CHAPTER 16: Sound. Responses to Questions

Size: px
Start display at page:

Download "CHAPTER 16: Sound. Responses to Questions"

Transcription

1 CHAPTER 6: Sound Responses to Questions 3. Sound waes generated in the irst cup cause the bottom o the cup to ibrate. These ibrations excite ibrations in the stretched string which are transmitted down the string to the second cup, where they cause the bottom o the second cup to ibrate, generating sound waes which are heard by the second child. 4. The waelength will change. The requency cannot change at the boundary since the media on both sides o the boundary are oscillating together. I the requency were to somehow change, there would be a pile-up o wae crests on one side o the boundary. 5. I the speed o sound in depended signiicantly on requency, then the sounds that we hear would be separated in time according to requency. For example, i a chord were played by an orchestra, we would hear the high notes at one time, the middle notes at another, and the lower notes at still another. This eect is not heard or a large range o distances, indicating that the speed o sound in does not depend signiicantly on requency. 6. Helium is much less dense than, so the speed o sound in the helium is higher than in. The waelength o the sound produced does not change, because it is determined by the length o the ocal cords and other properties o the resonating caity. The requency thereore increases, increasing the pitch o the oice. 0. A tube will hae certain resonance requencies associated with it, depending on the length o the tube and the temperature o the in the tube. Sounds at requencies ar rom the resonance requencies will not undergo resonance and will not persist. By choosing a length or the tube that isn t resonant or speciic requencies you can reduce the amplitude o those requencies. 3. Standing waes are generated by a wae and its relection. The two waes hae a constant phase relationship with each other. The intererence depends only on where you are along the string, on your position in space. Beats are generated by two waes whose requencies are close but not equal. The two waes hae a arying phase relationship, and the intererence aries with time rather than position.

2 6. (a) The closer the two component requencies are to each other, the longer the waelength o the beat. I the two requencies are ery close together, then the waes ery nearly oerlap, and the distance between a point where the waes interere constructiely and a point where they interere destructiely will be ery large. 8. No. The Doppler shit is caused by relatie motion between the and obserer. I the wind is blowing, both the waelength and the elocity o the sound will change, but the requency o the sound will not. Solutions to Problems 3. (a) 7 m.7 0 m 0 Hz 0 khz 4 0 Hz.00 Hz So the range is rom.7 cm to 7 m. 5 (b).30 m Hz 7. The total time T is the time or the stone to all t down plus the time or the sound to come back to the top o the cli t up : T t t. Use constant acceleration relationships or an object up down dropped rom rest that alls a distance h in order to ind t down, with down as the positie direction. Use the constant speed o sound to ind t up or the sound to trael a distance h. down: h y y t at h gt up: h t t 0 0 down down down up up h down up h gt g T t g T h T h T 0 g This is a quadratic equation or the height. This can be soled with the quadratic ormula, but be sure to keep seeral signiicant digits in the calculations.

3 h 3.0s h 3.0s m s 6 h h h 6068 m m m, 4m The larger root is impossible since it takes more than 3.0 sec or the rock to all that distance, so the correct result is h 4m. 8. The two sound waes trael the same distance. The sound will trael aster in the concrete, and thus take a shorter time. concrete d t t concrete concrete concrete t 0.75s t 0.75s d t concrete concrete 0.75s concrete The speed o sound in concrete is obtained rom Table 6- as 3000 m/s. d 3000m s 0.75s 90 m 3000m s 3. The pressure wae is P Pa sin 0.38 m x 350 s t. (a) k 0.38 m 5.3m (b) 350s 675Hz 350s (c) 3553ms 3600m s k 0.38 m (d) Use Eq. 6-5 to ind the displacement amplitude. P A A M P Pa 3 M m 300 kg m 3553m s 675 Hz

4 I 0 db 0 log W m.0 W m I 0 4. I I 0 0 I db 0log I 0 I W m W m 0 0 I The pain leel is times more intense than the whisper. 8. Compare the two power output ratings using the deinition o decibels. P 50W P 00W 50 0log 0log.8dB 00 This would barely be perceptible. 34. For a ibrating string, the requency o the undamental mode is gien by F T. L L m L T 4 F =4L m m 440 Hz 3.50 kg 87 N T L F m L 45. The tension and mass density o the string do not change, so the wae speed is constant. The requency ratio or two adjacent notes is to be /. The requency is gien by. l

