MINIATURIZATION OF LVAD ELECTRONICS PACKAGE

Size: px
Start display at page:

Download "MINIATURIZATION OF LVAD ELECTRONICS PACKAGE"

Transcription

1 Proceedings of the Multi-Disciplinary Senior Design Conference Page 1 Project Number: P11021 MINIATURIZATION OF LVAD ELECTRONICS PACKAGE Andrew Hoag Computer Engineer Juan Jackson Electrical Engineer Smiha Sayal Industrial Engineer Zachery Shivers Electrical Engineer Nicole Varble Mechanical Engineer Jason Walzer Mechanical Engineer ABSTRACT BACKGROUND The goal of this project was to miniaturize the electronics package for RIT s custom levitating Left Ventricular Assist Device (LVAD). Since this system is still in development, its end-users are the physicians and engineers involved in its development. As a lifecritical system, the LVAD was required to be highly reliable and safe while being robust. Proper system functionality was achieved by using the H-bridges, analog signal conditioning and a microcontroller. Portability was achieved by placing them in a 180x82x103 mm waterproof ABS plastic enclosure. NOMENCLATURE LVAD Left Ventricular Assist Device ADC Analog to Digital Converter AMB Active Magnetic Bearing ABS Acrylonitrile Butadiene Styrene CAD Computer Aided Design DAC Digital to Analog Converter h Convection coefficient (W/m 2 K) HESA Hall Effect Sensor Array k Thermal conductivity coefficient (W/mK) L Layer thickness LED Light Emitting Diode P power (W) PID Proportional-Integral-Derivative PWM Pulse Width Modulation RIT Rochester Institute of Technology T inf ambient temperature ( o C) T s Surface temperature ( o C) USB Universal Serial Bus Figure 1 - Previous electronics package The current left-ventricle assist device (LVAD) system is centered on a custom, levitating impeller blood pump for use in human patients with cardiac disease to boost blood flow. A unique feature of the blood pump is its ability to magnetically levitate the impeller within the pump's housing, drastically reducing friction losses and increasing pump lifetime as compared to mechanical bearing pumps. Even though the system in its current state is fully functional, the external package that houses the electronics is too large. Therefore, the purpose of this project was to miniaturize the system such that it can be scaled to more portable configurations, while sustaining the functionality of the pump. As a lifecritical system, it must be highly reliable and safe. Previously, teams have successfully decreased the volume of the device, but failed to create an overall working system that matches the original. This was caused by inappropriate microcontroller selection. Therefore, the team paid special attention to creating a system with a manageable electronics control system. Copyright 2011 Rochester Institute of Technology

2 Proceedings of the Multi-Disciplinary Senior Design Conference Page 2 DESIGN System Architecture The pump consists of the magnetic levitation coils (collectively known as the active magnetic bearing system), a three-phase motor to spin the impeller, and several hall-effect sensors to sense the x-y position of the front and back of the impeller. To keep the pump levitating, the force applied by the magnetic coils is constantly readjusted to compensate for positional error of the impeller axis. The control system consists of a microcontroller with an ADC for the hall-effect sensors and motor control circuitry for the AMB coils and the 3-phase motor. This microcontroller must be powerful enough to handle the control algorithm which keeps the pump levitating and rotating. The entire external assembly needs to be robust to water splashes and drops from regular operating height. Figure 2 - Overall system architecture Enclosure Design The size of the enclosure and the electronics determine the overall volume of the system, and these sizes are interdependent. In order to accommodate any design changes in the future due to resizing or restructuring of electronics, a CAD model was created using the software Autodesk Inventor. By carefully entering design constraints into the CAD design, the enclosure could be resized to accommodate the size of the PCB. The user interface components ultimately determined the minimum size of the box instead of the PCB. Figure 3 - Custom waterproof enclosure with user interface facing outward Enclosure material was selected based on the customer constraints and manufacturability. The following options were considered: rapid prototyping of ABS plastic, stereo lithography, injection molding and machining of metals or polymers. The team decided to use ABS plastic for this project as it was cost effective, easy to manufacture, feasible to manufacture within the timeline and would enabled the team to make quick revisions even with complex shapes. Despite its favorable manufacturability, ABS plastic has several undesirable characteristics. Concern for durability from falling was addressed through drop tests. This drop test was performed by releasing the enclosure from 1.5m above the ground. 3D printed ABS, unlike molded or machined ABS, is porous. Initial tests showed that a coating was required to waterproof the enclosure. The prototype was sprayed on with a rubberized coating and was tested again for water leakage. The results from these tests are discussed in further sections. Without heat sinks, the sealed enclosure will not be able to dissipate the heat generated by the electronics. In order to verify that the internal temperature of the enclosure will not exceed a safe operation temperature for the electronics, a heat transfer analysis was conducted. Several assumptions were made in performing the analysis. First, free convection was assumed to occur on the outside of the box, occurring on all sides with the exception of the side facing the body and the top which contains most of the user interface components. This is expressed using Equation (1) below: q" = h air (T in -T ) (1) [1] Project P11021

