Application of GaN Device to MHz Operating Grid-Tied Inverter Using Discontinuous Current Mode for Compact and Efficient Power Conversion

Size: px
Start display at page:

Download "Application of GaN Device to MHz Operating Grid-Tied Inverter Using Discontinuous Current Mode for Compact and Efficient Power Conversion"

Transcription

1 IEEE PEDS 2017, Honolulu, USA December 2017 Application of GaN Device to MHz Operating Grid-Tied Inverter Using Discontinuous Current Mode for Compact and Efficient Power Conversion Daichi Yamanodera University of Tsukuba Graduate School of Pure and Applied Sciences Ibaraki , Japan Takanori Isobe, Hiroshi Tadano University of Tsukuba Faculty of Pure and Applied Sciences Ibaraki , Japan Abstract This paper studies on a grid-connecting inverter using a gallium nitride (GaN) device aiming for passive components size reduction by very high switching frequency operation. This paper proposes to apply a discontinuous current mode (DCM), which does not require dead-time and current feedback control, which are usually required for a continuous current mode (CCM) operation. These features enable a good modulation performance with a MHz-class high switching frequency operation without difficulties coming from the very high switching frequency. This paper reports experimental demonstrations of the DCM gridconnecting inverter using GaN- high electron mobility transistors (GaN-HEMT) with 1 MHz carrier frequency, and discusses output current harmonics and losses. I. INTRODUCTION Conventionally, high efficiency and downsizing of grid-tied inverters are desired. The most popular approach to achieve downsizing is to increase switching frequency so that the magnetic components can be small. In recent years, high efficiency and downsizing of the grid-tied inverter are expected to be achieved by using Gallium Nitride (GaN) devices with a very high carrier frequency [1]. However, the conventional grid-tied inverter using a continuous current mode (CCM) requires a dead-time and it will cause a large voltage error in the very high switching frequency and therefore output current distortion. It should also be mentioned that the inductance of the grid-connecting inductor can be reduced by increasing the switching frequency; however, at the same time its percent impedance in the line frequency will also be very low; therefore, the current control against to distorted grid voltage and/or dead-time voltage could be highly difficult. Moreover, the conventional inverter also has problems related to switching losses, and those will highly impact on efficiency in the very high frequency operation. To address those problems mentioned above, this paper proposes to apply a discontinuous current mode (DCM) operation [2] to the grid-tied inverter. In the DCM operation, the switches are not operated complementary, but one device in a leg is controlled for a half line cycle; therefore, the deadtime is not needed. The current control scheme of the DCM is completely different from that for the CCM. Actually the /17/$31.00 c 2017 IEEE current control is not needed for the DCM and only an openloop duty ratio control is applied. The current is still affected by the voltage distortion; however, the impact is comparatively low. In addition, the turn-on is performed with zero current; therefore, turn-on switching loss can be reduced. This paper reports experimental demonstration of a 1 MHz operated grid-connecting inverter using a GaN- high electron mobility transistors (GaN-HEMT) device and the discontinuous current mode operation. The device characteristics of the GaN-HEMT device used for the demonstration is discussed in section II, the operation principles of the DCM is introduced in section III, and the demonstration results are reported in section IV. II. CHARACTERISTICS OF GAN DEVICE A GaN-HEMT device (GS66504B from GaN systems: 650V 15A) is selected to be discussed to apply the grid-tied inverter for enabling MHz operation, since the GaN-HEMT has comparatively low parasitic capacitance, C iss, C oss, C rss, in comparison with GaN-GIT and GaN-Cascode devices for the same voltage ratings; therefore, can be expected to achieve higher switching frequency operation. Its main parameters are listed in Table I. The GaN-HEMT is packed in a distinctive package named GaN px, which has comparatively low parasitic inductance inside of the package; therefore, has advantages for MHz operation. The switching characteristics of the GaN-HEMT device were tested with the boost converter configuration as shown in Fig. 1 and Table II shows measurement condition. Fig. 2 shows measured switching waveforms at turn-on and turn-off. It could be observed that the turn-on time, t on, was 4.9 ns and the turn-off time, t off, was 3.0 ns with this current (approx. half of the rating). As a result, it was confirmed that the rate of the time required for switching is 0.8% of one switching cycle of 1 MHz operation. This indicates that the GaN-HEMT device is sufficiently capable of operating at 1 MHz. It can be concluded from the results that the GaN-HEMT device has enough high switching speed. 1,003

2 TABLE I MAIN DEVICE PARAMETERS OF GS66504B Rated Voltage V ds 650 V Rated Drain Current I d 15 A On Resistance R on 130 mω Input Capacitance C iss 130 pf Output Capacitance C oss 33 pf Reverse Capacitance C rss 1 pf SW H V gsh L i swh C V out SW L V in v ds v gsl i ds Fig. 1. Schematic circuit diagram for the test of the switching characteristics. A spike current in i ds was observed at turn-on, which seems to be the current charging C oss of the other side device turning off. The observed dv/dt at turn-on was V/ns and C oss of the device is around 40 to 80 pf; consequently, spike current around 1.0 to 3.0 A could flow. The spike current could increase the turn-on loss since the area produced by i ds and v ds corresponds to the turn-on loss. III. GRID-TIED INVERTER OPERATED IN DCM A. Operation Principles Fig. 3 shows the schematic circuit diagram of a single-phase grid-tied inverter which can operate in the DCM operation. It consists of a usual single-phase full-bridge inverter, an inductor whose inductance, L ac, is comparatively low, and a LC filter. Fig. 4 shows schematic waveforms. Due to the comparatively low inductance, the current in the inductor, i Lac, is discontinuous and series of triangular waveforms. The LC filter is essentially needed to smooth the waveform, and the grid current, i ac, becomes a continuous sinusoidal waveform. Fig. 5 and Fig. 6 show the possible current paths and schematic waveforms in a switching cycle in the positive grid current phase, respectively. One difference from the usual CCM operation is that either switch of a leg is controlled TABLE II PARAMETERS OF THE BOOST CONVERTER FOR TESTING DEVICE Input Voltage V in 100 V Output Voltage V out 200 V Gate voltage v gs -3 to 6V Inductance L 5 µh Capacitance C 0.8 µf Fig. 2. Observed switching waveforms of the GaN-HEMT device. Turn-on. Turn-off. for a half line cycle and the other is kept at off-state. i Lac increases by turn the devices U and Y on as shown as Mode 1; then, i Lac decreases with free-wheeling conduction, which is also available with the GaN device, as shown as Mode 2. Another difference is the zero current period as shown as Mode 3, which is achieved after the current becomes zero in Mode 2. During this mode, the output voltage of the leg is indeterminate in ideal circuit; however, oscillating by the resonance between the parasitic capacitance of devices and the inductance in actual implementation. A modulation technique is proposed in [2]. The average of i Lac in a switching cycle is almost equal to i ac ; therefore, the average or area of the triangular waveform should be controlled to be equal to the current set-point, i ac ; for instance, a sinusoidal current set-point as i ac = 2I ac sin θ, (1) where I ac is the current set-point in r.m.s., can be given. For this case, the duty ratio, d, to achieve the desired current can be expressed as d= 2Lac f sw (V dc + 2V ac sin(θ φ) ) sin(θ φ) I ac V dc (V dc, 2V ac sin(θ φ) ) (2) where f sw is the switching frequency, θ is the phase angle of the line voltage, φ is the angle difference of the current to the line voltage (simply power factor angle). From the equation, it can be noticed that I ac can be separated; therefore, d for 1,004