5 uningered st ret uningered uningered ; x l l nd / / nth / nth uningered nth uningered ret ret ret ret n l st st ret ret l / uningered 65.0 cm l 6.35cm st / / l uningered ret l l l l n / l l l / x / 3/ x 4 / 5 / x 6 / x 65.0 cm 3.6 cm ; 65.0 cm 7.cm x x 65.0 cm 0.3cm ; 65.0 cm 3.4 cm cm 6.3cm ; 65.0 cm 9.0 cm The beat period is.0 seconds, so the beat requency is the reciprocal o that, 0.50 Hz. Thus the other string is o in requency by second string is too high or too low Hz. The beating does not tell the tuner whether the 56. (a) Since the sounds are initially 80 out o phase, another 80 o phase must be added by a path A x d x B length dierence. Thus the dierence o the distances rom the speakers to the point o constructie intererence must be hal o a waelength. See the diagram. d x x d x d 0.583m min 94 Hz This minimum distance occurs when the obserer is right at one o the speakers. I the speakers are separated by more than m, the location o constructie intererence will be moed away rom the speakers, along the line between the speakers. (b) Since the sounds are already 80 out o phase, as long as the listener is equidistant rom the speakers, there will be completely destructie intererence. So een i the speakers hae a tiny separation, the point midway between them will be a point o completely destructie intererence. The minimum separation between the speakers is (a) Obserer moing towards stationary.

6 30.0m s obs 350 Hz 470 Hz (b) Obserer moing away rom stationary. 30.0m s obs 350 Hz 30 Hz 63. (a) For the 8 m/s relatie elocity: 300 Hz 47 Hz 430 Hz moing 8m s 8m s obserer moing 300 Hz 4Hz 40 Hz The requency shits are slightly dierent, with obserer moing moing. The two requencies are close, but they are not identical. As a means o comparison, calculate the spread in requencies diided by the original requency. moing obserer moing 47 Hz 4Hz % 300 Hz (b) For the 60 m/s relatie elocity: 300 Hz 43Hz 430 Hz moing 60 m s 60 m s obserer moing 300 Hz 337 Hz 3370 Hz The dierence in the requency shits is much larger this time, still with obserer. moing moing moing obserer moing 43Hz 337 Hz % 300 Hz (c) For the 30 m/s relatie elocity:

7 300 Hz 34,300 Hz moing 30 m s 30m s obserer moing 300 Hz 4446 Hz 4450 Hz The dierence in the requency shits is quite large, still with obserer. moing moing moing obserer moing 34,300 Hz 4446 Hz % 300 Hz (d) The Doppler ormulas are asymmetric, with a larger shit or the moing than or the moing obserer, when the two are getting closer to each other. In the ollowing deriation, assume, = and use the binomial expansion. obserer moing moing 65. (a) The obserer is stationary, and the is moing. First the is approaching, then the is receding. m s 0.0 km h 33.33m s 3.6 km h 80 Hz 40 Hz moing 33.33m s towards 80 Hz 70 Hz moing 33.33m s away (b) Both the obserer and the are moing, and so use Eq. 6-. m s 90.0km h 5m s 3.6km h

8 obs approaching obs receding 5m s 80 Hz 50 Hz 33.33m s 5m s 80 Hz 080 Hz 33.33m s (c) Both the obserer and the are moing, and so again use Eq. 6-. m s 80.0 km h. m s 3.6 km h. m s 33.33m s obs police car approaching 80 Hz 330 Hz. m s 33.33m s obs police car receding 80 Hz 40 Hz 66. The wall can be treated as a stationary obserer or calculating the requency it receies. The is lying toward the wall. wall Then the wall can be treated as a stationary emitting the requency moing obserer, lying toward the wall., and the as a wall wall 7.0 m s 7.0 m s Hz Hz

Parts of a Wave. Mechanical Wave SPH3UW. Waves and Sound crest. : wavelength. equilibrium A: amplitude x(m) -3 y(m)

Parts of a Wave. Mechanical Wave SPH3UW. Waves and Sound crest. : wavelength. equilibrium A: amplitude x(m) -3 y(m) SPH3UW Waes and Sound Mechanical Wae A mechanical wae is a disturbance which propagates through a medium with little or no net displacement o the particles o the medium. A Pulse is a single disturbance

More information

Tute W4: DOPPLER EFFECT 1

Tute W4: DOPPLER EFFECT 1 Tute W4: DOPPLER EFFECT 1 A Doppler effect occurs wheneer there is relatie motion between a source and the receier. When the source and receier moe towards each other, the frequency detected by the receier