3 Proceedings of the Multi-Disciplinary Senior Design Conference Page 3 where q is the heat flux, h air is the convection coefficient of air, T in is the temperature inside the enclosure and is the ambient temperature. Also, the board was considered to be placed in the middle of the enclosure having no contact with the ABS plastic. Thus, conduction was assumed to occur from the board through both the air and then the ABS plastic. The thermal conductivity of ABS plastic is 0.17 W/mK [2]. It was expressed using Equation (2) below: q"= k(t in -T )/t (2) [1] Where k is the conduction coefficient and t is the thickness. Additionally, the electronic components were said to dissipate a maximum of 5 Watts. The analysis was assumed to be steady state and the ambient temperature was assumed to be body temperature (37 C). From the convection and conduction expressions the total thermal resistance was calculated using Equation (3) below: R = (1/(h air A)+t 1 /(Ak ABS )+t 2 /(Ak air )) (3) Using the above equations, the temperature inside the box was calculated to be 79 C, which is under the critical operating temperature of 85 C for the electronics components in the enclosure. Since these temperatures are very close, in-depth analysis for heat dissipation should have been conducted, however due to time constraints the team deemed it unnecessary to perform future research. Microcontroller The microcontroller sub-system is the core of the entire control system. Since this was one of the most crucial components, special attention was paid when considering feasible options. The factors considered for controller selection were as follows: Controller should be able to interface with 5V sensors and logic It should be able to handle floating point PID calculations It should have at least eight channels of 12-bit ADC Must be able to generate multiple PWM outputs for AMBs and motor control Two options were considered for the microcontroller, DSPIC and MSP430. The team chose the Texas Instruments MSP430F5438A 16-bit microcontroller as it met the project needs, is easy to use and due to team's prior experience in working with this controller. The following table lists the relevant specification of the microcontroller: Table 1-Specifications for Microcontroller Microcontroller Project Requirement Feature 12-bit SAR A/D converter 256 KB Flash Memory / 16 KB RAM 87 general purpose I/O 4x SPI/I2C Peripherals JTAG Sufficient resolution for PID inputs More than sufficient program and RAM space considering the simplicity of the algorithm and user interface. I/O for all general digital inputs from H-Bridges, user interface (buttons, LEDs, LCD) Interface to AMB H-bridges, D/A (compatibility) Reprogrammable and debuggable 2x 16-bit Timers Total of 8 timer channels The software was written in C using Texas Instrument s Code Composer Studio IDE and compiler. A TI MSP-FET430UIF USB to JTAG debug tool allowed for programming and debugging the microcontroller from a PC using the Code Composer tools. The MSP430 and built-in peripherals are largely interrupt driven. This includes the timers that are used to generate the PWM signals. The PWM signal for the PHX-35 motor controller is a standard R/C format, with a 50Hz frequency, and duty cycle varying between 1 and 2 ms. The AMB PWM signals provided to the H-bridges have a 20 khz frequency that normally operates between 30% and 70% duty cycle. [4] Analog to digital sampling for all HESA signals occurs 5000 times per second. Pump impeller levitation is controlled with a closed feedback loop, PID. The HESA signals are the feedback from changes made to the AMBs. Device status is displayed via the 32x100 LCD display and debug information is sent over UART serial at baud. The UART was connected to a FTDI FT232RL, which provided a virtual serial port over USB. Copyright 2011 Rochester Institute of Technology

4 Proceedings of the Multi-Disciplinary Senior Design Conference Page 4 Power Supplies An overview of the worst-case voltage and current requirements is detailed in Table 2. Note that these estimates are very conservative; they represent worstcase startup currents for the AMB levitation and rotation. Operating power will be significantly less. Table 2 - Estimated worst-case power supply requirements Supply Subsystem Current (ma) Power (mw) +3.3V Microcontroller, on-board LEDs +5V Interfaces (HESA power, PWMs, UI LEDs, etc) +12V AMB H-bridge logic VBAT AMB H-bridge power Total Total power (only one capacitor and one resistor) and its common use in other A/D circuitry [ref]. The maximum signal swing of the hall-effect sensor is 2.5V to 4.0V. Since the microcontroller's A/D is only able to accept signals from 0 to 3.3V, this signal had to be stepped down in voltage while maximizing its resolution. To do this, a voltage divider, bias manipulation, and a 3x gain stage were implemented. It was desirable to keep power losses through conversion to a minimum to reduce the heat dissipated in the enclosure. To achieve this, the 3.3V and 5V power supplies were designed with step-down converters. These step-down converters, commonly called buck converters, have conversion efficiencies of more than 90%. The 12V power supply was designed with a linear power regulator, which has comparatively low efficiencies; however, this was an acceptable design trade-off since the amount of current required for this voltage was very low, resulting in negligible heat dissipation. A wall power supply was chosen instead of selecting batteries due to time constraints and the difficulty of finding off-the-shelf batteries which could supply the necessary power. Compared to the previous prototype system, up to 8A continuous draw was anticipated and it was exceedingly difficult to find batteries that were able to supply this level of current for more than 6 hours while maintaining portability. Analog Signal Conditioning The AMB system requires feedback to keep the impeller levitating in the same position, approximately centered within the pump. Hall Effect sensors are used to sense the position of the impeller for the front and rear parts of the axis. An anti-aliasing filter ideally removes all frequencies above the Nyquist frequency of the incoming signal in order to eliminate aliasing effects introduced by the analog to digital converter. An RC filter was chosen instead of a higher order filter because of its simplicity Figure 4 - HESA signal conditioning circuit AMB System An AMB system was used to control rotor motion via the use of a standard H-bridge scheme. Current through the AMB coils controlled the force of the electromagnet. An H-bridge configuration allows both positive and negative current. High current consumption was a concern with the AMB subsystem; therefore, it was important that power efficiency was maximized in an effort to decrease thermal output. Miniaturizing AMBS components is also of interest. The Texas Instruments DRV8412 was selected as an integrated H-bridge solution. The DRV8412 provides two H-bridges per chip with 3A continuous and 6A peak currents. It features high power efficiency, PWM frequencies up to 500 khz, and integrated self protection circuits. This IC contains the power MOSFETs, biasing, and monitoring circuitry required. Printed Circuit Board The board was manufactured by Sierra Circuits and returned to us within five business days. It was populated by hand in the CIMS lab at RIT using surface mount reflow equipment, vastly decreasing the amount of time needed to assemble. A 4-layer PCB Project P11021

