Sensory receptors External internal stimulus change detectable energy transduce action potential different strengths different frequencies

Size: px
Start display at page:

Download "Sensory receptors External internal stimulus change detectable energy transduce action potential different strengths different frequencies"

Transcription

1 General aspects Sensory receptors ; respond to changes in the environment. External or internal environment. A stimulus is a change in the environmental condition which is detectable by a sensory receptor energy: mechanical, chemical, radiant, electrical, etc. sensory receptor; transduce (convert) the stimulus into an action potential different strengths of response are transduced into different frequencies of action potentials. 1 Major structural layer of the wall of the eye is a thick layer of dense C.T.; that layer has two parts: Sclera; white in color; generally opaque. Cornea; the remaining front part of the eye; colorless and transparent. relatively thin flat, stratified squamous epithelium covers the cornea and sclera continuous with (essentially a part of) the epidermis of the skin corneal epithelium; covers the cornea conjunctiva; covers the sclera and the inside of the eyelids 2

2 At the interface between two media of different densities, a non-perpendicular light ray bends. Refraction. Light ray path is made more perpendicular to the interface. Corneal epithelium and cornea are stronger refractors than the lens of the eye. Once the light rays leave the posterior surface of the cornea they pass through the aqueous humor that fills the anterior chamber of the eye. Aqueous humor is a CSF-like liquid. 3 Iris and pupil Iris is flat, circular structure with a hole in its center called the pupil. Mostly loose C.T. no epithelium on the front (anterior) surface of the iris; rear surface has a heavily pigmented (with melanin) epithelium absorbs light rays Loose C.T. of the iris may have a scattered melanocytes; coloring the iris when melanocytes are absent or reduced the iris looks blue. 4

3 Iris contains two smooth muscles: pupillary constrictor; inner circular pupillary dilator ; outer radially-oriented smooth muscle fibers Contraction and relaxation by those two elements, controlled by the brain stem, control the diameter of the pupil this is mainly for regulating the brightness of the image on the retina. 5 Lens and ciliary muscle Light rays passing through the pupil enter the lens. The lens is mainly composed of very long, thin, transparent, colorless enucleated cells called lens fibers the lens fibers are oriented parallel to the light path through the lens. The lens is attached to the outer wall of the eye all around its circumference, by suspensory ligament and the ciliary body 6

4 In mammals, the sclera usually exerts a tension on the edge of the lens, through the ciliary body and suspensory ligament lens is flatter and has high diameter low additional light refraction, for focusing on distant objects. Ciliary body is composed mainly of a circular band of smooth muscle tissue called the ciliary muscle quickest-acting smooth muscle in the body controlled by the brain stem and cerebrum when a blurry image is perceived, the cerebrum sends a neural signal to the brain stem, which signals the ciliary muscle to change contraction. 7 8

5 When the ciliary muscle contracts it pulls the sclera inward, all around; this increases the degree of light refraction in two ways: Increases curvature of the cornea. It reduces tension on the suspensory ligaments of the lens capsule. Lens becomes rounded and thicker. Increases the curvature of the lens and increasing refraction. Greater light-refraction the eye can focus the light rays from a closer object. 9 Light rays leaving the lens pass through the vitreous humor of the posterior compartment of the eye, to the retina. The vitreous humor is a colorless, transparent gel. Light rays from the object are focused at the center of the back of the eye, on the part of the retina called the fovea; other part of the retina, where light rays are not focused, is called the non-foveal retina. 10

6 Retina Pigmented layer of the retina Is a simple cuboidal epithelium with high [melanin]. The function of this layer is to absorb light rays that pass through the inner, sensory layer of the retina, reducing back reflection which would cause perception of a blurry image 11 Sensory layer of the retina (see retina.pdf) Non-foveal retina (structures listed in order of penetration by light rays) Capillary network: inside surface of sensory layer is vascularized, mainly for providing 0 2, nutrients, and waste-molecule removal for inner layers of sensory layer of retina; tends to scatter light rays to some extent. Internal limiting membrane: the inside surface of the retina. 12

7 Nerve fiber layer Layer of parallel axons of retinal ganglion cells essentially white matter; the axons are oriented toward the point where the optic tract (nerve) begins 13 Ganglion cell layer layer of somas of retinal ganglion cells largest type of neuron in the retina size of the somas is not obvious, but the nucleus is relatively large and light staining nuclei are generally in a single layer and far from each other; these neurons are multipolar neurons. 14

8 Inner plexiform layer an eosinophilic layer that is mainly composed of the dendrites of the retinal ganglion cells, the axons of the retinal bipolar cells (small bipolar neurons), the synaptic junctions between these two types of neurons, and axons or dendrites of a third type of neuron, the retinal amacrine cell. Each bipolar neuron has synaptic junctions with several retinal ganglion cells. 15 Inner nuclear layer very basophilic layer composed mainly of the somas of the retinal bipolar cells, the retinal amacrine cells, and the retinal horizontal cells (a fourth type of neuron of the sensory layer) somas are very small, and the nuclei are very close together, small, and darkly stained. 16