More information

Interference of sound waves. Sound II. Interference due to path difference. Noise canceling headphones. Interference. Interference

Interference of sound waves. Sound II. Interference due to path difference. Noise canceling headphones. Interference. Interference Sound II. of sound waes Standing waes Complex sound waes of sound waes Two sound waes superimposed Constructie Destructie Noise canceling headphones Noise Wae Wae Anti-noise Wae Wae due to path difference

More information

Sound. Production of Sound

Sound. Production of Sound Sound Production o Sound Sound is produced by a vibrating object. A loudspeaker has a membrane or diaphragm that is made to vibrate by electrical currents. Musical instruments such as gongs or cymbals

More information

Sound Waves: Doppler Effect

Sound Waves: Doppler Effect Sound Wae: oppler Eect oppler Shit: I either the detector or the ource o i moing, or i both are moing, then the emitted requency,, o the ource and the detected requency, ob, are dierent. I both the ource

More information

Chapter 18. Superposition and Standing Waves

Chapter 18. Superposition and Standing Waves Chapter 18 Superposition and Standing Waes C HP T E R O UTLI N E 181 Superposition and Interference 182 Standing Waes 183 Standing Waes in a String Fixed at Both Ends 184 Resonance 185 Standing Waes in

More information

Chapter 23: Superposition, Interference, and Standing Waves

Chapter 23: Superposition, Interference, and Standing Waves Chapter 3: Superposition, Intererence, and Standing Waves Previously, we considered the motion o a single wave in space and time What i there are two waves present simultaneously in the same place and

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 2. A string is firmly attached at both ends. When a frequency of 60 Hz is applied, the string vibrates in the standing wave

More information

3) For vibrational motion, the maximum displacement from the equilibrium point is called the

3) For vibrational motion, the maximum displacement from the equilibrium point is called the WAVES & SOUND Conceptual Questions 1) The time for one cycle of a periodic process is called the 2) For a periodic process, the number of cycles per unit time is called the 3) For vibrational motion, the

More information

PHYSICS TOPICAL: Sound Test 1

PHYSICS TOPICAL: Sound Test 1 PHYSICS TOPICAL: Sound Test 1 Time: 23 Minutes* Number of Questions: 18 * The timing restrictions for the science topical tests are optional. If you are using this test for the sole purpose of content

More information

WAVES BEATS: INTERFERENCE IN TIME

WAVES BEATS: INTERFERENCE IN TIME VISUAL PHYSICS ONLINE WAVES BEATS: INTERFERENCE IN TIME Beats is an example o the intererence o two waves in the time domain. Loud-sot-loud modulations o intensity are produced when waves o slightly dierent

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Analytical Physics 1B Lecture 7: Sound

Analytical Physics 1B Lecture 7: Sound Analytical Physics 1B Lecture 7: Sound Sang-Wook Cheong Friday, March 2nd, 2018 Sound Waves Longitudinal waves in a medium (air, solids, liquids, etc.) Human ear is sensitive to frequencies between 20

More information

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Wave and Sound Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) What is the frequency of a 2.5 m wave traveling at 1400 m/s? 1) 2)

More information

Homework 3 Solution Set

Homework 3 Solution Set Homework 3 Solution Set Blake Chapter Problems 1-10 10 points (1 per problem) 1. Calculate the length (not speciied in metric or English) o a practical hal-wae dipole or a requency o 150 MHz. A practical

More information

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to:

Chapter 14, Sound. 1. When a sine wave is used to represent a sound wave, the crest corresponds to: CHAPTER 14 1. When a sine wave is used to represent a sound wave, the crest corresponds to: a. rarefaction b. condensation c. point where molecules vibrate at a right angle to the direction of wave travel

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude.

1) The time for one cycle of a periodic process is called the A) period. B) frequency. C) wavelength. D) amplitude. Practice quiz for engineering students. Real test next Tuesday. Plan on an essay/show me work question as well. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s. PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

Physics 1C. Lecture 14C. "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France

Physics 1C. Lecture 14C. The finest words in the world are only vain sounds if you cannot understand them. --Anatole France Physics 1C Lecture 14C "The finest words in the world are only vain sounds if you cannot understand them." --Anatole France Standing Waves You can also create standing waves in columns of air. But in air,

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

1. At which position(s) will the child hear the same frequency as that heard by a stationary observer standing next to the whistle?