3 Fig. 3. Schematic circuit diagram of the single-phase grid-tied inverter for the operation in DCM. Fig. 4. Schematic switching pattern and resulting waveforms of the DCM operation. any current amplitude can be easily calculated by an off-line calculated look-up-table. B. Advantages of DCM for MHz Operation with GaN-HEMT This paper proposes that the DCM operation is suitable for MHz operation of the grid-tied inverter using the GaN- HEMT device. As mentioned above, the dead-time is not needed and switching loss is mitigated by applying the DCM operation. Those characteristics are advantageous to achieve the MHz operation in the grid-tied inverter. On the other Mode 1 Mode 2 (c) Mode 3 Fig. 5. Possible current paths of the DCM operated grid-tied inverter in positive output current phase. Fig. 6. Schematic waveforms of the DCM operation in positive grid current phase in the scale of switching cycle. hand, the DCM operation shown in this paper uses reverse conduction characteristic; thus, its forward voltage V f can be a disadvantage in some types of devices. However, the V f of the GaN-HEMT device is relatively low by an appropriate negative bias voltage applied to the gate when it is turn off. The completely different current control scheme of the DCM can also be advantage for the MHz operation. The reduced inductance of the grid-tied inductor achieved by the increased carrier frequency introduces difficulty in the current control. The CCM operated grid-tied inverter can be modeled as two voltage sources connected via an inductor; therefore, the low inductance will increase the current distortion caused by voltage distortions. The dead-time also introduces the voltage distortion. The proposed DCM control has an attractive characteristics that the triangular current waveform of i Lac always starts from zero and reset every switching cycle and its average in a switching cycle will be linear to the voltages; therefore, current control using a current sensor and feedback is not needed. These feature brings possibility to reduce the grid connecting inductance further by increasing switching frequency. C. Switching Characteristics with DCM Operation Switching characteristics with the CCM and DCM operations were tested and compared with the same boost converter configuration shown in Fig. 1 and the same setting as listed in Table II. The resulting waveforms with the CCM are shown in Fig. 7, and ones with the DCM are shown in Fig. 7. The average input current in both cases were set at approximately 5 A. The spike current at turn-on was observed in both cases, but in the DCM, it was observed with almost zero current flowing into the inductor since it was operated in zero current switching; therefore, contribution to the turn-on loss was reduced. The amplitude of the spike current in the DCM was lower than one with the CCM. The reason for that can be thought as the reduced voltage charged in C oss of the other side device to be turned off. D. Design Circuit Parameter The DCM operated grid-tied inverter controls current by the duty ratio as equation 2 to achieve the given current set-point, I ac. The output current, i ac, is equal to the average value of 1,005

4 TABLE III CIRCUIT PARAMETER OF THE FABRICATED CONVERTER AC line Voltage V ac 100 V Line frequency f ac 50 Hz DC voltage V dc 180 V Rated AC current I ac 3.0 A Inductor L ac 2.4 µh Switching frequency f sw 1 MHz Filter inductor L f 5.0 µh Filter capacitor C f 390 nf Fig. 7. Measured waveforms with the CCM and DCM operation around turn-on with CCM operation, DCM operation. the inductor current, i Lac, in a switching cycle; therefore, the instantaneous output current can be expressed as i ac = 2I ac sin(θ φ) = V dc (V dc 2V ac sin(θ φ)) L ac f sw (V dc + 2V ac sin(θ φ)) d2. (3) On the other hands, the maximum duty ratio, d, to operate the converter within the DCM can be derived as d max = V dc + 2V ac sin(θ φ) 2V dc. (4) From equations 3 and 4, the maximum instantaneous current with the DCM can be derived as i max = V dc 2V ac 2 sin 2 (θ φ) 4L ac f sw V dc. (5) For instance, the maximum output current in rms, I ac.max, with unity power factor as φ = 0 can be expressed as I ac.max(φ=0) = V dc 2 2V ac 2 4 2L ac f sw V dc. (6) To achieve a given rated power with given input and grid voltages, L ac and f sw can be design parameters. Once the switching frequency is fixed, the maximum inductance to achieve the rated power within the DCM is determined. At the same time, to reduce the peak current in the inductor and semiconductors, L ac should be high as possible within the range. IV. EXPERIMENTAL DEMONSTRATION A. Experimental Setup To verify the proposed concept and operation principles, a laboratory prototype as shown in Fig. 8 was fabricated. The circuit parameters are listed in Table III. As switching devices, the GaN-HEMT (GS66504B 650V 15A) discussed in the previous section were used, and evaluation boards (GS66504B-EVBDB) including two GaN devices and gate drives provided by the manufacture were used to buid the full bridge circuit. A grid connecting inductor referred as L ac was fabricated as shown in Fig. 8. The grid connecting inductor consists of a troidal air-core and Litz wires to avoid possible high magnetic core loss generated by the high switching frequency, and to mitigate skin effect caused by the discontinuous current waveform. The Litz wire configuration was φ for L ac. The grid connecting inductor has two windings providing its half inductance for both lines to make a balance. The grid connecting inductor was designed to achieve a maximum power of 500 W with f sw = 1 MHz, V ac = 100 V, that is considering some margin to ensure the DCM operation at the rated power of 300 W. Fig. 9 shows measured inductance of the inductor and its equivalent series resistance. The self resonance frequency seems to be higher than 8 MHz, which is the upper limit of the LCR meter. As a controller, a DSP based controller using TMS320F28377S from Texas Instruments was used. To ensure a high resolution for modulation, a high resolution PWM modulator block provided by the microcontroller was used. A simple control scheme based on the operation principle as shown in Fig. 10 was implemented on the controller. A single-phase PLL using a Second Order Generalized Integrator (SOGI) [3] was implemented, and gate signals with duty ratio corresponding to the line phase angle provided by the PLL were generated. B. Evaluation of Operation and Waveforms Experimental evaluations in the range between 50 W to 300 W were performed with the fabricated converter. Measured output current waveform in line cycle scale and detail waveforms including device voltage, inductor current in switching cycle scale are shown in Fig. 11. As can be seen from Fig. 11, an in-phase sinusoidal current with the grid voltage was observed; therefore, the proposed control scheme 1,006