5 Proceedings of the Multi-Disciplinary Senior Design Conference Page 5 was selected for this design with the two internal layers dedicated to power routing and ground plane. A ground plane acts to remedy many noise and current loop issues, and is recommended whenever possible for PCB designs. Top and bottom layers are used for signal routing. Figure 6- Water Ingress Test Figure 5 - Top layer of PCB design The board has at least four distinct, functional sections: analog conditioning, AMB, power supplies, and microcontroller. The main constraint which had to be satisfied for layout is the placement of all connectors close to their locations on the enclosure. LED and button connectors are placed on the edges, large power connectors are placed near the AMBs and power supplies for easy routing of high power traces, and the microcontroller is placed as close as possible to the analog condition section to minimize trace length. TESTING & RESULTS The first test consisted of dropping the enclosure from 1.5 m above the ground in order to assess the material robustness. The results of the drop test indicated that the material could withstand a fall from the operating height, as no cracks or fissures were observed on the enclosure. For the purpose of the test a 50x50x70 mm ABS plastic enclosure was used. While a more appropriately sized enclosure weighing approximately the same as the actual enclosure could be used for the drop tests, the team deemed it unnecessary to risk the enclosure failure. The water ingress test was performed by placing the assembled enclosure under a stream of water with a flow rate of two gallons per minute for one minute as shown in Figure 6. During this test no water entered the enclosure. An additional test was performed were the enclosure was fully submerged in water. During this test some water did enter the enclosure. It was determined that the enclosure can be subjected to flowing water but could not withstand the pressure of full submersion. Only analytical calculations were done to verify that heat dissipation would not be an issue. Because of the poor thermal conductivity of both air and ABS plastic, it is recommended that the final enclosure be made of a different material. However, because of the ease in manufacturing, quick lead time, and the ability to create complex shapes with ease, it was found that this would be the most time and cost effective option. The generated PWM signals provided to the motor controller and AMBs were verified using an oscilloscope. Signal frequencies were correct and duty cycle ranges were within operating range. The system clocks, analog to digital functionality and signal conditioning CONCLUSIONS When worn on the hip, many of the team members found that the enclosure was comfortable for a short period of time. In order to prove that the device is comfortable for extended use, further testing, analyzing ergonomics of the enclosure should be performed. A decrease in height may also make the enclosure more comfortable to wear. Although the volume of the external enclosure did not meet the customer specification, the sacrifices to size was made to implement the LCD screen, accommodate the PCB board and assure that it would fit comfortably into the enclosure without interfering with the connectors. The printed circuit board functions properly and passed all functional testing after the first assembly with no cut traces or reworking: the analog section provides the proper linear transformations, the FTDI serial chip is recognized and communicates with a PC, the power supplies are all capable of providing their voltages within 0.01 volts, and the microcontroller is programmable via JTAG. The connectors on the board, however, were not the most effective choice as the extraction force is too large; this caused many unanticipated failures in the wires attached to the connectors. Copyright 2011 Rochester Institute of Technology

6 Proceedings of the Multi-Disciplinary Senior Design Conference Page 6 REFERENCES [1] Fowler, Kim., Electronic Instrument Design, Oxford University Press, USA, Ch. 8. [2] Incropera, Frank P., DeWitt, David P. Theodore L. Bergman Adrienne S. Lavine. Fundamentals of Heat and Mass Transfer, Sixth Edition [3]"Plastic Reference Data." Temperature Solutions Electronic Development Labs, Inc. HOME PAGE. < data.htm>. [4] Gomez, Arnold D. Control of a magnetically levitated ventricular assist device. Rochester Institute of Technology [5] Khare, Aditi. Estimation and control of the pump pressure rise and flow from intrinsic parameters for a magnetically-levitated axial blood pump. Rochester Institute of Technology ACKNOWLEDGMENTS Our team would like to thank: Dr. Steven Day, Dr. Shanbao Cheng (customers) Edward Hanzlik (tireless guide) Team P11022 for their collaboration for compatibility John Bonzo in the Brinkman Lab (for 3D printing our enclosure) Everyone in the Biomedical Laboratory (for their advice and assistance with construction of cabling and connectors Project P11021

7

TRANSCUTANEOUS SIGNAL AND POWER TRANSMISSION FOR VENTRICULAR ASSIST DEVICE

TRANSCUTANEOUS SIGNAL AND POWER TRANSMISSION FOR VENTRICULAR ASSIST DEVICE Multi-Disciplinary Engineering Design Conference Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York 14623 TRANSCUTANEOUS SIGNAL AND POWER TRANSMISSION FOR VENTRICULAR

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) International Journal of Advanced Research in Electrical, Electronics Device Control Using Intelligent Switch Sreenivas Rao MV *, Basavanna M Associate Professor, Department of Instrumentation Technology,

More information

The Development and Application of High Compression Ratio Methanol Engine ECU

The Development and Application of High Compression Ratio Methanol Engine ECU National Conference on Information Technology and Computer Science (CITCS 2012) The Development and Application of High Compression Ratio Methanol Engine ECU Hong Bin, 15922184696 hongbinlqyun@163.com

More information

Hardware Platforms and Sensors

Hardware Platforms and Sensors Hardware Platforms and Sensors Tom Spink Including material adapted from Bjoern Franke and Michael O Boyle Hardware Platform A hardware platform describes the physical components that go to make up a particular

More information

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor

Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Mechatronics Laboratory Assignment 3 Introduction to I/O with the F28335 Motor Control Processor Recommended Due Date: By your lab time the week of February 12 th Possible Points: If checked off before

More information

Brian Hanna Meteor IP 2007 Microcontroller

Brian Hanna Meteor IP 2007 Microcontroller MSP430 Overview: The purpose of the microcontroller is to execute a series of commands in a loop while waiting for commands from ground control to do otherwise. While it has not received a command it populates

More information

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE

CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 113 CHAPTER-5 DESIGN OF DIRECT TORQUE CONTROLLED INDUCTION MOTOR DRIVE 5.1 INTRODUCTION This chapter describes hardware design and implementation of direct torque controlled induction motor drive with

More information

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville

Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Kevin Claycomb University of Evansville Using Magnetic Sensors for Absolute Position Detection and Feedback. Abstract Several types