1. At which position(s) will the child hear the same frequency as that heard by a stationary observer standing next to the whistle? Name: Date: Use the following to answer question 1: The diagram shows the various positions of a child in motion on a swing. Somewhere in front of the child a stationary whistle is blowing. 1. At which

More information

Vibrations & Sound. Chapter 11

Vibrations & Sound. Chapter 11 Vibrations & Sound Chapter 11 Waves are the practical applications o oscillations. Waves show up in nature in many orms that include physical waves in a medium like sound, and waves o varying electric

More information

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d

Pre Test 1. Name. a Hz b Hz c Hz d Hz e Hz. 1. d Name Pre Test 1 1. The wavelength of light visible to the human eye is on the order of 5 10 7 m. If the speed of light in air is 3 10 8 m/s, find the frequency of the light wave. 1. d a. 3 10 7 Hz b. 4

More information

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics

Preview. Sound Section 1. Section 1 Sound Waves. Section 2 Sound Intensity and Resonance. Section 3 Harmonics Sound Section 1 Preview Section 1 Sound Waves Section 2 Sound Intensity and Resonance Section 3 Harmonics Sound Section 1 TEKS The student is expected to: 7A examine and describe oscillatory motion and

More information

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion

1. Transverse Waves: the particles in the medium move perpendicular to the direction of the wave motion Mechanical Waves Represents the periodic motion of matter e.g. water, sound Energy can be transferred from one point to another by waves Waves are cyclical in nature and display simple harmonic motion

More information

Bike Generator Project

Bike Generator Project Bike Generator Project Each lab section will build 1 bike generator Each lab group will build 1 energy board Connect and test energy board and bike generator Create curriculum materials and demos to teach

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: STANDING WAVES QUESTIONS No Brain Too Small PHYSICS PAN FLUTES (2016;1) Assume the speed of sound in air is 343 m s -1. A pan flute is a musical instrument made of a set of pipes that are closed

More information

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c)

Waves Q1. MockTime.com. (c) speed of propagation = 5 (d) period π/15 Ans: (c) Waves Q1. (a) v = 5 cm (b) λ = 18 cm (c) a = 0.04 cm (d) f = 50 Hz Q2. The velocity of sound in any gas depends upon [1988] (a) wavelength of sound only (b) density and elasticity of gas (c) intensity

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

(3) A traveling wave transfers, but it does not transfer.

(3) A traveling wave transfers, but it does not transfer. AP PHYSICS TEST 9 Waves and Sound (1) Give a good physics definition of a wave. (2) Any wave has as its source. (3) A traveling wave transfers, but it does not transfer. (4) What is a mechanical wave?

More information

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc.

Chapter 16 Sound. Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-6 Interference of Sound Waves; Beats Sound waves interfere in the same way that other waves do in space. 16-6 Interference of Sound Waves; Beats Example 16-12: Loudspeakers interference.

More information

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no

Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no 1 Waves transfer energy NOT matter Two categories of waves Mechanical Waves require a medium (matter) to transfer wave energy Electromagnetic waves no medium required to transfer wave energy 2 Mechanical

More information

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another?

Warm-Up. Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? Warm-Up Think of three examples of waves. What do waves have in common? What, if anything, do waves carry from one place to another? WAVES Physics Waves If you can only remember one thing Waves transmit

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

WAVES. Chapter Fifteen MCQ I

WAVES. Chapter Fifteen MCQ I Chapter Fifteen WAVES MCQ I 15.1 Water waves produced by a motor boat sailing in water are (a) neither longitudinal nor transverse. (b) both longitudinal and transverse. (c) only longitudinal. (d) only

More information

Waves Homework. Assignment #1. Assignment #2

Waves Homework. Assignment #1. Assignment #2 Waves Homework Assignment #1 Textbook: Read Section 11-7 and 11-8 Online: Waves Lesson 1a, 1b, 1c http://www.physicsclassroom.com/class/waves * problems are for all students ** problems are for honors

More information

Lecture 19. Superposition, interference, standing waves

Lecture 19. Superposition, interference, standing waves ecture 19 Superposition, interference, standing waves Today s Topics: Principle of Superposition Constructive and Destructive Interference Beats Standing Waves The principle of linear superposition When

