June, 2014] ISSN:

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: [Chakradhar et al., 3(6): June, 2014] ISSN: IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Development of TMS320F2810 DSP Based Bidirectional buck-boost Chopper Mr. K.S. Chakradhar *1, M.Ayesha siddiqa 2, T.Vandhana 3,

More information

FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series

FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series FSB50760SF, FSB50760SFT Motion SPM 5 SuperFET Series Features UL Certified No. E209204 (UL1557) 600 V R DS(on) = 530 m Max SuperFET MOSFET 3- Phase with Gate Drivers and Protection Built-in Bootstrap Diodes

More information

NPTEL

NPTEL NPTEL Syllabus Pulse width Modulation for Power Electronic Converters - Video course COURSE OUTLINE Converter topologies for AC/DC and DC/AC power conversion, overview of applications of voltage source

More information

Inverter topologies for photovoltaic modules with p-sim software

Inverter topologies for photovoltaic modules with p-sim software Inverter topologies for photovoltaic modules with p-sim software Anand G. Acharya, Brijesh M. Patel, Kiran R. Prajapati 1. Student, M.tech, power system, SKIT, Jaipur, India, 2. Assistant Professor, ADIT,

More information

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS 2.1 Introduction Conventional diode rectifiers have rich input harmonic current and cannot meet the IEC PFC regulation,

More information

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters Asian Power Electronics Journal, Vol. 1, No. 1, Aug 7 Reduced PWM Harmonic Distortion for a New Topology of Multi Inverters Tamer H. Abdelhamid Abstract Harmonic elimination problem using iterative methods

More information

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 59 CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER 4.1 Conventional Method A buck-boost converter circuit is a combination of the buck converter topology and a boost converter

More information

Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch

Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch Abstract F.D. Wijaya, T. Isobe, R. Shimada Tokyo Institute of Technology,

More information

Single-Stage Power Electronic Converters with Combined Voltage Step-Up/Step-Down Capability

Single-Stage Power Electronic Converters with Combined Voltage Step-Up/Step-Down Capability Western University Scholarship@Western Electronic Thesis and Dissertation Repository January 2013 Single-Stage Power Electronic Converters with Combined Voltage Step-Up/Step-Down Capability Navid Golbon

More information

Design and simulation of AC-DC constant current source with high power factor

Design and simulation of AC-DC constant current source with high power factor 2nd Annual International Conference on Electronics, Electrical Engineering and Information Science (EEEIS 26) Design and simulation of AC-DC constant current source with high power factor Hong-Li Cheng,

More information

TYPICALLY, a two-stage microinverter includes (a) the

TYPICALLY, a two-stage microinverter includes (a) the 3688 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 33, NO. 5, MAY 2018 Letters Reconfigurable LLC Topology With Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems Ming Shang, Haoyu

More information

Optimum Fuel Cell Utilization with Multilevel Inverters

Optimum Fuel Cell Utilization with Multilevel Inverters th Annual IEEE Power Electronics Specialists Conference Aachen, Germany, Optimum Utilization with Multilevel Inverters Burak Ozpineci Oak Ridge National Laboratory Knoxville, TN USA Email: burak@ieee.org

More information

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances IEEE PEDS 2011, Singapore, 5-8 December 2011 A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances N. Sanajit* and A. Jangwanitlert ** * Department of Electrical Power Engineering, Faculty

More information

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System

A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System 7 International Journal of Smart Electrical Engineering, Vol.3, No.2, Spring 24 ISSN: 225-9246 pp.7:2 A Fuzzy Controlled PWM Current Source Inverter for Wind Energy Conversion System Mehrnaz Fardamiri,

More information

Analysis of Harmonic Reduction for Synchronized Phase-shifted Parallel PWM Inverters with Current Sharing Reactors

Analysis of Harmonic Reduction for Synchronized Phase-shifted Parallel PWM Inverters with Current Sharing Reactors 1 Analysis of Harmonic Reduction for Synchronized Phase-shifted Parallel PWM Inverters with Current Sharing Reactors Nacer Benaifa*, Hussain Bierk*, Abu Hamed M. A. Rahim** and Ed Nowicki* Abstract--Renewable

More information

POWER ISIPO 29 ISIPO 27

POWER ISIPO 29 ISIPO 27 SI NO. TOPICS FIELD ISIPO 01 A Low-Cost Digital Control Scheme for Brushless DC Motor Drives in Domestic Applications ISIPO 02 A Three-Level Full-Bridge Zero-Voltage Zero-Current Switching With a Simplified