9 Outer plexiform layer an eosinophilic layer, thicker than the inner nuclear layer, mainly composed of the dendrites of the bipolar cells, cell processes of the amacrine cells and horizontal cells, cell processes of the rod cells and cone cells, and synaptic junctions between these cell types. Each bipolar neuron has synaptic junctions with a few to several rod cells and/or cone cells. 17 Outer nuclear layer a very basophilic layer composed mainly of the somas of the rod cells and cone cells somas are very small and the nuclei are small, darkly-stained, and very close together; the layer is usually about twice as thick as the inner nuclear layer. 18

10 Rod cells and cone cells General aspects Rod cells and cone cells are photoreceptor cells; they are photosensory cells Rod cells: structure and function Rod cells are relatively long, narrow cells cell extension from the soma to the synaptic junction with bipolar cells is quite thin in the other direction from the soma is a thin cell extension to the rod part of the cell, which is of similar width as the soma 19 The rod-has two parts Inner segment of rod: contains nucleus, abundant Golgi and mitochondria. Energy (ATP) for action potentials Biosynthetic center (synthesis of rhodopsin) Rhodopsin is transported to outer segment Inner segment Outer segment 20

11 Outer segment of rod: consists of a cylindrical stack of interconnected disc-shaped photosensitive lamellae. These lamellae are produced at the base of the rod by inward extensions of the cell membrane that production is continuous, with a lamella slowly moving toward the end of the rod after it is produced, and then sloughing off from the end and phagocytized and destroyed by cells of the pigmented layer of the retina. 21 These disc-shaped membranes are filled with the rhodopsin, aka visual purple. Rhodopsin is a complex of a carotenoid called retinal (which is almost identical to Vitamin A) and a specific form of opsin opsins (or scotopsin) are a class of very similar proteins that are parts of the photopigment molecules of the sensory cells of the retina. When a light ray collides with a rhodopsin molecule the energy of the light ray causes a conformational change in the retinal part of the molecule the retinal dissociates from the opsin; as a result, the cell membrane of the entire cell experiences a change in its membrane potential. Later, the retinal and opsin are recombined via the expenditure energy from ATP 22

12 23 Bipolar cells (connected to rod cells) send impulses via the ganglion cells, the optic nerves and tracts to the lateral geniculate nuclei, then on to the visual cortex of the occipital lobe of the brain. 24

13 Cone cells: structure and function Cone cells are similar to rod cells in some ways structural differences include having no thin portion between the soma and the cone, having a wider inner segment of the cone, and having a wider, shorter, tapered and pointed outer segment of the cone. 25 Outer segment of the cone is composed of lamellae which contain one of three kinds of iodopsin photopigment (or photopsins) molecules. The three iodopsins have different abilities to absorb light rays of different wavelengths one of the three absorbs most effectively in the wavelength we perceive as blue, another in the wavelength we perceive as green, and the third in the wavelength perceived as red. Rao

14 Thus the brain can receive an impulse rate ratio from the three cone cell types that provides information on the color of the object the perceived color depends, in addition, on additional steps of information-processing in the brain itself, including comparisons with the information received from adjacent parts of the image Rao Layer of rods and cones contains the rods of the rod cells and the cones of the cone cells. External limiting membrane outer surface of the sensory retina Supportive-cells of the sensory layer of the retina A cell type called the amacrine cell is abundant in the sensory layer also other supportivecells may be present. 28

15 Light-scattering by layers inside the layer of rods and cones Light rays must pass through all of these layers before reaching the layer of rods and cones although these layers are almost perfectly transparent, a small proportion of the light rays are scattered as they pass through the layers, perceived image is not as sharply focused. 29 Foveal retina Fovea is a small part of the retina in the middle of the back of the eye provides an image of high visual acuity due to the high density of photoreceptors in that area. Also, other layers pushed off to the side 30

16 Fovea is cone cells only. Compared to rod cells, cone cells have a much lower maximum sensitivity to light and whereas rod cells can respond to light at very low levels, cone cells can not. In very dim lighting conditions we are seeing with our rod cells only; fovea is non-functional; perceived scene is colorless. Foveal retina provides much greater visual acuity than non-foveal retina but provides much lower visual sensitivity than non-foveal retina. 31 Choroid layer of the wall of the eye Choroid layer lies immediately adjacent to the retina, and thus between the retina and the sclera. Choroid layer is mainly composed of loose to dense C.T. moderately well vascularized, for providing 0 2, nutrients, etc., for the outer layers of the retina contains melanocytes for absorption of light rays coming from either direction. Sclera: a thick layer of relatively non-cellular dense C.T. 32