More information

Physics I Notes: Chapter 13 Sound

Physics I Notes: Chapter 13 Sound Physics I Notes: Chapter 13 Sound I. Properties of Sound A. Sound is the only thing that one can hear! Where do sounds come from?? Sounds are produced by VIBRATING or OSCILLATING OBJECTS! Sound is a longitudinal

More information

Waves and Sound. Review 10

Waves and Sound. Review 10 Review 10 Waves and Sound 1. A spring stretches by 25 cm when a 0.5 kg mass is suspended from its end. a. Determine the spring constant. b. How much elastic potential energy is stored in the spring when

More information

b) (4) How large is the effective spring constant associated with the oscillations, in N/m?

b) (4) How large is the effective spring constant associated with the oscillations, in N/m? General Physics I Quiz 7 - Ch. 11 - Vibrations & Waves July 22, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is available

More information

point at zero displacement string 80 scale / cm Fig. 4.1

point at zero displacement string 80 scale / cm Fig. 4.1 1 (a) Fig. 4.1 shows a section of a uniform string under tension at one instant of time. A progressive wave of wavelength 80 cm is moving along the string from left to right. At the instant shown, the

More information

Name: Date: Period: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015

Name: Date: Period: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015 Name: Date: Period: Objectives: IB Physics SL Y2 Option A (Sight and Wave Phenomena Part 1) Midterm Exam Study Guide Exam Date: Thursday, March 12, 2015 A.1.1 Describe the basic structure of the human

More information

Doppler effect (Item No.: P )

Doppler effect (Item No.: P ) Teacher's/Lecturer's Sheet Doppler effect (Item No.: P6012100) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 10-13 Topic: Akustik Subtopic: Schwingungen und Wellen Experiment:

More information

Copyright 2010 Pearson Education, Inc.

Copyright 2010 Pearson Education, Inc. 14-7 Superposition and Interference Waves of small amplitude traveling through the same medium combine, or superpose, by simple addition. 14-7 Superposition and Interference If two pulses combine to give

More information

Name: Date: Period: Physics: Study guide concepts for waves and sound

Name: Date: Period: Physics: Study guide concepts for waves and sound Name: Date: Period: Physics: Study guide concepts for waves and sound Waves Sound What is a wave? Identify parts of a wave (amplitude, frequency, period, wavelength) Constructive and destructive interference

More information

sound is a longitudinal, mechanical wave that travels as a series of high and low pressure variations

sound is a longitudinal, mechanical wave that travels as a series of high and low pressure variations Sound sound is a longitudinal, mechanical wave that travels as a series of high and low pressure variations the high pressure regions are compressions and the low pressure regions are rarefactions the

More information

AP Homework (Q2) Does the sound intensity level obey the inverse-square law? Why?

AP Homework (Q2) Does the sound intensity level obey the inverse-square law? Why? AP Homework 11.1 Loudness & Intensity (Q1) Which has a more direct influence on the loudness of a sound wave: the displacement amplitude or the pressure amplitude? Explain your reasoning. (Q2) Does the

More information

Ultrasound Notes 4: Doppler

Ultrasound Notes 4: Doppler Noll (24) US Notes 4: page 1 Ultrasound Notes 4: Doppler Imaging o Blood Flow with US One o the more interesting and useul appliations o US is or the imaging o low in the body. One way to do this is trak

More information

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion

Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion Sound All sound begins with a vibrating object Ex. Vibrating tuning fork Vibrating prong sets molecules near it in motion As prong swings right, air molecules in front of the movement are forced closer

More information

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves

Chapter 12. Preview. Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect. Section 1 Sound Waves Section 1 Sound Waves Preview Objectives The Production of Sound Waves Frequency of Sound Waves The Doppler Effect Section 1 Sound Waves Objectives Explain how sound waves are produced. Relate frequency

More information

Wave Review Questions Updated

Wave Review Questions Updated Name: Date: 1. Which type of wave requires a material medium through which to travel? 5. Which characteristic is the same for every color of light in a vacuum? A. radio wave B. microwave C. light wave

More information

Physics 17 Part N Dr. Alward

Physics 17 Part N Dr. Alward Physics 17 Part N Dr. Alward String Waves L = length of string m = mass μ = linear mass density = m/l T = tension v = pulse speed = (T/μ) Example: T = 4.9 N μ = 0.10 kg/m v = (4.9/0.10) 1/2 = 7.0 m/s Shake

More information

(i) node [1] (ii) antinode...