5 1 UY + 0 1MHz PLL Voltage Sensor duty ratio d eq.(1) VX Gate Driver DSP Control Board Fig. 10. Schematic control block diagram for the DCM operated converter used in the experiments. Fig. 8. Overview of the fabricated converter. Semiconductor part consists of two evaluation boards. Fabricated grid connecting inductor with a troidal air-core. Fig. 9. Measured inductance, Lac, and the equivalent series resistance, Rs, of the grid connecting inductor. and the PLL were verified to operate correctly. An 1 MHz DCM operation can be seen from Fig. 11, and the zero current switching (ZCS) was confirmed as that ilac has zero current period and increased from the zero level in every switching cycle. Also the natural turn-off, in which ilac decreased to zero without forced turn-off, was confirmed. The harmonic analysis on the output current iac was performed and the result is shown in Fig. 12. Total harmonic distortion (THD) considering under 49th order was 6.94%. From Fig. 11, some differences from ideal switching waveforms could be seen. One is a current oscillation observed during the period corresponding to Mode 3. It may cause an nonuniform turn-on in a line cycle and a variation of the peak and average currents depends on turn-on timing, and may cause output current distortion [4]. For this problem, a modified DCM operation to make an uniform zero current period to avoid the oscillation affecting output current distortion has been proposed in [5], and can be applied to the proposed GaN inverter. As another difference from the ideal waveform, a negative current in ilac was observed after the current reached at zero. This is a part of the oscillation in Mode 3 and can be thought due to parasitic components. This negative current in ilac also affects on iac. It can be said that this component should be predicted and cancelled by modifying the duty ratio given in equation 2. C. Loss Analysis The input and output power were measured by a digital power meter WT-1800, and the total loss and efficiency were evaluated. The measured efficiency at 300 W was 89.6%. To analyze the loss contribution from components, a loss break-down based on waveforms obtained by the oscilloscope (HDO4034) was performed. GaN conduction losses of forward and reverse directions were calculated with measured instantaneous inductor current, ilac, and on resistance, Ron, and Vf characteristics obtained from the data sheet. For reverse current conduction, Vf characteristics corresponding to the given negative gate voltage were used. The inductor loss was calculated by assuming only winding resistance of the inductor conducting the discontinuous current since there is no magnetic cores were used and the current in the filter inductor does not include high frequency components so much. The winding loss of Lac was calculated by summing losses generated by harmonic components of the current and equivalent series resistance at the corresponding frequency. The equivalent series resistance, Rs, shown in Fig. 9 was used. An example of the harmonic current components is shown in Fig. 12. The switching frequency was 1 MHz; therefore, its integer multiples could be seen. For the loss calculation, those components but less than 8 MHz were considered. As can be seen from the figures, the MHz components can generate major winding loss due to the non negligible AC resistance in the range of frequency. The rest of the loss, which can be obtained by subtracting above identified loss components from the total loss, is referred 1,007

6 Voltage (V) i Lac v ds i ac 10 0 Current (A) time ( s) Fig. 11. Experimentally measured waveforms with the rated power operation. Grid voltage, v ac, and output current, i ac, in line cycle scale. The voltage applied to a device, v ds, the inductor current, i Lac, and the output current, i ac, in switching cycle view around peak grid voltage phase. Fig. 12. Magnitudes in r.m.s value of harmonic components with approximately rated operation (305 W) of Output current, i ac. Inductor current, i Lac. as other losses. This includes the loss generated by the filter, C oss shorting at turn-on and switching losses. The resulting loss break-downs are shown in Fig. 13. It can be seen from the figure that the reverse conduction loss was most highest loss component. The reverse voltage V f of the GaN device can varies with the applied negative gate voltage; however, the high enough gate voltage to ensure safe operation was applied in this laboratory prototype. The reverse gate voltage optimization or applying positive gate voltage for the device conducting the current like synchronous rectification technique should be considered to be applied. The second major loss component was the inductor winding loss due to the very high frequency operation and high ripple components in i Lac. The Litz wire configuration was not optimized for this prototype; therefore, much more thin wire could be used. This prototype does not use magnetic cores; however, the use of the magnetic core can decrease the number of turn therefore the winding loss can be reduced. The winding loss and core loss are trade off; therefore, design optimization for overall loss reduction should be applied to the inductor design. The overall system efficiency was around 90%, however, Fig. 13. Resulting total efficiencies and losses as function of the output power. Loss break-down results are also shown. this prototype was operated with comparatively low voltages than the device rated voltage. From the loss break-down results, it can be said that the system efficiency will be improved when the prototype operates with more high voltage; for instance 200 V grid voltage. V. CONCLUSION This paper proposed to apply the discontinuous current mode (DCM) to the single-phase grid-connecting inverter using GaN devices for MHz class operation. Experimental verification using a fabricated laboratory prototype with 1 MHz 1,008