17 Optic disc ("blind spot"): the part of the back of the eye where the optic tract begins. Our slides are sectioned to include this part of the eye. At this location, all of the axons of the ganglion cells of the retina converge and leave the eye, composing the optic tract. 33 This results in a circular area where the other components of the sensory layer of the retina, as well as other layers of the wall of the eye, are absent that circular area has a diameter of about 1.5 mm, and it is called the optic disc, or "blind spot" the portion of the image that is projected onto the optic disc therefore can not be perceived--that part of the back of the eye is "blind", so to speak. Normally one is not aware of not being able to see part of the image with that eye, because in the other eye that part of the image is being projected onto a different part of the back of the eye and therefore onto fully-functional retina. 34

Eye. Eye Major structural layer of the wall of the eye is a thick layer of dense C.T.; that layer has two parts:

Eye. Eye Major structural layer of the wall of the eye is a thick layer of dense C.T.; that layer has two parts: General aspects Sensory receptors ; External or internal environment. A stimulus is a change in the environmental condition which is detectable by a sensory receptor 1 Major structural layer of the wall

More information

The Special Senses: Vision

The Special Senses: Vision OLLI Lecture 5 The Special Senses: Vision Vision The eyes are the sensory organs for vision. They collect light waves through their photoreceptors (located in the retina) and transmit them as nerve impulses

More information

Visual System I Eye and Retina

Visual System I Eye and Retina Visual System I Eye and Retina Reading: BCP Chapter 9 www.webvision.edu The Visual System The visual system is the part of the NS which enables organisms to process visual details, as well as to perform

More information

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye

10/8/ dpt. n 21 = n n' r D = The electromagnetic spectrum. A few words about light. BÓDIS Emőke 02 October Optical Imaging in the Eye A few words about light BÓDIS Emőke 02 October 2012 Optical Imaging in the Eye Healthy eye: 25 cm, v1 v2 Let s determine the change in the refractive power between the two extremes during accommodation!

More information

11/23/11. A few words about light nm The electromagnetic spectrum. BÓDIS Emőke 22 November Schematic structure of the eye

11/23/11. A few words about light nm The electromagnetic spectrum. BÓDIS Emőke 22 November Schematic structure of the eye 11/23/11 A few words about light 300-850nm 400-800 nm BÓDIS Emőke 22 November 2011 The electromagnetic spectrum see only 1/70 of the electromagnetic spectrum The External Structure: The Immediate Structure:

More information

EYE. The eye is an extension of the brain

EYE. The eye is an extension of the brain I SEE YOU EYE The eye is an extension of the brain Eye brain proxomity Can you see : the optic nerve bundle? Spinal cord? The human Eye The eye is the sense organ for light. Receptors for light are found

More information

PHGY Physiology. The Process of Vision. SENSORY PHYSIOLOGY Vision. Martin Paré. Visible Light. Ocular Anatomy. Ocular Anatomy.

PHGY Physiology. The Process of Vision. SENSORY PHYSIOLOGY Vision. Martin Paré. Visible Light. Ocular Anatomy. Ocular Anatomy. PHGY 212 - Physiology SENSORY PHYSIOLOGY Vision Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare The Process of Vision Vision is the process

More information

PHGY Physiology. SENSORY PHYSIOLOGY Vision. Martin Paré

PHGY Physiology. SENSORY PHYSIOLOGY Vision. Martin Paré PHGY 212 - Physiology SENSORY PHYSIOLOGY Vision Martin Paré Assistant Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare The Process of Vision Vision is the process

More information

Coarse hairs that overlie the supraorbital margins Functions include: Shading the eye Preventing perspiration from reaching the eye

Coarse hairs that overlie the supraorbital margins Functions include: Shading the eye Preventing perspiration from reaching the eye SPECIAL SENSES (INDERA KHUSUS) Dr.Milahayati Daulay Departemen Fisiologi FK USU Eye and Associated Structures 70% of all sensory receptors are in the eye Most of the eye is protected by a cushion of fat

More information

EYE STRUCTURE AND FUNCTION

EYE STRUCTURE AND FUNCTION Name: Class: Date: EYE STRUCTURE AND FUNCTION The eye is the body s organ of sight. It gathers light from the environment and forms an image on specialized nerve cells on the retina. Vision occurs when

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

EYE ANATOMY. Multimedia Health Education. Disclaimer

EYE ANATOMY. Multimedia Health Education. Disclaimer Disclaimer This movie is an educational resource only and should not be used to manage your health. The information in this presentation has been intended to help consumers understand the structure and

More information

Vision. By: Karen, Jaqui, and Jen

Vision. By: Karen, Jaqui, and Jen Vision By: Karen, Jaqui, and Jen Activity: Directions: Stare at the black dot in the center of the picture don't look at anything else but the black dot. When we switch the picture you can look around

More information

Vision. By. Leanora Thompson, Karen Vega, and Abby Brainerd

Vision. By. Leanora Thompson, Karen Vega, and Abby Brainerd Vision By. Leanora Thompson, Karen Vega, and Abby Brainerd Anatomy Outermost part of the eye is the Sclera. Cornea transparent part of outer layer Two cavities by the lens. Anterior cavity = Aqueous humor