More information

RX23T inverter ref. kit

RX23T inverter ref. kit RX23T inverter ref. kit Deep Dive October 2015 YROTATE-IT-RX23T kit content Page 2 YROTATE-IT-RX23T kit: 3-ph. Brushless Motor Specs Page 3 Motors & driving methods supported Brushless DC Permanent Magnet

More information

Courseware Sample F0

Courseware Sample F0 Electric Power / Controls Courseware Sample 85822-F0 A ELECTRIC POWER / CONTROLS COURSEWARE SAMPLE by the Staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this publication

More information

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette

Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Group #17 Arian Garcia Javier Morales Tatsiana Smahliuk Christopher Vendette Electrical Engineering Electrical Engineering Electrical Engineering Electrical Engineering Contents 1 2 3 4 5 6 7 8 9 Motivation

More information

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY System Board 6283 MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY Overview Maxim s power supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of

More information

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU

Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU Application Note Electric Bike BLDC Hub Motor Control Using the Z8FMC1600 MCU AN026002-0608 Abstract This application note describes a controller for a 200 W, 24 V Brushless DC (BLDC) motor used to power

More information

Mechatronics Project Report

Mechatronics Project Report Mechatronics Project Report Introduction Robotic fish are utilized in the Dynamic Systems Laboratory in order to study and model schooling in fish populations, with the goal of being able to manage aquatic

More information

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 98 Chapter-5 ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION 99 CHAPTER-5 Chapter 5: ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION S.No Name of the Sub-Title Page

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 2, February -2016 e-issn (O): 2348-4470 p-issn (P): 2348-6406 SIMULATION

More information

MP5410 Low Start-up Voltage Boost Converter with Four SPDT Switches

MP5410 Low Start-up Voltage Boost Converter with Four SPDT Switches The Future of Analog IC Technology DESCRIPTION The MP5410 is a high efficiency, current mode step-up converter with four single-pole/doublethrow (SPDT) switches designed for low-power bias supply application.

More information

Increasing Performance Requirements and Tightening Cost Constraints

Increasing Performance Requirements and Tightening Cost Constraints Maxim > Design Support > Technical Documents > Application Notes > Power-Supply Circuits > APP 3767 Keywords: Intel, AMD, CPU, current balancing, voltage positioning APPLICATION NOTE 3767 Meeting the Challenges

More information

DESIGN OF AN EMBEDDED BATTERY MANAGEMENT SYSTEM WITH PASSIVE BALANCING

DESIGN OF AN EMBEDDED BATTERY MANAGEMENT SYSTEM WITH PASSIVE BALANCING Proceedings of the 6th European Embedded Design in Education and Research, 2014 DESIGN OF AN EMBEDDED BATTERY MANAGEMENT SYSTEM WITH PASSIVE BALANCING Kristaps Vitols Institute of Industrial Electronics

More information

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS

6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS 6. HARDWARE PROTOTYPE AND EXPERIMENTAL RESULTS Laboratory based hardware prototype is developed for the z-source inverter based conversion set up in line with control system designed, simulated and discussed

More information

DUAL STEPPER MOTOR DRIVER

DUAL STEPPER MOTOR DRIVER DUAL STEPPER MOTOR DRIVER GENERAL DESCRIPTION The is a switch-mode (chopper), constant-current driver with two channels: one for each winding of a two-phase stepper motor. is equipped with a Disable input

More information

MP A Fixed Frequency White LED Driver

MP A Fixed Frequency White LED Driver The Future of Analog IC Technology DESCRIPTION The is a step-up converter designed for driving up to 39 white LEDs (13 strings of 3 LEDs each) from a 5V system rail. The uses a current mode, fixed frequency

More information

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller

A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller A PID Controller for Real-Time DC Motor Speed Control using the C505C Microcontroller Sukumar Kamalasadan Division of Engineering and Computer Technology University of West Florida, Pensacola, FL, 32513

More information

Four Quadrant Speed Control of DC Motor with the Help of AT89S52 Microcontroller

Four Quadrant Speed Control of DC Motor with the Help of AT89S52 Microcontroller Four Quadrant Speed Control of DC Motor with the Help of AT89S52 Microcontroller Rahul Baranwal 1, Omama Aftab 2, Mrs. Deepti Ojha 3 1,2, B.Tech Final Year (Electronics and Communication Engineering),

More information

Training Schedule. Robotic System Design using Arduino Platform

Training Schedule. Robotic System Design using Arduino Platform Training Schedule Robotic System Design using Arduino Platform Session - 1 Embedded System Design Basics : Scope : To introduce Embedded Systems hardware design fundamentals to students. Processor Selection

More information

JEPPIAAR SRR Engineering College Padur, Ch

JEPPIAAR SRR Engineering College Padur, Ch An Automated Non-Invasive Blood Glucose Estimator and Infiltrator M. Florence Silvia 1, K. Saran 2, G. Venkata Prasad 3, John Fermin 4 1 Asst. Prof, 2, 3, 4 Student, Department of Electronics and Communication

More information

DATASHEET SMT172. Features and Highlights. Application. Introduction

DATASHEET SMT172. Features and Highlights. Application. Introduction V12 1/9 Features and Highlights World s most energy efficient temperature sensor Wide temperature range: -45 C to 130 C Extreme low noise: less than 0.001 C High accuracy: 0.25 C (-10 C to 100 C) 0.1 C

More information

Fast IC Power Transistor with Thermal Protection

Fast IC Power Transistor with Thermal Protection Fast IC Power Transistor with Thermal Protection Introduction Overload protection is perhaps most necessary in power circuitry. This is shown by recent trends in power transistor technology. Safe-area,