7 switching frequency up to 300 W was conducted. A simple loss analysis was also performed. Drastically low inductance of the grid connecting inductor and filter inductor were confirmed to be used with the proposed DCM inverter. However, the experimental results indicated some points to be improved. For the observed output current waveform distortion, the proposed control scheme must be improved considering switching characteristics of the GaN device. To improve the efficiency, the reverse conduction losses of the GaN device need to be improved. That can be achieved by gate voltage optimization, or synchronous rectification. But the synchronous rectification will introduce an additional complexity to the control; therefore, feasibility to implement in this very high switching frequency should be investigated. REFERENCES [1] Y. Lei, C. Barth, S. Qin, W. Liu, I. Moon,A. Stillwii, D. Chou, T. Foulkes, Z. Ye, Z. Liao, A 2 kw, single-phase, 7-level, GaN inverter with an active energy buffer achieving 216 W/in 3 power density and 97.6 % peak efficiency, IEEE APEC, pp , [2] T. Isobe, K. Kato, N. Kojima, Soft-Switching single-phase gridconnecting converter using DCM operation and a turn-off snubber capacitor, IEEE Transactions on Power Electronics, Vol. 29, No. 6, pp , [3] M. Cibotaru, R. Teodorescu, F. Blaabjerg, A new single-phase PLL structure based on second order generalized integrator, IEEE Power Electronics Specialists Conference, [4] Koen De Gusseme, David M. Van de Sype, Alex P. M. Van den Bossche, and Jan A. Melkebeek, Input-Current Distortion of CCM Boost PFC Converters Operated in DCM, IEEE Transactions on Industrial Electronics, Vol. 54, No. 2, pp , April [5] J. Zhang, R. Barrera-Cardenas, T. Isobe, H. Tadano, Trapezium Current Mode (TPCM) Boundary Operation for Single Phase Grid-tied Inverter, 2017 IEEE Energy Conversion Congress and Exposition (ECCE 2017), Cincinnati, OH, United States, Oct 1 5, ,009

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator

Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator IEEE PEDS 27, Honolulu, USA 2-5 December 27 Efficiency Improvement of High Frequency Inverter for Wireless Power Transfer System Using a Series Reactive Power Compensator Jun Osawa Graduate School of Pure

More information

An Interleaved Flyback Inverter for Residential Photovoltaic Applications

An Interleaved Flyback Inverter for Residential Photovoltaic Applications An Interleaved Flyback Inverter for Residential Photovoltaic Applications Bunyamin Tamyurek and Bilgehan Kirimer ESKISEHIR OSMANGAZI UNIVERSITY Electrical and Electronics Engineering Department Eskisehir,

More information

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 4 Ver. III (Jul. Aug. 2016), PP 01-06 www.iosrjournals.org A Unique SEPIC converter

More information

ACEEE Int. J. on Control System and Instrumentation, Vol. 02, No. 02, June 2011

ACEEE Int. J. on Control System and Instrumentation, Vol. 02, No. 02, June 2011 A New Active Snubber Circuit for PFC Converter Burak Akýn Yildiz Technical University/Electrical Engineering Department Istanbul TURKEY Email: bakin@yildizedutr ABSTRACT In this paper a new active snubber

More information

Soft-Switching Active-Clamp Flyback Microinverter for PV Applications

Soft-Switching Active-Clamp Flyback Microinverter for PV Applications Soft-Switching Active-Clamp Flyback Microinverter for PV Applications Rasedul Hasan, Saad Mekhilef, Mutsuo Nakaoka Power Electronics and Renewable Energy Research Laboratory (PEARL), Faculty of Engineering,

More information

GaN in Practical Applications

GaN in Practical Applications in Practical Applications 1 CCM Totem Pole PFC 2 PFC: applications and topology Typical AC/DC PSU 85-265 V AC 400V DC for industrial, medical, PFC LLC 12, 24, 48V DC telecomm and server applications. PFC

More information

The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter

The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter The Effect of Ripple Steering on Control Loop Stability for a CCM PFC Boost Converter Fariborz Musavi, Murray Edington Department of Research, Engineering Delta-Q Technologies Corp. Burnaby, BC, Canada

More information

Highly-Reliable Fly-back-based PV Micro-inverter Applying Power Decoupling Capability without Additional Components

Highly-Reliable Fly-back-based PV Micro-inverter Applying Power Decoupling Capability without Additional Components Highly-Reliable Fly-back-based P Micro-inverter Applying Power Decoupling Capability without Additional Components Hiroki Watanabe, Nagaoka University of technology, Japan, hwatanabe@stn.nagaopkaut.ac.jp

More information

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS

CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS CHAPTER 2 GENERAL STUDY OF INTEGRATED SINGLE-STAGE POWER FACTOR CORRECTION CONVERTERS 2.1 Introduction Conventional diode rectifiers have rich input harmonic current and cannot meet the IEC PFC regulation,

More information

IMPLEMENTATION OF A DOUBLE AC/DC/AC CONVERTER WITH POWER FACTOR CORRECTION (PFC) FOR NON-LINEAR LOAD APPLICATIONS

IMPLEMENTATION OF A DOUBLE AC/DC/AC CONVERTER WITH POWER FACTOR CORRECTION (PFC) FOR NON-LINEAR LOAD APPLICATIONS IMPLEMENTATION OF A DOUBLE AC/DC/AC CONERTER WITH POWER FACTOR CORRECTION (PFC) FOR NON-LINEAR LOAD APPLICATIONS E.Alvear 1, M.Sanchez 1 and J.Posada 2 1 Department of Automation and Electronics, Electronics

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

Design and Implementation of Photovoltaic Inverter system using Multi-cell Interleaved Fly-back Topology