(i) node [1] (ii) antinode... 1 (a) When used to describe stationary (standing) waves explain the terms node...... [1] (ii) antinode....... [1] (b) Fig. 5.1 shows a string fixed at one end under tension. The frequency of the mechanical

More information

ConcepTest Clicker Questions Chapter 14

ConcepTest Clicker Questions Chapter 14 ConcepTest Clicker Questions Chapter 14 College Physics, 7th Edition Wilson / Buffa / Lou 2010 Pearson Education, Inc. Question 14.1a Sound Bite I When a sound wave passes from air into water, what properties

More information

16.3 Standing Waves on a String.notebook February 16, 2018

16.3 Standing Waves on a String.notebook February 16, 2018 Section 16.3 Standing Waves on a String A wave pulse traveling along a string attached to a wall will be reflected when it reaches the wall, or the boundary. All of the wave s energy is reflected; hence

More information

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium.

A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Waves and Sound Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement of the particles of the medium. Water Waves Wave Pulse People Wave

More information

a. Determine the wavelength of the sound. b. Determine the speed of sound in the air inside the tube.

a. Determine the wavelength of the sound. b. Determine the speed of sound in the air inside the tube. 1995B6. (10 points) A hollow tube of length Q. open at both ends as shown above, is held in midair. A tuning fork with a frequency f o vibrates at one end of the tube and causes the air in the tube to

More information

SOUND WAVES. Contents. Exercise Exercise Exercise Exercise Answer Key Syllabus

SOUND WAVES. Contents. Exercise Exercise Exercise Exercise Answer Key Syllabus SOUND WAVES Contents Topic Page No. Exercise - 1 01-10 Exercise - 11-0 Exercise - 3 0-4 Exercise - 4 5 Answer Key 6-7 Syllabus Speed of Sound in gases ; Doppler effect (in sound). Name : Contact No. ARRIDE

More information

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle

Frequency f determined by the source of vibration; related to pitch of sound. Period T time taken for one complete vibrational cycle Unit 1: Waves Lesson: Sound Sound is a mechanical wave, a longitudinal wave, a pressure wave Periodic sound waves have: Frequency f determined by the source of vibration; related to pitch of sound Period

More information

Chapter 05: Wave Motions and Sound

Chapter 05: Wave Motions and Sound Chapter 05: Wave Motions and Sound Section 5.1: Forces and Elastic Materials Elasticity It's not just the stretch, it's the snap back An elastic material will return to its original shape when stretched

More information

Oscillations. Waves. Sound. Stationary waves. Acoustics of Buildings

Oscillations. Waves. Sound. Stationary waves. Acoustics of Buildings Oscillations Waves & Sound Oscillations Waves Sound Stationary waves Acoustics of Buildings 01. The maximum velocity of a body in S.H.M.is 0.25m/s and maximum acceleration is 0.75m/s 2, the period of S.H.M.

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 27 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 48824 Table o Contents Table o Contents...1 Table o Tables...1 Table o

More information

v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has a wavelength of 1.20 meters. What is the speed of this wave?

v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has a wavelength of 1.20 meters. What is the speed of this wave? Today: Questions re: HW Examples - Waves Wave Properties > Doppler Effect > Interference & Beats > Resonance Examples: v = λf 1. A wave is created on a Slinky such that its frequency is 2 Hz and it has

More information

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems. Demonstrate understanding of wave systems. Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of wave systems Subject Reference Physics 3.3 Title Demonstrate understanding of wave systems Level 3 Credits 4 Assessment External This achievement standard involves demonstrating

More information

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations

EP118 Optics. Content TOPIC 9 ABERRATIONS. Department of Engineering Physics University of Gaziantep. 1. Introduction. 2. Spherical Aberrations EP118 Optics TOPI 9 ABERRATIONS Department o Engineering Physics Uniersity o Gaziantep July 2011 Saya 1 ontent 1. Introduction 2. Spherical Aberrations 3. hromatic Aberrations 4. Other Types o Aberrations

More information

(1) 294 N (2) 98 N (3) 30 N (4) 348 N (5) None of these.

(1) 294 N (2) 98 N (3) 30 N (4) 348 N (5) None of these. Instructor(s): C. Parks PHYSICS DEPARTMENT PHY2053, Summer 2015 EXAM 3 July 31, 2015 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

From Last Time Wave Properties. Doppler Effect for a moving source. Question. Shock Waves and Sonic Booms. Breaking the sound barrier.