More information

Figure 1. C805193x/92x Capacitive Touch Sense Development Platform

Figure 1. C805193x/92x Capacitive Touch Sense Development Platform CAPACITIVE TOUCH SENSE SOLUTION RELEVANT DEVICES The concepts and example code in this application note are applicable to the following device families: C8051F30x, C8051F31x, C8051F320/1, C8051F33x, C8051F34x,

More information

KUMU A O CUBESAT: THERMAL SENSORS ON A CUBESAT

KUMU A O CUBESAT: THERMAL SENSORS ON A CUBESAT KUMU A O CUBESAT: THERMAL SENSORS ON A CUBESAT Tyson K. Seto-Mook Department of Electrical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 INTRODUCTION A. Abstract CubeSat is a project that

More information

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE

MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE MICROCONTROLLER BASED BOOST PID MUNAJAH BINTI MOHD RUBAEE This thesis is submitted as partial fulfillment of the requirement for the award of Bachelor of Electrical Engineering (Power System) Faculty of

More information

P15051: Robotic Eye for Eye Tracker

P15051: Robotic Eye for Eye Tracker P15051: Robotic Eye for Eye Tracker Andrew Drogalis Mechanical Engineer Tim O Hearn Mechanical Engineer Katie Hardy Daniel Webster Jorge Gonzalez Abstract: A robotic eye was constructed for the purpose

More information

Power Factor Correction in Digital World. Abstract. 1 Introduction. 3 Advantages of Digital PFC over traditional Analog PFC.

Power Factor Correction in Digital World. Abstract. 1 Introduction. 3 Advantages of Digital PFC over traditional Analog PFC. Power Factor Correction in Digital World By Nitin Agarwal, STMicroelectronics Pvt. Ltd., India Abstract There are various reasons why power factor correction circuit is used in various power supplies in

More information

SRM TM A Synchronous Rectifier Module. Figure 1 Figure 2

SRM TM A Synchronous Rectifier Module. Figure 1 Figure 2 SRM TM 00 The SRM TM 00 Module is a complete solution for implementing very high efficiency Synchronous Rectification and eliminates many of the problems with selfdriven approaches. The module connects

More information

The Micromega MyAMP. A serious design challenge

The Micromega MyAMP. A serious design challenge The Micromega MyAMP A serious design challenge Following the successful launch of the MyDAC, MyZIC and MyGROOV, the Micromega engineers had a serious design challenge: to complete the MY range by adding

More information

Single Switch Forward Converter

Single Switch Forward Converter Single Switch Forward Converter This application note discusses the capabilities of PSpice A/D using an example of 48V/300W, 150 KHz offline forward converter voltage regulator module (VRM), design and

More information

AVR42778: Core Independent Brushless DC Fan Control Using Configurable Custom Logic on ATtiny817. Features. Introduction. AVR 8-bit Microcontroller

AVR42778: Core Independent Brushless DC Fan Control Using Configurable Custom Logic on ATtiny817. Features. Introduction. AVR 8-bit Microcontroller AVR 8-bit Microcontroller AVR42778: Core Independent Brushless DC Fan Control Using Configurable Custom Logic on ATtiny817 APPLICATION NOTE Features Base setup for performing core independent brushless

More information

Embedded systems. Exercise session 1. Introduction and project presentation

Embedded systems. Exercise session 1. Introduction and project presentation Embedded systems Exercise session 1 Introduction and project presentation Introduction Contact Mail : michael.fonder@ulg.ac.be Office : 1.82a, Montefiore Website for the exercise sessions and the project

More information

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices

Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Transcutaneous Energy Transmission Based Wireless Energy Transfer to Implantable Biomedical Devices Anand Garg, Lakshmi Sridevi B.Tech, Dept. of Electronics and Instrumentation Engineering, SRM University

More information

P15661 Reciprocating Friction Tester Base Subsystem

P15661 Reciprocating Friction Tester Base Subsystem P15661 Reciprocating Friction Tester Base Subsystem 1 P R E L I M I N A R Y D E T A I L E D D E S I G N R E V I E W 11/20/2014 Team Roles 2 Team Member Major Subsystem Role Alexandra Woodward Industrial

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

EE152 Final Project Report

EE152 Final Project Report LPMC (Low Power Motor Controller) EE152 Final Project Report Summary: For my final project, I designed a brushless motor controller that operates with 6-step commutation with a PI speed loop. There are

More information

Haptic Feedback Technology

Haptic Feedback Technology Haptic Feedback Technology ECE480: Design Team 4 Application Note Michael Greene Abstract: With the daily interactions between humans and their surrounding technology growing exponentially, the development

More information

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK

ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK ECE 511: FINAL PROJECT REPORT GROUP 7 MSP430 TANK Team Members: Andrew Blanford Matthew Drummond Krishnaveni Das Dheeraj Reddy 1 Abstract: The goal of the project was to build an interactive and mobile

More information

While DIs may conform to a variety of input characteristics, the most commonly applied ones are IEC Type 1, 2 and 3 (see Figure 1).

While DIs may conform to a variety of input characteristics, the most commonly applied ones are IEC Type 1, 2 and 3 (see Figure 1). New Digital Input Serializers Catapult Channel Count of Digital Input Modules By Thomas Kugelstadt, Texas Instruments The trend towards increased monitoring in industrial automation and process control

More information

EEL4914 Senior Design. Final Design Report

EEL4914 Senior Design. Final Design Report EEL4914 Senior Design Final Design Report Electric Super Bike The Best Team in the World Matt Fisher madfish@ufl.edu Richard Orr gautama@ufl.edu 21 April 2008 1 Contents Contents...2 Abstract...3 Project

More information

Using Z8 Encore! XP MCU for RMS Calculation

Using Z8 Encore! XP MCU for RMS Calculation Application te Using Z8 Encore! XP MCU for RMS Calculation Abstract This application note discusses an algorithm for computing the Root Mean Square (RMS) value of a sinusoidal AC input signal using the