Design and Implementation of Photovoltaic Inverter system using Multi-cell Interleaved Fly-back Topology International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.10 No.14, pp 300-308, 2017 Design and Implementation of Photovoltaic Inverter system using Multi-cell

More information

MODERN switching power converters require many features

MODERN switching power converters require many features IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 87 A Parallel-Connected Single Phase Power Factor Correction Approach With Improved Efficiency Sangsun Kim, Member, IEEE, and Prasad

More information

THREE-PHASE converters are used to handle large powers

THREE-PHASE converters are used to handle large powers IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 6, NOVEMBER 1999 1149 Resonant-Boost-Input Three-Phase Power Factor Corrector Da Feng Weng, Member, IEEE and S. Yuvarajan, Senior Member, IEEE Abstract

More information

Power Factor Correction of LED Drivers with Third Port Energy Storage

Power Factor Correction of LED Drivers with Third Port Energy Storage Power Factor Correction of LED Drivers with Third Port Energy Storage Saeed Anwar Mohamed O. Badawy Yilmaz Sozer sa98@zips.uakron.edu mob4@zips.uakron.edu ys@uakron.edu Electrical and Computer Engineering

More information

A Critical-Conduction-Mode Bridgeless Interleaved Boost Power Factor Correction

A Critical-Conduction-Mode Bridgeless Interleaved Boost Power Factor Correction A CriticalConductionMode Bridgeless Interleaved Boost Power Factor Correction Its Control Scheme Based on Commonly Available Controller PEDS2009 E. Firmansyah, S. Abe, M. Shoyama Dept. of Electrical and

More information

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India Design and Development of Single Phase Bridgeless Three Stage Interleaved Boost Converter with Fuzzy Logic Control System M.Pradeep kumar 1, M.Ramesh kannan 2 1 Student Department of EEE (M.E-PED), 2 Assitant

More information

Passive-Damped LCL Filter Optimization for Single-Phase Grid-Tied Inverters Operating in both Continuous and Discontinuous Current Mode

Passive-Damped LCL Filter Optimization for Single-Phase Grid-Tied Inverters Operating in both Continuous and Discontinuous Current Mode Passive-Damped C Filter Optimization for Single-Phase Grid-Tied Inverters Operating in both Continuous and Discontinuous Current Mode Hoai Nam e and Jun-ichi Itoh Department of Electrical engineering Nagaoka

More information

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS CHAPTER 3. SINGLE-STAGE PFC TOPOLOG GENERALIATION AND VARIATIONS 3.1. INTRODUCTION The original DCM S 2 PFC topology offers a simple integration of the DCM boost rectifier and the PWM DC/DC converter.

More information

DSP-BASED CURRENT SHARING OF AVERAGE CURRENT CONTROLLED TWO-CELL INTERLEAVED BOOST POWER FACTOR CORRECTION CONVERTER

DSP-BASED CURRENT SHARING OF AVERAGE CURRENT CONTROLLED TWO-CELL INTERLEAVED BOOST POWER FACTOR CORRECTION CONVERTER DSP-BASED CURRENT SHARING OF AVERAGE CURRENT CONTROLLED TWO-CELL INTERLEAVED BOOST POWER FACTOR CORRECTION CONVERTER P.R.Hujband 1, Dr. B.E.Kushare 2 1 Department of Electrical Engineering, K.K.W.I.E.E.R,

More information

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters

Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(2), pp. 313-323 (2017) DOI 10.1515/aee-2017-0023 Impact of inductor current ringing in DCM on output voltage of DC-DC buck power converters MARCIN WALCZAK Department

More information

Analysis of a Passive Filter with Improved Power Quality for PV Applications

Analysis of a Passive Filter with Improved Power Quality for PV Applications Analysis of a Passive Filter with Improved Power Quality for PV Applications Analysis of a Passive Filter with Improved Power Quality for PV Applications S. Sanjunath 1, Meenakshi Jayaraman 2 and Sreedevi

More information

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger Topics Why GaN? Integration for Higher System Performance Application Examples Taking GaN beyond

More information

SIMULATION OF HIGH-EFFICIENCY INTERLEAVED STEP-UP DC-DC BOOST-FLYBACK CONVERTER TO USE IN PHOTOVOLTAIC SYSTEM

SIMULATION OF HIGH-EFFICIENCY INTERLEAVED STEP-UP DC-DC BOOST-FLYBACK CONVERTER TO USE IN PHOTOVOLTAIC SYSTEM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 79 Electrical Engineering 2014 Adam TOMASZUK* SIMULATION OF HIGH-EFFICIENCY INTERLEAVED STEP-UP DC-DC BOOST-FLYBACK CONVERTER TO USE IN PHOTOVOLTAIC

More information

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL Journal of Engineering Science and Technology Vol. 10, No. 4 (2015) 420-433 School of Engineering, Taylor s University PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT

More information

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin Designing reliable and high density power solutions with GaN Created by: Masoud Beheshti Presented by: Paul L Brohlin What will I get out of this presentation? Why GaN? Integration for System Performance

More information

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty

A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS. Prasanna Srikanth Polisetty GRT A HIGH RELIABILITY SINGLE-PHASE BOOST RECTIFIER SYSTEM FOR DIFFERENT LOAD VARIATIONS Prasanna Srikanth Polisetty Department of Electrical and Electronics Engineering, Newton s College of Engineering

More information

Conventional Single-Switch Forward Converter Design

Conventional Single-Switch Forward Converter Design Maxim > Design Support > Technical Documents > Application Notes > Amplifier and Comparator Circuits > APP 3983 Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits

More information

ELG4139: DC to AC Converters

ELG4139: DC to AC Converters ELG4139: DC to AC Converters Converts DC to AC power by switching the DC input voltage (or current) in a pre-determined sequence so as to generate AC voltage (or current) output. I DC I ac + + V DC V ac

More information

Zero Voltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability

Zero Voltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability Zero oltage Switching Scheme for Flyback Converter to Ensure Compatibility with Active Power Decoupling Capability Hiroki Watanabe 1*, Jun-ichi toh 1 1 Department of Electrical, Electronics and nformation