More information

25 Things To Know. Vision

25 Things To Know. Vision 25 Things To Know Vision Magnetism Electromagnetic Energy Electricity Magnetism Electromagnetic Energy Electricity Light Frequency Amplitude Light Frequency How often it comes Wave length Peak to peak

More information

The Eye. Nakhleh Abu-Yaghi, M.B.B.S Ophthalmology Division

The Eye. Nakhleh Abu-Yaghi, M.B.B.S Ophthalmology Division The Eye Nakhleh Abu-Yaghi, M.B.B.S Ophthalmology Division Coats of the Eyeball 1- OUTER FIBROUS COAT is made up of : Posterior opaque part 2-THE SCLERA the dense white part 1- THE CORNEA the anterior

More information

Chapter Six Chapter Six

Chapter Six Chapter Six Chapter Six Chapter Six Vision Sight begins with Light The advantages of electromagnetic radiation (Light) as a stimulus are Electromagnetic energy is abundant, travels VERY quickly and in fairly straight

More information

Visual Optics. Visual Optics - Introduction

Visual Optics. Visual Optics - Introduction Visual Optics Jim Schwiegerling, PhD Ophthalmology & Optical Sciences University of Arizona Visual Optics - Introduction In this course, the optical principals behind the workings of the eye and visual

More information

1. Introduction to Anatomy of the Eye and its Adnexa

1. Introduction to Anatomy of the Eye and its Adnexa 1. Introduction to Anatomy of the Eye and its Adnexa Fig 1: A Cross section of the human eye. Let us imagine we are traveling with a ray of light into the eye. The first structure we will encounter is

More information

Sensation. What is Sensation, Perception, and Cognition. All sensory systems operate the same, they only use different mechanisms

Sensation. What is Sensation, Perception, and Cognition. All sensory systems operate the same, they only use different mechanisms Sensation All sensory systems operate the same, they only use different mechanisms 1. Have a physical stimulus (e.g., light) 2. The stimulus emits some sort of energy 3. Energy activates some sort of receptor

More information

Sensation. Sensation. Perception. What is Sensation, Perception, and Cognition

Sensation. Sensation. Perception. What is Sensation, Perception, and Cognition All sensory systems operate the same, they only use different mechanisms Sensation 1. Have a physical stimulus (e.g., light) 2. The stimulus emits some sort of energy 3. Energy activates some sort of receptor

More information

Special Senses: The Eye

Special Senses: The Eye Collin County Community College BIOL 2401: Week 9 Special Senses: The Eye 1 VISION As humans, we rely on Vision more than any other special sense. The eye itself is surrounded by accessory structures Eyelids

More information

Handout G: The Eye and How We See

Handout G: The Eye and How We See Handout G: The Eye and How We See Prevent Blindness America. (2003c). The eye and how we see. Retrieved July 31, 2003, from http://www.preventblindness.org/resources/howwesee.html Your eyes are wonderful

More information

Objectives. 3. Visual acuity. Layers of the. eye ball. 1. Conjunctiva : is. three quarters. posteriorly and

Objectives. 3. Visual acuity. Layers of the. eye ball. 1. Conjunctiva : is. three quarters. posteriorly and OCULAR PHYSIOLOGY (I) Dr.Ahmed Al Shaibani Lab.2 Oct.2013 Objectives 1. Review of ocular anatomy (Ex. after image) 2. Visual pathway & field (Ex. Crossed & uncrossed diplopia, mechanical stimulation of

More information

Special Senses. Important Concepts. Anatomy of the Eye. Anatomy of the Eye. Biol 219 Lecture 17 Vision Fall The Eye and Vision

Special Senses. Important Concepts. Anatomy of the Eye. Anatomy of the Eye. Biol 219 Lecture 17 Vision Fall The Eye and Vision Special Senses The Eye and Vision Important Concepts Describe the structures of the eye and the role of each structure in vision. Trace the pathway for vis ion from the retina to the visual cortex. Explain

More information

2 The First Steps in Vision

2 The First Steps in Vision 2 The First Steps in Vision 2 The First Steps in Vision A Little Light Physics Eyes That See light Retinal Information Processing Whistling in the Dark: Dark and Light Adaptation The Man Who Could Not

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

THE EYE. People of Asian descent have an EPICANTHIC FOLD in the upper eyelid; no functional difference.

THE EYE. People of Asian descent have an EPICANTHIC FOLD in the upper eyelid; no functional difference. THE EYE The eye is in the orbit of the skull for protection. Within the orbit are 6 extrinsic eye muscles, which move the eye. There are 4 cranial nerves: Optic (II), Occulomotor (III), Trochlear (IV),

More information

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones.