More information

CHAPTER 4 HARDWARE DEVELOPMENT OF STATCOM

CHAPTER 4 HARDWARE DEVELOPMENT OF STATCOM 74 CHAPTER 4 HARDWARE DEVELOPMENT OF STATCOM 4.1 LABORATARY SETUP OF STATCOM The laboratory setup of the STATCOM consists of the following hardware components: Three phase auto transformer used as a 3

More information

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN 4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816 General Description: The CN5816 is a current mode fixed-frequency PWM controller for high current LED applications. The

More information

A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b

A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b A Model Based Digital PI Current Loop Control Design for AMB Actuator Coils Lei Zhu 1, a and Larry Hawkins 2, b 1, 2 Calnetix, Inc 23695 Via Del Rio Yorba Linda, CA 92782, USA a lzhu@calnetix.com, b lhawkins@calnetix.com

More information

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820 8-Bit, high-speed, µp-compatible A/D converter with DESCRIPTION By using a half-flash conversion technique, the 8-bit CMOS A/D offers a 1.5µs conversion time while dissipating a maximum 75mW of power.

More information

UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats

UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats UNISEC Europe CSID An Advanced Efficient Electrical Interface Standard for CubeSats 4 th IAA Conference on University Satellite Missions and CubeSat Workshop Oliver Ruf 1 Motivation for a Standardization

More information

Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives

Iowa State University Electrical and Computer Engineering. E E 452. Electric Machines and Power Electronic Drives Electrical and Computer Engineering E E 452. Electric Machines and Power Electronic Drives Laboratory #5 Buck Converter Embedded Code Generation Summary In this lab, you will design the control application

More information

Debugging a Boundary-Scan I 2 C Script Test with the BusPro - I and I2C Exerciser Software: A Case Study

Debugging a Boundary-Scan I 2 C Script Test with the BusPro - I and I2C Exerciser Software: A Case Study Debugging a Boundary-Scan I 2 C Script Test with the BusPro - I and I2C Exerciser Software: A Case Study Overview When developing and debugging I 2 C based hardware and software, it is extremely helpful

More information

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply System Board 6309 MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply Maxim s power-supply experts have designed and built a series of isolated, industrial power-supply reference designs. Each of these

More information

ACT8310/ A, PWM Step-Down DC/DCs in TDFN GENERAL DESCRIPTION FEATURES APPLICATIONS SYSTEM BLOCK DIAGRAM ACT8311. Rev 4, 08-Feb-2017

ACT8310/ A, PWM Step-Down DC/DCs in TDFN GENERAL DESCRIPTION FEATURES APPLICATIONS SYSTEM BLOCK DIAGRAM ACT8311. Rev 4, 08-Feb-2017 1.5A, PWM Step-Down DC/DCs in TDFN FEATURES Multiple Patents Pending Up to 95% High Efficiency Up to 1.5A Guaranteed Output Current (ACT8311) 1.35MHz Constant Frequency Operation Internal Synchronous Rectifier

More information

NJM3777 DUAL STEPPER MOTOR DRIVER NJM3777E3(SOP24)

NJM3777 DUAL STEPPER MOTOR DRIVER NJM3777E3(SOP24) DUAL STEPPER MOTOR DRIER GENERAL DESCRIPTION The NJM3777 is a switch-mode (chopper), constant-current driver with two channels: one for each winding of a two-phase stepper motor. The NJM3777 is equipped

More information

CHAPTER 6 DEVELOPMENT OF A CONTROL ALGORITHM FOR BUCK AND BOOST DC-DC CONVERTERS USING DSP

CHAPTER 6 DEVELOPMENT OF A CONTROL ALGORITHM FOR BUCK AND BOOST DC-DC CONVERTERS USING DSP 115 CHAPTER 6 DEVELOPMENT OF A CONTROL ALGORITHM FOR BUCK AND BOOST DC-DC CONVERTERS USING DSP 6.1 INTRODUCTION Digital control of a power converter is becoming more and more common in industry today because

More information

CHAPTER 7 HARDWARE IMPLEMENTATION

CHAPTER 7 HARDWARE IMPLEMENTATION 168 CHAPTER 7 HARDWARE IMPLEMENTATION 7.1 OVERVIEW In the previous chapters discussed about the design and simulation of Discrete controller for ZVS Buck, Interleaved Boost, Buck-Boost, Double Frequency

More information

Project Final Report: Directional Remote Control

Project Final Report: Directional Remote Control Project Final Report: by Luca Zappaterra xxxx@gwu.edu CS 297 Embedded Systems The George Washington University April 25, 2010 Project Abstract In the project, a prototype of TV remote control which reacts

More information

Data acquisition and instrumentation. Data acquisition

Data acquisition and instrumentation. Data acquisition Data acquisition and instrumentation START Lecture Sam Sadeghi Data acquisition 1 Humanistic Intelligence Body as a transducer,, data acquisition and signal processing machine Analysis of physiological

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW

Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Electronic Module of Hydraulic Damper Test Bench using ARM Microcontroller Interfacing in LabVIEW Hare Ram Jha,

More information

ACP A Synchronous Buck Converter GENERAL DESCRIPTION FEATURES APPLICATION CIRCUIT PIN DESCRIPTION. Feb

ACP A Synchronous Buck Converter GENERAL DESCRIPTION FEATURES APPLICATION CIRCUIT PIN DESCRIPTION. Feb GENERAL DESCRIPTION The ACP2808 is a high efficiency synchronous, PWM step-down DC/DC converter capable of delivering up to 1.2A of output current. The device operates from an input voltage range of 2.6V

More information

1.2A, 23V, 1.4MHz Step-Down Converter

1.2A, 23V, 1.4MHz Step-Down Converter 1.2A, 23, 1.4MHz Step-Down Converter General Description The is a buck regulator with a built-in internal power MOSFET. It can provide 1.2A continuous output current over a wide input supply range with