More information

Research and design of PFC control based on DSP

Research and design of PFC control based on DSP Acta Technica 61, No. 4B/2016, 153 164 c 2017 Institute of Thermomechanics CAS, v.v.i. Research and design of PFC control based on DSP Ma Yuli 1, Ma Yushan 1 Abstract. A realization scheme of single-phase

More information

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance PSMA Industry Session, Semiconductors Dan Kinzer, CTO/COO dan.kinzer@navitassemi.com March 2017 Power Electronics: Speed & Efficiency are

More information

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 74 CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER 5.1 INTRODUCTION Pulse Width Modulation method is a fixed dc input voltage is given to the inverters and a controlled

More information

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology 264 Journal of Power Electronics, Vol. 11, No. 3, May 2011 JPE 11-3-3 Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology Tao Meng, Hongqi Ben,

More information

Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System

Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System Single-Loop Control of Buck Power-Pulsation Buffer for AC-DC Converter System Yuri Panov, Milan M. Jovanovi, and Brian T. Irving Power Electronics Laboratory Delta Products Corporation 5101 Davis Drive,

More information

New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter

New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter IEEE PEDS 2015, Sydney, Australia 9 12 June 2015 New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter Koki Ogura Kawasaki Heavy Industries,

More information

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR

AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR AN IMPROVED ZERO-VOLTAGE-TRANSITION INTERLEAVED BOOST CONVERTER WITH HIGH POWER FACTOR Naci GENC 1, Ires ISKENDER 1 1 Gazi University, Faculty of Engineering and Architecture, Department of Electrical

More information

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation 638 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation A. K.

More information

Reduction of Voltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode

Reduction of Voltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode Reduction of oltage Stresses in Buck-Boost-Type Power Factor Correctors Operating in Boundary Conduction Mode ars Petersen Institute of Electric Power Engineering Technical University of Denmark Building

More information

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances IEEE PEDS 2011, Singapore, 5-8 December 2011 A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances N. Sanajit* and A. Jangwanitlert ** * Department of Electrical Power Engineering, Faculty

More information

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Efficiency The Need for Speed Tomorrow? Today 100kHz 1MHz 10MHz Bulky, Heavy Small, Light & Expensive

More information

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT S WITH SOFT START Abstract: In this paper a new solution to implement and control a single-stage electronic ballast based

More information

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs Yajie Qiu, Lucas (Juncheng) Lu GaN Systems Inc., Ottawa, Canada yqiu@gansystems.com Abstract Compared to Silicon MOSFETs, GaN Highelectron-Mobility

More information

High Efficiency Flyback Converter Technology

High Efficiency Flyback Converter Technology High Efficiency Flyback Converter Technology U. Boeke ulrich.boeke@philips.com Philips Research Laboratories Aachen, Germany Abstract - Technologies are discussed to realize a DC/DC Flyback converter with

More information

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency

A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency A New Single-Phase PFC Rectifier (TOKUSADA Rectifier ) with Wide Output Voltage Control Range and High Efficiency Yasuyuki Nishida & Takeshi Kondou Nihon University Tokusada, Tamura-cho, Kouriyama, JAPAN

More information

Recent Approaches to Develop High Frequency Power Converters

Recent Approaches to Develop High Frequency Power Converters The 1 st Symposium on SPC (S 2 PC) 17/1/214 Recent Approaches to Develop High Frequency Power Converters Location Fireworks Much snow Tokyo Nagaoka University of Technology, Japan Prof. Jun-ichi Itoh Dr.

More information

A Predictive Control Strategy for Power Factor Correction

A Predictive Control Strategy for Power Factor Correction IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 8, Issue 6 (Nov. - Dec. 2013), PP 07-13 A Predictive Control Strategy for Power Factor Correction

More information

Lecture 4 ECEN 4517/5517

Lecture 4 ECEN 4517/5517 Lecture 4 ECEN 4517/5517 Experiment 3 weeks 2 and 3: interleaved flyback and feedback loop Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms

More information

THE converter usually employed for single-phase power

THE converter usually employed for single-phase power 82 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses Alexandre Ferrari de Souza, Member, IEEE,

More information

Improvement of Light Load Efficiency for Buck- Boost DC-DC converter with ZVS using Switched Auxiliary Inductors

Improvement of Light Load Efficiency for Buck- Boost DC-DC converter with ZVS using Switched Auxiliary Inductors Improvement of ight oad Efficiency for Buck- Boost DC-DC converter with ZVS using Switched Auxiliary Inductors Hayato Higa Dept. of Energy Environment Science Engineering Nagaoka University of Technology

More information

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator

Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost Regulator International Journal of Automation and Power Engineering, 2012, 1: 124-128 - 124 - Published Online August 2012 www.ijape.org Design and Simulation of PFC Circuit for AC/DC Converter Based on PWM Boost

More information

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL Avuluri.Sarithareddy 1,T. Naga durga 2 1 M.Tech scholar,lbr college of engineering, 2 Assistant professor,lbr college of engineering.

More information

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications

Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Laboratory Investigation of Variable Speed Control of Synchronous Generator With a Boost Converter for Wind Turbine Applications Ranjan Sharma Technical University of Denmark ransharma@gmail.com Tonny

More information

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM

SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM SIMULATION AND EVALUATION OF A PHASE SYNCHRONOUS INVERTER FOR MICRO-GRID SYSTEM Tawfikur Rahman, Muhammad I. Ibrahimy, Sheikh M. A. Motakabber and Mohammad G. Mostafa Department of Electrical and Computer

More information

ELEC387 Power electronics

ELEC387 Power electronics ELEC387 Power electronics Jonathan Goldwasser 1 Power electronics systems pp.3 15 Main task: process and control flow of electric energy by supplying voltage and current in a form that is optimally suited

More information

Multiple PR Current Regulator based Dead-time Effects Compensation for Grid-forming Single-Phase Inverter