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones. Announcements 1 st exam (next Thursday): Multiple choice (about 22), short answer and short essay don t list everything you know for the essay questions Book vs. lectures know bold terms for things that

More information

November 14, 2017 Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes 2- lacrimal apparatus:

November 14, 2017 Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes 2- lacrimal apparatus: Vision: photoreceptor cells in eye 3 grps of accessory organs 1-eyebrows, eyelids, & eyelashes eyebrows: protection from debris & sun eyelids: continuation of skin, protection & lubrication eyelashes:

More information

The Human Eye and a Camera 12.1

The Human Eye and a Camera 12.1 The Human Eye and a Camera 12.1 The human eye is an amazing optical device that allows us to see objects near and far, in bright light and dim light. Although the details of how we see are complex, the

More information

Chapter Human Vision

Chapter Human Vision Chapter 6 6.1 Human Vision How Light Enters the Eye Light enters the eye through the pupil. The pupil appears dark because light passes through it without reflecting back Pupil Iris = Coloured circle of

More information

Visual Perception of Images

Visual Perception of Images Visual Perception of Images A processed image is usually intended to be viewed by a human observer. An understanding of how humans perceive visual stimuli the human visual system (HVS) is crucial to the

More information

Introduction. Chapter Aim of the Thesis

Introduction. Chapter Aim of the Thesis Chapter 1 Introduction 1.1 Aim of the Thesis The main aim of this investigation was to develop a new instrument for measurement of light reflected from the retina in a living human eye. At the start of

More information

4Basic anatomy and physiology

4Basic anatomy and physiology Hene_Ch09.qxd 8/30/04 6:51 AM Page 348 348 4Basic anatomy and physiology The eye is a highly specialized organ with an average axial length of 24 mm and a volume of 6.5 ml. Except for its anterior aspect,

More information

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot Chapter 6 Vision Exam 1 Anatomy of vision Primary visual cortex (striate cortex, V1) Prestriate cortex, Extrastriate cortex (Visual association coretx ) Second level association areas in the temporal and

More information

Sheep Eye Dissection

Sheep Eye Dissection Sheep Eye Dissection Question: How do the various parts of the eye function together to make an image appear on the retina? Materials and Equipment: Preserved sheep eye Scissors Dissection tray Tweezers

More information

HW- Finish your vision book!

HW- Finish your vision book! March 1 Table of Contents: 77. March 1 & 2 78. Vision Book Agenda: 1. Daily Sheet 2. Vision Notes and Discussion 3. Work on vision book! EQ- How does vision work? Do Now 1.Find your Vision Sensation fill-in-theblanks

More information

HSC Biology. Published Feb 9, 2017 HSC BIOLOGY OPTION: COMMUNICATION. By Sahar (99.1 ATAR)

HSC Biology. Published Feb 9, 2017 HSC BIOLOGY OPTION: COMMUNICATION. By Sahar (99.1 ATAR) HSC Biology Year 2014 Mark 92.00 Pages 11 Published Feb 9, 2017 HSC BIOLOGY OPTION: COMMUNICATION By Sahar (99.1 ATAR) Your notes author, Sahar. Sahar achieved an ATAR of 99.1 in 2014 while attending Carlingford

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2)

Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Early Visual Processing: Receptive Fields & Retinal Processing (Chapter 2, part 2) Lecture 5 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Summary of last

More information

Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye

Slide 4 Now we have the same components that we find in our eye. The analogy is made clear in this slide. Slide 5 Important structures in the eye Vision 1 Slide 2 The obvious analogy for the eye is a camera, and the simplest camera is a pinhole camera: a dark box with light-sensitive film on one side and a pinhole on the other. The image is made

More information

Biology 70 Slides for Lecture 1 Fall 2007

Biology 70 Slides for Lecture 1 Fall 2007 Biology 70 Part II Sensory Systems www.biology.ucsc.edu 1 2 intensity vs spatial position (image formation) color 3 4 motion depth (monocular) 5 6 1 depth (binocular) 1. In the lectures on perception we

More information

Vision Science I Exam 1 23 September ) The plot to the right shows the spectrum of a light source. Which of the following sources is this

Vision Science I Exam 1 23 September ) The plot to the right shows the spectrum of a light source. Which of the following sources is this Vision Science I Exam 1 23 September 2016 1) The plot to the right shows the spectrum of a light source. Which of the following sources is this spectrum most likely to be taken from? A) The direct sunlight

More information

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to:

SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 6 Human Vision Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 6.1 Parts of the eye.. Parts of

More information

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic

Topic 4: Lenses and Vision. Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Topic 4: Lenses and Vision Lens a curved transparent material through which light passes (transmit) Ex) glass, plastic Double Concave Lenses Are thinner and flatter in the middle than around the edges.