More information

MP MHz, 700mA, Fixed-Frequency Step-Up Driver for up to 10 White LEDS

MP MHz, 700mA, Fixed-Frequency Step-Up Driver for up to 10 White LEDS MP3301 1.3MHz, 700mA, Fixed-Frequency Step-Up Driver for up to 10 White LEDS DESCRIPTION The MP3301 is a step-up converter designed to drive WLEDS arrays from a single-cell, lithium-ion battery. The MP3301

More information

Master Op-Doc/Test Plan

Master Op-Doc/Test Plan Power Supply Master Op-Doc/Test Plan Define Engineering Specs Establish battery life Establish battery technology Establish battery size Establish number of batteries Establish weight of batteries Establish

More information

Fluxgate Magnetometer

Fluxgate Magnetometer 6.101 Final Project Proposal Woojeong Elena Byun Jack Erdozain Farita Tasnim 7 April 2016 Fluxgate Magnetometer Motivation: A fluxgate magnetometer is a highly precise magnetic field sensor. Its typical

More information

STARTER / GENERATOR MOTOR CONTROLLER

STARTER / GENERATOR MOTOR CONTROLLER MIL-PRF-38534 AND 38535 CERTIFIED FACILITY M.S.KENNEDY CORP. STARTER / GENERATOR MOTOR CONTROLLER 4413 (315) 701-6751 FEATURES: 28V/160A Brushless DC motor control capability. 28V/90A Synchronous Boost

More information

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool

Design and Implementation of Digital Stethoscope using TFT Module and Matlab Visualisation Tool World Journal of Technology, Engineering and Research, Volume 3, Issue 1 (2018) 297-304 Contents available at WJTER World Journal of Technology, Engineering and Research Journal Homepage: www.wjter.com

More information

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ

νµθωερτψυιοπασδφγηϕκλζξχϖβνµθωερτ ψυιοπασδφγηϕκλζξχϖβνµθωερτψυιοπα σδφγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκ χϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµθ θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ υιοπασδφγηϕκλζξχϖβνµθωερτψυιοπασδ φγηϕκλζξχϖβνµθωερτψυιοπασδφγηϕκλζ ξχϖβνµθωερτψυιοπασδφγηϕκλζξχϖβνµ EE 331 Design Project Final Report θωερτψυιοπασδφγηϕκλζξχϖβνµθωερτψ

More information

Multi-Stage Power Conversion Proposal

Multi-Stage Power Conversion Proposal Multi-Stage Power Conversion Proposal Joe Driscoll, Paul Hemberger, David Yamnitsky Introduction MSPC is a three stage power converter system where each stage not only supports a useful application, but

More information

TMS320F241 DSP Boards for Power-electronics Applications

TMS320F241 DSP Boards for Power-electronics Applications TMS320F241 DSP Boards for Power-electronics Applications Kittiphan Techakittiroj, Narong Aphiratsakun, Wuttikorn Threevithayanon and Soemoe Nyun Faculty of Engineering, Assumption University Bangkok, Thailand

More information

TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx

TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx TMC603EVAL MANUAL Evaluation board for the TMC603 three phase motor driver with BLDC back EMF commutation hallfx TRINAMIC Motion Control GmbH & Co. KG Sternstraße 67 D 20357 Hamburg GERMANY www.trinamic.com

More information

Design Specifications for a Dynamic Pupil in a Prosthetic Eye

Design Specifications for a Dynamic Pupil in a Prosthetic Eye November 01, 2004 Dr. Andrew Rawicz School of Engineering Science Simon Fraser University Burnaby, British Columbia V5A 1S6 Re: ENSC 340 Design Specifications for a Dynamic Pupil in a Prosthetic Eye Dear

More information

The attached document closely follows the sections defined in the functional specifications for ease of reference.

The attached document closely follows the sections defined in the functional specifications for ease of reference. !"# $%& ' March 2, 2004 Dr. Lakshman One School of Engineering Science Simon Fraser University Burnaby, BC, V5A 1S6 Re: ENSC 440 Design Specification for Digital Audio Input Speakers Dear Dr. One, Attached

More information

DATASHEET. SMT172 Preliminary. Features and Highlights. Application. Introduction

DATASHEET. SMT172 Preliminary. Features and Highlights. Application. Introduction DATASHEET V4.0 1/7 Features and Highlights World s most energy efficient temperature sensor Wide temperature range: -45 C to 130 C Extreme low noise: less than 0.001 C Low inaccuracy: 0.25 C (-10 C to

More information

6.115 Final Project Proposal: An RFID Access Control System

6.115 Final Project Proposal: An RFID Access Control System 6.115 Final Project Proposal: An RFID Access Control System Christopher Merrill April 24, 2012 Abstract The goal of this nal project is to implement a device to read standard 125 khz RFID cards using the

More information

Digital Monitoring Cum Control of a Power Transformer with Efficiency Measuring Meter

Digital Monitoring Cum Control of a Power Transformer with Efficiency Measuring Meter Digital Monitoring Cum Control of a Power Transformer with Efficiency Measuring Meter Shaikh Ahmed Ali, MTech(Power Systems Control And Automation Branch), Aurora s Technological and Research institute(atri),hyderabad,

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

PWM, ALT, HALT, HAST.

PWM, ALT, HALT, HAST. CLOSED LOOP IMPLEMENTATION OF SPEED CONTROL OF A BRUSHED PMDC MOTOR OF AN X-RAY SYSTEM AND VALIDATION OF RELIABILITY OF THE CONTROLLER Mutum Meenakshi Devi 1, V Chayapathy 2 Dept. of Electrical and Electronics

More information

Fully Integrated FPGA-based configurable Motor Control

Fully Integrated FPGA-based configurable Motor Control Fully Integrated FPGA-based configurable Motor Control Christian Grumbein, Endric Schubert Missing Link Electronics Stefano Zammattio Altera Europe Abstract Field programmable gate arrays (FPGA) provide

More information

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification High Efficiency, 28 LEDS White LED Driver Descriptions The is a constant current, high efficiency LED driver. Internal MOSFET can drive up to 10 white LEDs in series and 3S9P LEDs with minimum 1.1A current

More information

Bridge Measurement Systems

Bridge Measurement Systems Section 5 Outline Introduction to Bridge Sensors Circuits for Bridge Sensors A real design: the ADS1232REF The ADS1232REF Firmware This presentation gives an overview of data acquisition for bridge sensors.