More information

Development of a Single-Phase PWM AC Controller

Development of a Single-Phase PWM AC Controller Pertanika J. Sci. & Technol. 16 (2): 119-127 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Development of a Single-Phase PWM AC Controller S.M. Bashi*, N.F. Mailah and W.B. Cheng Department of

More information

Modeling and Simulation of Synchronizing System for Grid-Connected PV/Wind Hybrid Generation

Modeling and Simulation of Synchronizing System for Grid-Connected PV/Wind Hybrid Generation Modeling and Simulation of Synchronizing System for Grid-Connected PV/Wind Hybrid Generation M.I.M. RIDZUAN, M. IMRAN HAMID AND MAKBUL ANWARI Department of Energy Conversion Engineering Faculty of Electrical

More information

DESIGN OF A WIND POWER GENERATION SYSTEM USING A PERMANENT MAGNET SYNCHRONOUS MACHINE, A BOOST REGULATOR AND A TRANSFORMER-LESS STEP DOWN CIRCUIT

DESIGN OF A WIND POWER GENERATION SYSTEM USING A PERMANENT MAGNET SYNCHRONOUS MACHINE, A BOOST REGULATOR AND A TRANSFORMER-LESS STEP DOWN CIRCUIT DESIGN OF A WIND POWER GENERATION SYSTEM USING A PERMANENT MAGNET SYNCHRONOUS MACHINE, A BOOST REGULATOR AND A TRANSFORMER-LESS STEP DOWN CIRCUIT Sameer Ahmed Khan Mojlish Lecturer, Department of Electrical

More information

Single Phase to Three Phase Converter

Single Phase to Three Phase Converter Single Phase to Three Phase Converter Naung Cho Wynn, and Tun Lin naing Abstract A new single phase to three phase converter topology for small industries is presented in this paper: Phase converter, include

More information

Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN

Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN U. Shajith Ali and V. Kamaraj Department of Electrical and Electronics Engineering, SSN College of Engineering, Chennai, Tamilnadu,

More information

PV PANEL WITH CIDBI (COUPLED INDUCTANCE DOUBLE BOOST TOPOLOGY) DC-AC INVERTER

PV PANEL WITH CIDBI (COUPLED INDUCTANCE DOUBLE BOOST TOPOLOGY) DC-AC INVERTER PV PANEL WITH CIDBI (COUPLED INDUCTANCE DOUBLE BOOST TOPOLOGY) DC-AC INVERTER Mr.Thivyamoorthy.S 1,Mrs.Bharanigha 2 Abstract--In this paper the design and the control of an individual PV panel dc-ac converter

More information

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER Eduardo Valmir de Souza and Ivo Barbi Power Electronics Institute - INEP Federal University of Santa Catarina - UFSC www.inep.ufsc.br eduardovs@inep.ufsc.br,

More information

COMPARATIVE HARMONIC ANALYSIS OF VSI FED INDUCTION MOTOR DRIVE

COMPARATIVE HARMONIC ANALYSIS OF VSI FED INDUCTION MOTOR DRIVE Volume-2, Issue-5, May-214 COMPARATIVE HARMONIC ANALYSIS OF VSI FED INDUCTION MOTOR DRIVE 1 NIKHIL D. PATNE, 2 SUSHANT S. ANGRE, 3 MONALISA DASH Student of Electrical Engineering Mumbai University, Student

More information

Automatic Motor Detection and Control System (A.M.D.A.C.S.)

Automatic Motor Detection and Control System (A.M.D.A.C.S.) Automatic Motor Detection and Control System (A.M.D.A.C.S.) Mr. Prasad U. Vaidya UG student, Dept of Electronics & Telecommunication MMIT, Pune, India Email: prasad.vaidya265@gmail.com Mr. Santosh B. Tambe

More information

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles

Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Hybrid Cascaded H-bridges Multilevel Motor Drive Control for Electric Vehicles Zhong Du, Leon M. Tolbert,, John N. Chiasson, Burak Ozpineci, Hui Li 4, Alex Q. Huang Semiconductor Power Electronics Center

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

LSI/CSI LS8292 LS8293. PRELIMINARY MICRO-STEPPING MOTOR CONTROLLER June 2013

LSI/CSI LS8292 LS8293. PRELIMINARY MICRO-STEPPING MOTOR CONTROLLER June 2013 LSI/CSI LS8292 LS8293 LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631) 271-0400 FAX (631) 271-0405 PRELIMINARY MICRO-STEPPING MOTOR CONTROLLER June 2013 FEATURES: DESCRIPTION:

More information

Performance Evaluation for Different Levels Multilevel Inverters Application for Renewable Energy Resources