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University, Brno. Biophysics of visual perception

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University, Brno. Biophysics of visual perception Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University, Brno 1 Lecture outline Basic properties of light Anatomy of eye Optical properties of eye Retina biological

More information

The Eye. Morphology of the eye (continued) Morphology of the eye. Sensation & Perception PSYC Thomas E. Van Cantfort, Ph.D

The Eye. Morphology of the eye (continued) Morphology of the eye. Sensation & Perception PSYC Thomas E. Van Cantfort, Ph.D Sensation & Perception PSYC420-01 Thomas E. Van Cantfort, Ph.D The Eye The Eye The function of the eyeball is to protect the photoreceptors The role of the eye is to capture an image of objects that we

More information

ABO Certification Training. Part I: Anatomy and Physiology

ABO Certification Training. Part I: Anatomy and Physiology ABO Certification Training Part I: Anatomy and Physiology Major Ocular Structures Centralis Nerve Major Ocular Structures The Cornea Cornea Layers Epithelium Highly regenerative: Cells reproduce so rapidly

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 3 Digital Image Fundamentals ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

EYE: THE PHOTORECEPTOR SYSTEM. Prof. Dr. Huda Al Khateeb

EYE: THE PHOTORECEPTOR SYSTEM. Prof. Dr. Huda Al Khateeb EYE: THE PHOTORECEPTOR SYSTEM Prof. Dr. Huda Al Khateeb Lecture 1 The eye ball Objectives By the end of this lecture the student should: 1. List the layers and chambers of the eye ball 2. Describe the

More information

Photography (cont d)

Photography (cont d) Lecture 13 Ch. 4 Photography continued Ch. 5 The Eye Feb. 23, 2010 Exams will be back on Feb. 25 Homework 5 is due Feb. 25 Read all of Ch. 5. on The Eye. 1 Photography (cont d) Polarizing and haze filters

More information

-eyelashes are richly innervated and triggers reflex blinking

-eyelashes are richly innervated and triggers reflex blinking The Eye and Vision -vision is the dominant sense -70% of all sensory receptors in the body are in the eyes -half of the cerebral cortex is involved in some aspect of visual processing -accessory structures

More information

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision

Vision. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 13. Vision. Vision PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Vision Module 13 2 Vision Vision The Stimulus Input: Light Energy The

More information

Special Senses- THE EYE. Pages

Special Senses- THE EYE. Pages Special Senses- THE EYE Pages 548-569 Accessory Structures Eyebrows Eyelids Conjunctiva Lacrimal Apparatus Extrinsic Eye Muscles EYEBROWS Deflect debris to side of face Facial recognition Nonverbal communication

More information

Eyeball Model Lab Date Block

Eyeball Model Lab Date Block Science 8 Name Eyeball Model Lab Date Block Problem: Identify the twelve key parts of the eye and describe their function. Materials: dissecting scissors ping pong ball transparent plastic ordinary scissors

More information

[Chapter 2] Ocular Geometry and Topography. Elements of Ocular Structure

[Chapter 2] Ocular Geometry and Topography. Elements of Ocular Structure [Chapter 2] Ocular Geometry and Topography Before Sam Clemens became Mark Twain, he had been, among other things, a riverboat pilot, a placer miner, and a newspaper reporter, occupations in which success

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Eye growth regulation KL Schmid, CF Wildsoet

More information

Materials Cow eye, dissecting pan, dissecting kit, safety glasses, lab apron, and gloves

Materials Cow eye, dissecting pan, dissecting kit, safety glasses, lab apron, and gloves Cow Eye Dissection Guide Introduction How do we see? The eye processes the light through photoreceptors located in the eye that send signals to the brain and tells us what we are seeing. There are two

More information

Seeing and Perception. External features of the Eye

Seeing and Perception. External features of the Eye Seeing and Perception Deceives the Eye This is Madness D R Campbell School of Computing University of Paisley 1 External features of the Eye The circular opening of the iris muscles forms the pupil, which

More information

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY CO-ORDINATION CLASS 09 and 10 Name :... Date :...

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY CO-ORDINATION CLASS 09 and 10 Name :... Date :... 1 P a g e 2 P a g e 3 P a g e 4 P a g e 5 P a g e 6 P a g e 7 P a g e 8 P a g e 9 P a g e 10 P a g e Name :... Date :... 11 P a g e Name :... Date :... 12 P a g e 13 P a g e 14 P a g e play important role

More information

BIOPHYSICS OF VISION GEOMETRIC OPTICS OF HUMAN EYE. Refraction media of the human eye. D eye = 63 diopter, D cornea =40, D lens = 15+

BIOPHYSICS OF VISION GEOMETRIC OPTICS OF HUMAN EYE. Refraction media of the human eye. D eye = 63 diopter, D cornea =40, D lens = 15+ BIOPHYSICS OF VISION THEORY OF COLOR VISION ELECTRORETINOGRAM Two problems: All cows are black in dark! Playing tennis in dark with illuminated lines, rackets, net, and ball! Refraction media of the human