From Last Time Wave Properties. Doppler Effect for a moving source. Question. Shock Waves and Sonic Booms. Breaking the sound barrier. From Last Time Wave Properties Interference: waves can superimpose constructively or destructively Two speakers can be quieter than one! Doppler effect Frequency shift (up or down) from moving source.

More information

Lecture Presentation Chapter 16 Superposition and Standing Waves

Lecture Presentation Chapter 16 Superposition and Standing Waves Lecture Presentation Chapter 16 Superposition and Standing Waves Suggested Videos for Chapter 16 Prelecture Videos Constructive and Destructive Interference Standing Waves Physics of Your Vocal System

More information

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2

(A) 2f (B) 2 f (C) f ( D) 2 (E) 2 1. A small vibrating object S moves across the surface of a ripple tank producing the wave fronts shown above. The wave fronts move with speed v. The object is traveling in what direction and with what

More information

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY

SUMMARY. ) f s Shock wave Sonic boom UNIT. Waves transmit energy. Sound is a longitudinal mechanical wave. KEY CONCEPTS CHAPTER SUMMARY UNIT D SUMMARY KEY CONCEPTS CHAPTER SUMMARY 9 Waves transmit energy. Crest, trough, amplitude, wavelength Longitudinal and transverse waves Cycle Period, frequency f 1_ T Universal wave equation v fλ Wave

More information

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University o Colorado, Boulder LECTURE 13 PHASE NOISE L13.1. INTRODUCTION The requency stability o an oscillator

More information

Week I AUDL Signals & Systems for Speech & Hearing. Sound is a SIGNAL. You may find this course demanding! How to get through it: What is sound?

Week I AUDL Signals & Systems for Speech & Hearing. Sound is a SIGNAL. You may find this course demanding! How to get through it: What is sound? AUDL Signals & Systems for Speech & Hearing Week I You may find this course demanding! How to get through it: Consult the Web site: www.phon.ucl.ac.uk/courses/spsci/sigsys Essential to do the reading and

More information

Today s Discussion. Today s Discussion

Today s Discussion. Today s Discussion Today s Discussion Today s Discussion Sound Beats & 1 Sound Sound waves will be this course s favorite longitudinal wave So favorite, in fact, that all longitudinal waves will be referred to as sound waves

More information

Waves and Sound. AP Physics 1

Waves and Sound. AP Physics 1 Waves and Sound AP Physics 1 What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Classes of waves

More information

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved.

Section 1 Sound Waves. Chapter 12. Sound Waves. Copyright by Holt, Rinehart and Winston. All rights reserved. Section 1 Sound Waves Sound Waves Section 1 Sound Waves The Production of Sound Waves, continued Sound waves are longitudinal. Section 1 Sound Waves Frequency and Pitch The frequency for sound is known

More information

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline

Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Unit 10 Simple Harmonic Waves and Sound Holt Chapter 12 Student Outline Variables introduced or used in chapter: Quantity Symbol Units Vector or Scalar? Spring Force Spring Constant Displacement Period

More information

The Nature of Sound. What produces sound?

The Nature of Sound. What produces sound? 1 The Nature of Sound What produces sound? Every sound is produced by an object that vibrates. For example, your friends voices are produced by the vibrations of their vocal cords, and music from a carousel

More information

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves)

Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Today: Finish Chapter 15 (Temp, Heat, Expansion) Chapter 19 (Vibrations and Waves) Vibrations Some Preliminaries Vibration = oscillation = anything that has a back-and-forth to it Eg. Draw a pen back and

More information

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA THE PRINCIPLE OF LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA PREVIEW When two waves meet in the same medium they combine to form a new wave by the principle of superposition. The result of superposition

More information

MDHS Science Department SPH 3U - Student Goal Tracking Sheet

MDHS Science Department SPH 3U - Student Goal Tracking Sheet Did I watch the assigned video for this topic? Did I complete the homework for this topic? Did I complete the Journal for this topic? How successful was I with this Journal? (1 (need review) to 4 (mastered))

More information

Sound. DEF: A pressure variation that is transmitted through matter. Collisions are high pressure / compressions.

Sound. DEF: A pressure variation that is transmitted through matter. Collisions are high pressure / compressions. Sound Sound DEF: A pressure variation that is transmitted through matter. Link to pic of bell animation Collisions are high pressure / compressions. Pulls are low pressure / rarefacation. Have same properties

More information

UIC PHYSICS 105 Fall 2014 Final Exam

UIC PHYSICS 105 Fall 2014 Final Exam UIC: Physics 105 Final Exam Fall 2014 Wednesday, December 10 # LAST Name (print) FIRST Name (print) Signature: UIN #: Giving or receiving aid in any examination is cause for dismissal from the University.