Multiple PR Current Regulator based Dead-time Effects Compensation for Grid-forming Single-Phase Inverter Multiple PR Current Regulator based Dead-time Effects Compensation for Grid-forming Single-Phase Inverter 1 st Siyuan Chen FREEDM Systems Center North Carolina State University Raleigh, NC, USA schen36@ncsu.edu

More information

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices

Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Generalized Multilevel Current-Source PWM Inverter with No-Isolated Switching Devices Suroso* (Nagaoka University of Technology), and Toshihiko Noguchi (Shizuoka University) Abstract The paper proposes

More information

Soft Switched Resonant Converters with Unsymmetrical Control

Soft Switched Resonant Converters with Unsymmetrical Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 1 Ver. I (Jan Feb. 2015), PP 66-71 www.iosrjournals.org Soft Switched Resonant Converters

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org)

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(www.prdg.org) A High Power Density Single Phase Pwm Rectifier with Active Ripple Energy Storage A. Guruvendrakumar 1 and Y. Chiranjeevi 2 1 Student (Power Electronics), EEE Department, Sathyabama University, Chennai,

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

Modeling of Conduction EMI Noise and Technology for Noise Reduction

Modeling of Conduction EMI Noise and Technology for Noise Reduction Modeling of Conduction EMI Noise and Technology for Noise Reduction Shuangching Chen Taku Takaku Seiki Igarashi 1. Introduction With the recent advances in high-speed power se miconductor devices, the

More information

An Analog Phase-Locked Loop

An Analog Phase-Locked Loop 1 An Analog Phase-Locked Loop Greg Flewelling ABSTRACT This report discusses the design, simulation, and layout of an Analog Phase-Locked Loop (APLL). The circuit consists of five major parts: A differential

More information

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session March 24 th 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1 Mobility (cm 2 /Vs) EBR Field (MV/cm) GaN vs. Si WBG GaN material

More information

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control

A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control A Unity Power Factor Boost Rectifier with a Predictive Capacitor Model for High Bandwidth DC Bus Voltage Control Peter Wolfs Faculty of Sciences, Engineering and Health Central Queensland University, Rockhampton

More information

Single Phase Bridgeless SEPIC Converter with High Power Factor

Single Phase Bridgeless SEPIC Converter with High Power Factor International Journal of Emerging Engineering Research and Technology Volume 2, Issue 6, September 2014, PP 117-126 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Single Phase Bridgeless SEPIC Converter

More information

Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs

Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs Impulse Transformer Based Secondary-Side Self- Powered Gate-Driver for Wide-Range PWM Operation of SiC Power MOSFETs Jorge Garcia Dept of Electrical Engineering, University of Oviedo LEMUR Research Group

More information

Power Management for Computer Systems. Prof. C Wang

Power Management for Computer Systems. Prof. C Wang ECE 5990 Power Management for Computer Systems Prof. C Wang Fall 2010 Course Outline Fundamental of Power Electronics cs for Computer Systems, Handheld Devices, Laptops, etc More emphasis in DC DC converter

More information

Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method

Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method energies Article Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method Jintae Kim and Chung-Yuen Won * Information and Communication Engineering, Sungkyunkwan University,

More information

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter Gokul P H Mar Baselios College of Engineering Mar Ivanios Vidya Nagar, Nalanchira C Sojy Rajan Assisstant Professor Mar Baselios

More information

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology Riya Philip 1, Reshmi V 2 Department of Electrical and Electronics, Amal Jyothi College of Engineering, Koovapally, India 1,

More information

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 40 CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE 2.1 INTRODUCTION Interleaving technique in the boost converter effectively reduces the ripple current

More information

Implementation Full Bridge Series Resonant Buck Boost Inverter

Implementation Full Bridge Series Resonant Buck Boost Inverter Implementation Full Bridge Series Resonant Buck Boost Inverter A.Srilatha Assoc.prof Joginpally College of engineering,hyderabad pradeep Rao.J Asst.prof Oxford college of Engineering,Bangalore Abstract:

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

Design Considerations for a Level-2 On-Board PEV Charger Based on Interleaved Boost PFC and LLC Resonant Converters

Design Considerations for a Level-2 On-Board PEV Charger Based on Interleaved Boost PFC and LLC Resonant Converters Design Considerations for a Level-2 On-Board PEV Charger Based on Interleaved Boost PFC and LLC Resonant Converters Haoyu Wang, Student Member, IEEE, Serkan Dusmez, Student Member, IEEE, and Alireza Khaligh,

More information

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 14 CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL 2.1 INTRODUCTION Power electronics devices have many advantages over the traditional power devices in many aspects such as converting

More information

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network A Three-Phase AC-AC Buck-Boost Converter using Impedance Network Punit Kumar PG Student Electrical and Instrumentation Engineering Department Thapar University, Patiala Santosh Sonar Assistant Professor

More information

Development of a Single-Phase PWM AC Controller

Development of a Single-Phase PWM AC Controller Pertanika J. Sci. & Technol. 16 (2): 119-127 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Development of a Single-Phase PWM AC Controller S.M. Bashi*, N.F. Mailah and W.B. Cheng Department of

More information

The Quest for High Power Density

The Quest for High Power Density The Quest for High Power Density Welcome to the GaN Era Power Conversion Technology Drivers Key design objectives across all applications: High power density High efficiency High reliability Low cost 2

More information

Current THD Reduction for High-Power-Density LCL-Filter-Based. Grid-Tied Inverter Operated in Discontinuous Current Mode

Current THD Reduction for High-Power-Density LCL-Filter-Based. Grid-Tied Inverter Operated in Discontinuous Current Mode Current THD Reduction for High-Power-Density LCL-Filter-Based Grid-Tied Inverter Operated in Discontinuous Current Mode Hoai Nam Le, Jun-ichi Itoh Nagaoka University of Technology 63- Kamitomioka-cho Nagaoka

More information

Survey of Resonant Converter Topologies

Survey of Resonant Converter Topologies Power Supply Design Seminar Survey of Resonant Converter Topologies Reproduced from 18 Texas Instruments Power Supply Design Seminar SEM3, TI Literature Number: SLUP376 18 Texas Instruments Incorporated