Performance Evaluation for Different Levels Multilevel Inverters Application for Renewable Energy Resources Performance Evaluation for Different Levels Multilevel Inverters Application for Renewable Energy Resources M.Charai 1, A.Raihani 1, O.Bouattan 1, H.Naanani 2 1 Laboratoire des Signaux, Systèmes Distribués

More information

Design of Single-Stage Transformer less Grid Connected Photovoltaic System

Design of Single-Stage Transformer less Grid Connected Photovoltaic System Design of Single-Stage Transformer less Grid Connected Photovoltaic System Prabhakar Kumar Pranav Department of Electrical Engineering, G. H. Raisoni Institute of Engineering & Technology, Wagholi, Pune,

More information

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter Woo-Young Choi 1, Wen-Song Yu, and Jih-Sheng (Jason) Lai Virginia Polytechnic Institute and State University Future Energy Electronics Center

More information

Implementation Full Bridge Series Resonant Buck Boost Inverter

Implementation Full Bridge Series Resonant Buck Boost Inverter Implementation Full Bridge Series Resonant Buck Boost Inverter A.Srilatha Assoc.prof Joginpally College of engineering,hyderabad pradeep Rao.J Asst.prof Oxford college of Engineering,Bangalore Abstract:

More information

A STUDY OF CARRIER BASED PULSE WIDTH MODULATION (CBPWM) BASED THREE PHASE INVERTER

A STUDY OF CARRIER BASED PULSE WIDTH MODULATION (CBPWM) BASED THREE PHASE INVERTER VSRD International Journal of Electrical, Electronics & Communication Engineering, Vol. 3 No. 7 July 2013 / 325 e-issn : 2231-3346, p-issn : 2319-2232 VSRD International Journals : www.vsrdjournals.com

More information

CHAPTER 3 METHODOLOGY

CHAPTER 3 METHODOLOGY CHAPTER 3 METHODOLOGY 3.1 INTRODUCTION This chapter will explain about the flow chart of project, designing fuzzy logic controller and fuzzy logic algorithms. Next, it will explain electrical circuit design

More information

Simulation of Single Phase Five-Level Inverter Based Modified Pulse-Width Modulation Approach

Simulation of Single Phase Five-Level Inverter Based Modified Pulse-Width Modulation Approach Simulation of Single Phase Five-Level Inverter Based Modified Pulse-Width Modulation Approach Benriwati Maharmi a,* and Ermawati a a) Electrical Engineering Department, Sekolah Tinggi Teknologi Pekanbaru

More information

Available online at ScienceDirect. IERI Procedia 4 (2013 )

Available online at   ScienceDirect. IERI Procedia 4 (2013 ) Available online at www.sciencedirect.com ScienceDirect IERI Procedia 4 (213 ) 126 132 213 International Conference on Electronic Engineering and Computer Science Research of the Single-Switch Active Power

More information

THREE-LEVEL COMMON-EMITTER CURRENT-SOURCE POWER INVERTER WITH SIMPLIFIED DC CURRENT-SOURCE GENERATION

THREE-LEVEL COMMON-EMITTER CURRENT-SOURCE POWER INVERTER WITH SIMPLIFIED DC CURRENT-SOURCE GENERATION Journal of Engineering Science and Technology Vol. 13, No. 12 (2018) 4027-4038 School of Engineering, Taylor s University THREE-LEVEL COMMON-EMITTER CURRENT-SOURCE POWER INVERTER WITH SIMPLIFIED DC CURRENT-SOURCE

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

Active Rectifier in Microgrid

Active Rectifier in Microgrid 03.09.2012 Active Rectifier in Microgrid - Developing a simulation model in SimPower - Dimensioning the filter - Current controller comparison - Calculating average losses in the diodes and transistors

More information

Integrated Power Module for Small Appliance Motor Drive Applications

Integrated Power Module for Small Appliance Motor Drive Applications 2.2Ω, 500V Integrated Power Module for Small Appliance Motor Drive Applications Description IRSM505-035 and IRSM515-035 are 3-phase Integrated Power Modules (IPM) designed for advanced appliance motor

More information

3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE

3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE 3 PHASE INVERTER WITH 180 AND 120 CONDUCTION MODE Mahendra G. Mathukiya 1 1 Electrical Department, C.U. Shah College of Engineering & Technology Abstract Today most of the appliances and machine works

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

Implications of Using kw-level GaN Transistors in Radar and Avionic Systems

Implications of Using kw-level GaN Transistors in Radar and Avionic Systems Implications of Using kw-level GaN Transistors in Radar and Avionic Systems Daniel Koyama, Apet Barsegyan, John Walker Integra Technologies, Inc., El Segundo, CA 90245, USA Abstract This paper examines

More information