More information

Speed Control Of Transformer Cooler Control By Using PWM

Speed Control Of Transformer Cooler Control By Using PWM Speed Control Of Transformer Cooler Control By Using PWM Bhushan Rakhonde 1, Santosh V. Shinde 2, Swapnil R. Unhone 3 1 (assistant professor,department Electrical Egg.(E&P), Des s Coet / S.G.B.A.University,

More information

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Current Rebuilding Concept Applied to Boost CCM for PF Correction Current Rebuilding Concept Applied to Boost CCM for PF Correction Sindhu.K.S 1, B. Devi Vighneshwari 2 1, 2 Department of Electrical & Electronics Engineering, The Oxford College of Engineering, Bangalore-560068,

More information

32-bit ARM Cortex-M0, Cortex-M3 and Cortex-M4F microcontrollers

32-bit ARM Cortex-M0, Cortex-M3 and Cortex-M4F microcontrollers -bit ARM Cortex-, Cortex- and Cortex-MF microcontrollers Energy, gas, water and smart metering Alarm and security systems Health and fitness applications Industrial and home automation Smart accessories

More information

Design of Pipeline Analog to Digital Converter

Design of Pipeline Analog to Digital Converter Design of Pipeline Analog to Digital Converter Vivek Tripathi, Chandrajit Debnath, Rakesh Malik STMicroelectronics The pipeline analog-to-digital converter (ADC) architecture is the most popular topology

More information

High Voltage Waveform Sensor

High Voltage Waveform Sensor High Voltage Waveform Sensor Computer Engineering Senior Project Nathan Stump Spring 2013 Statement of Purpose The purpose of this project was to build a system to measure the voltage waveform of a discharging

More information

LD /01/2013. Boost Controller for LED Backlight. General Description. Features. Applications. Typical Application REV: 00

LD /01/2013. Boost Controller for LED Backlight. General Description. Features. Applications. Typical Application REV: 00 04/01/2013 Boost Controller for LED Backlight REV: 00 General Description The LD5861 is a wide-input asynchronous current mode boost controller, capable to operate in the range between 9V and 28V and to

More information

Single-phase Variable Frequency Switch Gear

Single-phase Variable Frequency Switch Gear Single-phase Variable Frequency Switch Gear Eric Motyl, Leslie Zeman Advisor: Professor Steven Gutschlag Department of Electrical and Computer Engineering Bradley University, Peoria, IL May 13, 2016 ABSTRACT

More information

As delivered power levels approach 200W, sometimes before then, heatsinking issues become a royal pain. PWM is a way to ease this pain.

As delivered power levels approach 200W, sometimes before then, heatsinking issues become a royal pain. PWM is a way to ease this pain. 1 As delivered power levels approach 200W, sometimes before then, heatsinking issues become a royal pain. PWM is a way to ease this pain. 2 As power levels increase the task of designing variable drives

More information

DASL 120 Introduction to Microcontrollers

DASL 120 Introduction to Microcontrollers DASL 120 Introduction to Microcontrollers Lecture 2 Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to 8-bit Microcontrollers Introduction to Atmel Atmega328

More information

HAL , 508, 509, HAL , 523 Hall Effect Sensor Family

HAL , 508, 509, HAL , 523 Hall Effect Sensor Family Hardware Documentation Data Sheet HAL 1...6, 8, 9, HAL 16...19, 23 Hall Effect Sensor Family Edition Nov. 27, 23 621-48-4DS HALxx DATA SHEET Contents Page Section Title 3 1. Introduction 3 1.1. Features

More information

MP Lamp, 36V Precision White LED Driver

MP Lamp, 36V Precision White LED Driver MP8 9 Lamp, V Precision White LED Driver The Future of Analog IC Technology DESCRIPTION The MP8 is a step-up converter designed for driving up to nine (9) series White LEDs (LED) from a single cell Lithium-Ion

More information

MD04-24Volt 20Amp H Bridge Motor Drive

MD04-24Volt 20Amp H Bridge Motor Drive MD04-24Volt 20Amp H Bridge Motor Drive Overview The MD04 is a medium power motor driver, designed to supply power beyond that of any of the low power single chip H-Bridges that exist. Main features are

More information

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018

ME375 Lab Project. Bradley Boane & Jeremy Bourque April 25, 2018 ME375 Lab Project Bradley Boane & Jeremy Bourque April 25, 2018 Introduction: The goal of this project was to build and program a two-wheel robot that travels forward in a straight line for a distance

More information

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge L298 Full H-Bridge HEF4071B OR Gate Brushed DC Motor with Optical Encoder & Load Inertia Flyback Diodes Arduino Microcontroller

More information

Ecranic EC V 1A 1.5MHz Synchronous Buck Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION

Ecranic EC V 1A 1.5MHz Synchronous Buck Converter FEATURES GENERAL DESCRIPTION APPLICATIONS ORDER INFORMATION GENERAL DESCRIPTION The is a high-efficiency, DC-to-DC step-down switching regulators, capable of delivering up to 1.2A of output current. The operates from an input voltage range of 2.5V to 5.5V and provides

More information

New Current-Sense Amplifiers Aid Measurement and Control

New Current-Sense Amplifiers Aid Measurement and Control AMPLIFIER AND COMPARATOR CIRCUITS BATTERY MANAGEMENT CIRCUIT PROTECTION Mar 13, 2000 New Current-Sense Amplifiers Aid Measurement and Control This application note details the use of high-side current

More information