More information

Chapter 6 Human Vision

Chapter 6 Human Vision Chapter 6 Notes: Human Vision Name: Block: Human Vision The Humane Eye: 8) 1) 2) 9) 10) 4) 5) 11) 12) 3) 13) 6) 7) Functions of the Eye: 1) Cornea a transparent tissue the iris and pupil; provides most

More information

Zoology. Lesson: Physiology of Vision. Lesson Developer: Dr. Mahtab Zarin. College/Dept: Zoology, University of Delhi

Zoology. Lesson: Physiology of Vision. Lesson Developer: Dr. Mahtab Zarin. College/Dept: Zoology, University of Delhi Zoology Lesson: Physiology of Vision Lesson Developer: Dr. Mahtab Zarin College/Dept: Zoology, University of Delhi Institute of Life Long Learning, University of Delhi 1 Table of Contents Introduction

More information

The Human Brain and Senses: Memory

The Human Brain and Senses: Memory The Human Brain and Senses: Memory Methods of Learning Learning - There are several types of memory, and each is processed in a different part of the brain. Remembering Mirror Writing Today we will be.

More information

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Lecture 2 Digital Image Fundamentals Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Contents Elements of visual perception Light and the electromagnetic spectrum Image sensing

More information

1. What are the components of your nervous system? 2. How do telescopes and human eyes work?

1. What are the components of your nervous system? 2. How do telescopes and human eyes work? Chapter 18 Vision and Hearing Although small, your eyes and ears are amazingly important and complex organs. Do you know how your eyes and ears work? Scientists have learned enough about these organs to

More information

Biophysics of the senses: vision

Biophysics of the senses: vision Medical Physics I. Biophysics of the senses: vision Ferenc Bari Professor & chairman Department of Medical Physics & Informatics Szeged, December 3, 2015. Basic properties of light Visible electromagnetic

More information

The Physiology of the Senses Lecture 1 - The Eye

The Physiology of the Senses Lecture 1 - The Eye The Physiology of the Senses Lecture 1 - The Eye www.tutis.ca/senses/ Contents Objectives... 2 Introduction... 2 Accommodation... 3 The Iris... 4 The Cells in the Retina... 5 Receptive Fields... 8 The

More information

Let s start with a retina, and then go back to structure of the whole eye

Let s start with a retina, and then go back to structure of the whole eye Slide 1) Neuroscience C 3045; Eye and Brain Professor M. Glickstein January 2017 Comparative Anatomy of the Eye Let s start with a retina, and then go back to structure of the whole eye Slide 2) King Snake

More information

Handout 1: Color Survey

Handout 1: Color Survey Handout : Color Survey Have you ever thought about whether everyone sees colors in the same way? Here s your chance to find out! Your teacher will display crayons or slides. Categorize each of the 5 colors

More information

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections Reading Optional: Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, 1995. Research papers:

More information

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes:

The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The eye* The eye is a slightly asymmetrical globe, about an inch in diameter. The front part of the eye (the part you see in the mirror) includes: The iris (the pigmented part) The cornea (a clear dome

More information

Chapter 2: The Beginnings of Perception

Chapter 2: The Beginnings of Perception Chapter 2: The Beginnings of Perception We ll see the first three steps of the perceptual process for vision https:// 49.media.tumblr.co m/ 87423d97f3fbba8fa4 91f2f1bfbb6893/ tumblr_o1jdiqp4tc1 qabbyto1_500.gif

More information

This question addresses OPTICAL factors in image formation, not issues involving retinal or other brain structures.

This question addresses OPTICAL factors in image formation, not issues involving retinal or other brain structures. Bonds 1. Cite three practical challenges in forming a clear image on the retina and describe briefly how each is met by the biological structure of the eye. Note that by challenges I do not refer to optical

More information

The Human Eye Nearpoint of vision

The Human Eye Nearpoint of vision The Human Eye Nearpoint of vision Rochelle Payne Ondracek Edited by Anne Starace Abstract The human ability to see is the result of an intricate interconnection of muscles, receptors and neurons. Muscles

More information

Unit 1 DIGITAL IMAGE FUNDAMENTALS

Unit 1 DIGITAL IMAGE FUNDAMENTALS Unit 1 DIGITAL IMAGE FUNDAMENTALS What Is Digital Image? An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair

More information

PSY 214 Lecture # (09/14/2011) (Introduction to Vision) Dr. Achtman PSY 214. Lecture 4 Topic: Introduction to Vision Chapter 3, pages 44-54

PSY 214 Lecture # (09/14/2011) (Introduction to Vision) Dr. Achtman PSY 214. Lecture 4 Topic: Introduction to Vision Chapter 3, pages 44-54 Corrections: A correction needs to be made to NTCO3 on page 3 under excitatory transmitters. It is possible to excite a neuron without sending information to another neuron. For example, in figure 2.12

More information

HOW THE EYE EVOLVED By Adrea R. Benkoff, M.D.