More information

DC-DC Transformer Multiphase Converter with Transformer Coupling for Two-Stage Architecture

DC-DC Transformer Multiphase Converter with Transformer Coupling for Two-Stage Architecture DC-DC Transformer Multiphase Converter with Transformer Coupling for Two-Stage Architecture M.C.Gonzalez, P.Alou, O.Garcia,J.A. Oliver and J.A.Cobos Centro de Electrónica Industrial Universidad Politécnica

More information

BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER

BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER BIDIRECTIONAL SOFT-SWITCHING SERIES AC-LINK INVERTER WITH PI CONTROLLER PUTTA SABARINATH M.Tech (PE&D) K.O.R.M Engineering College, Kadapa Affiliated to JNTUA, Anantapur. ABSTRACT This paper proposes a

More information

Three-phase soft-switching inverter with coupled inductors, experimental results

Three-phase soft-switching inverter with coupled inductors, experimental results BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 4, 2011 DOI: 10.2478/v10175-011-0065-3 POWER ELECTRONICS Three-phase soft-switching inverter with coupled inductors, experimental

More information

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter

Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Linear Peak Current Mode Controlled Non-inverting Buck-Boost Power-Factor-Correction Converter Mr.S.Naganjaneyulu M-Tech Student Scholar Department of Electrical & Electronics Engineering, VRS&YRN College

More information

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs

A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs A New 3-phase Buck-Boost Unity Power Factor Rectifier with Two Independently Controlled DC Outputs Y. Nishida* 1, J. Miniboeck* 2, S. D. Round* 2 and J. W. Kolar* 2 * 1 Nihon University Energy Electronics

More information

GENERALLY, a single-inductor, single-switch boost

GENERALLY, a single-inductor, single-switch boost IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 1, JANUARY 2004 169 New Two-Inductor Boost Converter With Auxiliary Transformer Yungtaek Jang, Senior Member, IEEE, Milan M. Jovanović, Fellow, IEEE

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

EE152 Green Electronics

EE152 Green Electronics EE152 Green Electronics Power Factor and Inverters 10/28/14 Prof. William Dally Computer Systems Laboratory Stanford University Lab 5 PV lab this week Course Logistics Solar day is on Thursday 10/30/14

More information

Development of DC-AC Link Converter for Wind Generator

Development of DC-AC Link Converter for Wind Generator Development of DC-AC Link Converter for Wind Generator A.Z. Ahmad Firdaus *, Riza Muhida *, Ahmed M. Tahir *, A.Z.Ahmad Mujahid ** * Department of Mechatronics Engineering, International Islamic University

More information

Comparison Between two Single-Switch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications

Comparison Between two Single-Switch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications Comparison Between two ingle-witch Isolated Flyback and Forward High-Quality Rectifiers for Low Power Applications G. piazzi,. Buso Department of Electronics and Informatics - University of Padova Via

More information

A Control Circuit Small Wind Turbines with Low Harmonic Distortion and Improved Power Factor

A Control Circuit Small Wind Turbines with Low Harmonic Distortion and Improved Power Factor European Association for the Development of Renewable Energies, Environment and Power Quality International Conference on Renewable Energies and Power Quality (ICREPQ 09) Valencia (Spain), 15th to 17th

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Introduction Power semiconductor devices constitute the heart of the modern power electronics, and are being extensively used in power electronic converters in the form of a

More information

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor 770 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 48, NO. 4, AUGUST 2001 A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor Chang-Shiarn Lin, Member, IEEE, and Chern-Lin

More information

REALIZATION OF A MULTILEVEL, BIDIRECTIONAL BUCK-DERIVED DC- DC CONVERTER

REALIZATION OF A MULTILEVEL, BIDIRECTIONAL BUCK-DERIVED DC- DC CONVERTER REALIZATION OF A MULTILEVEL, BIDIRECTIONAL BUCK-DERIVED DC- DC CONVERTER by Tyler J. Duffy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical

More information

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER Rajeev K R 1, Dr. Babu Paul 2, Prof. Smitha Paulose 3 1 PG Scholar, 2,3 Professor, Department of Electrical and Electronics

More information

POWER- SWITCHING CONVERTERS Medium and High Power

POWER- SWITCHING CONVERTERS Medium and High Power POWER- SWITCHING CONVERTERS Medium and High Power By Dorin O. Neacsu Taylor &. Francis Taylor & Francis Group Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business

More information

Digital Control Techniques for Efficiency Improvements in Single-Phase Boost Power Factor Correction Rectifiers

Digital Control Techniques for Efficiency Improvements in Single-Phase Boost Power Factor Correction Rectifiers University of Colorado, Boulder CU Scholar Electrical, Computer & Energy Engineering Graduate Theses & Dissertations Electrical, Computer & Energy Engineering Spring 1-1-2010 Digital Control Techniques

More information

A Study on the Effect of Load Variation on Quality Factor for Single-Phase Half- Bridge Resonant Converter

A Study on the Effect of Load Variation on Quality Factor for Single-Phase Half- Bridge Resonant Converter A Study on the Effect of Load Variation on Quality Factor for Single-Phase Half- Bridge Resonant Converter R. Baharom, M.F. Omar, N. Wahab, M.K.M Salleh and M.N. Seroji Faculty of Electrical Engineering

More information

A NOVEL BUCK-BOOST INVERTER FOR PHOTOVOLTAIC SYSTEMS

A NOVEL BUCK-BOOST INVERTER FOR PHOTOVOLTAIC SYSTEMS A NOVE BUCK-BOOST INVERTER FOR PHOTOVOTAIC SYSTEMS iuchen Chang, Zhumin iu, Yaosuo Xue and Zhenhong Guo Dept. of Elec. & Comp. Eng., University of New Brunswick, Fredericton, NB, Canada Phone: (506) 447-345,

More information

AC : PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE

AC : PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE AC 2007-2855: PSCAD SIMULATION IN A POWER ELECTRONICS APPLICATION COURSE Liping Guo, University of Northern Iowa Liping Guo received the B. E. degree in Automatic Control from Beijing Institute of Technology,

More information