More information

The quality of your written communication will be assessed in your answer. (Total 6 marks)

The quality of your written communication will be assessed in your answer. (Total 6 marks) Q1.A stationary wave is formed on a stretched string. Discuss the formation of this wave. Your answer should include: an explanation of how the stationary wave is formed a description of the features of

More information

Sound Ch. 26 in your text book

Sound Ch. 26 in your text book Sound Ch. 26 in your text book Objectives Students will be able to: 1) Explain the relationship between frequency and pitch 2) Explain what the natural frequency of an object is 3) Explain how wind and

More information

Chapter 15 Supplement HPS. Harmonic Motion

Chapter 15 Supplement HPS. Harmonic Motion Chapter 15 Supplement HPS Harmonic Motion Motion Linear Moves from one place to another Harmonic Motion that repeats over and over again Examples time, speed, acceleration Examples Pendulum Swing Pedaling

More information

L 23 Vibrations and Waves [3]

L 23 Vibrations and Waves [3] L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

= 2n! 1 " L n. = 2n! 1 # v. = 2n! 1 " v % v = m/s + ( m/s/ C)T. f 1. = 142 Hz

= 2n! 1  L n. = 2n! 1 # v. = 2n! 1  v % v = m/s + ( m/s/ C)T. f 1. = 142 Hz Chapter 9 Review, pages 7 Knowledge 1. (b). (c) 3. (b). (d) 5. (b) 6. (d) 7. (d) 8. (b) 9. (a) 10. (c) 11. (a) 1. (c) 13. (b) 1. (b) 15. (d) 16. False. Interference does not leave a wave permanently altered.

More information

Physics 2A Chapters 16: Waves and Sound. Problem Solving

Physics 2A Chapters 16: Waves and Sound. Problem Solving Physics 2A Chapters 16: Waves and Sound We are what we believe we are. Benjamin Cardozo We would accomplish many more things if we did not think of them as impossible C. Malesherbez The only limit to our

More information

Quizbank/College Physics/II T1study

Quizbank/College Physics/II T1study Quizbank/College Physics/II T1study From Wikiversity TrigPhys_II_T1_Study If you are reading this as a Wikiversity page, proper pagebreaks should result if printed using your browser's print option. On

More information

Honors Physics-121B Sound and Musical Acoustics Introduction: Production of Sounds by Various Sources: Media That Transmit Sound:

Honors Physics-121B Sound and Musical Acoustics Introduction: Production of Sounds by Various Sources: Media That Transmit Sound: Honors Physics-121B Sound and Musical Acoustics Introduction: This unit deals with the properties of longitudinal (compressional) waves traveling through various media. As these waves travel through the

More information

Beat frequency = f f = f. f = f. = f. = f. = f

Beat frequency = f f = f. f = f. = f. = f. = f Beat frequency = f f = f v vm f = f v vb v vm f v vb = f = f = f ( v v ( vv m m )( v v ( v ) ( v v b ){( vv ( v vm)( v ( v vb ) ( v v ) b b v ) ) ( vv b b ) m b )( v v )} b ) Ex.17 A source of sound is

More information

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples

Review. Top view of ripples on a pond. The golden rule for waves. The golden rule for waves. L 23 Vibrations and Waves [3] ripples L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

More information

SPH 3U0: Exam Review: Sound, Waves and Projectile Motion

SPH 3U0: Exam Review: Sound, Waves and Projectile Motion SPH 3U0: Exam Review: Sound, Waves and Projectile Motion True/False Indicate whether the sentence or statement is true or false. 1. A trough is a negative pulse which occurs in a longitudinal wave. 2.

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 005 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 4884 The leel o knowledge and detail expected or the exam is that o the

More information

WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions

WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions WAVES, SOUND AND LIGHT: Solutions to Higher Level Questions 2015 Question 9 (i) What are stationary waves? How are they produced? The amplitude of the wave at any point is constant // There is no net transfer

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS WAVES: DOPPLER EFFECT AND BEATS QUESTIONS A RADIO-CONTROLLED PLANE (2016;2) Mike is flying his radio-controlled plane. The plane flies towards him at constant speed, and then away from him with constant

More information