HOW THE EYE EVOLVED By Adrea R. Benkoff, M.D. HOW THE EYE EVOLVED By Adrea R. Benkoff, M.D. HOW THE EYE EVOLVED BY ADREA R. BENKOFF, M.D. CREATIONISM vs. NATURAL SELECTION The complex structure of the eye has been used as evidence to support the theory

More information

Chapter: Sound and Light

Chapter: Sound and Light Table of Contents Chapter: Sound and Light Section 1: Sound Section 2: Reflection and Refraction of Light Section 3: Mirrors, Lenses, and the Eye Section 4: Light and Color 1 Sound Sound When an object

More information

Science 8 Unit 2 Pack:

Science 8 Unit 2 Pack: Science 8 Unit 2 Pack: Name Page 0 Section 4.1 : The Properties of Waves Pages By the end of section 4.1 you should be able to understand the following: Waves are disturbances that transmit energy from

More information

Chapter 22: Illumination and Vision

Chapter 22: Illumination and Vision Chapter 22: Illumination and Vision Learning Outcomes After successful studying this chapter, You should be able to Explain how we see objects? Discus the anatomical structure of the eye, Describe the

More information

Cow Eye Dissection. Online dissection, for kids abstaining:

Cow Eye Dissection. Online dissection, for kids abstaining: Cow Eye Dissection Introductory Discussion: Tell the students that we will be learning about what eyes are made of and how they work by dissecting a cow eye. Talk about where the eye comes from, and how

More information

DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I

DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I 4 Topics to Cover Light and EM Spectrum Visual Perception Structure Of Human Eyes Image Formation on the Eye Brightness Adaptation and

More information

The Eye. (We ll leave the Lord Sauron jokes to you.)

The Eye. (We ll leave the Lord Sauron jokes to you.) The Eye (We ll leave the Lord Sauron jokes to you.) When you look in the mirror, you only see a very small part of your eyes. In reality, they are incredibly complex organs with a pretty big job: enabling

More information

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine.

The Human Visual System. Lecture 1. The Human Visual System. The Human Eye. The Human Retina. cones. rods. horizontal. bipolar. amacrine. Lecture The Human Visual System The Human Visual System Retina Optic Nerve Optic Chiasm Lateral Geniculate Nucleus (LGN) Visual Cortex The Human Eye The Human Retina Lens rods cones Cornea Fovea Optic

More information

A&P 1 Eye & Vision Lab Vision Concepts

A&P 1 Eye & Vision Lab Vision Concepts A&P 1 Eye & Vision Lab Vision Concepts In this "Lab Exercise Guide", we will be looking at the basics of vision. NOTE: these notes do not follow the order of the videos. You should be able to read this

More information

Vision. Sensation & Perception. Functional Organization of the Eye. Functional Organization of the Eye. Functional Organization of the Eye

Vision. Sensation & Perception. Functional Organization of the Eye. Functional Organization of the Eye. Functional Organization of the Eye Vision Sensation & Perception Part 3 - Vision Visible light is the form of electromagnetic radiation our eyes are designed to detect. However, this is only a narrow band of the range of energy at different

More information

VISUAL SYSTEM PHYSIOLOGY. Discipline of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

VISUAL SYSTEM PHYSIOLOGY. Discipline of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania VISUAL SYSTEM PHYSIOLOGY Discipline of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania Outer layer of the eye Cornea - No bood vessels - Most powerful

More information

Psychology in Your Life

Psychology in Your Life Sarah Grison Todd Heatherton Michael Gazzaniga Psychology in Your Life FIRST EDITION Chapter 5 Sensation and Perception 2014 W. W. Norton & Company, Inc. Section 5.1 How Do Sensation and Perception Affect

More information

Chapter 25: Applied Optics. PHY2054: Chapter 25

Chapter 25: Applied Optics. PHY2054: Chapter 25 Chapter 25: Applied Optics PHY2054: Chapter 25 1 Operation of the Eye 24 mm PHY2054: Chapter 25 2 Essential parts of the eye Cornea transparent outer structure Pupil opening for light Lens partially focuses

More information

The Photoreceptor Mosaic

The Photoreceptor Mosaic The Photoreceptor Mosaic Aristophanis Pallikaris IVO, University of Crete Institute of Vision and Optics 10th Aegean Summer School Overview Brief Anatomy Photoreceptors Categorization Visual Function Photoreceptor

More information

STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING. Elements of Digital Image Processing Systems. Elements of Visual Perception structure of human eye

STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING. Elements of Digital Image Processing Systems. Elements of Visual Perception structure of human eye DIGITAL IMAGE PROCESSING STUDY NOTES UNIT I IMAGE PERCEPTION AND SAMPLING Elements of Digital Image Processing Systems Elements of Visual Perception structure of human eye light, luminance, brightness

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS-GRADE: VIII OPTICAL INSTRUMENTS SIMPLE MICROSCOPE A simple microscope consists of a single convex lens of a short focal length. The object

More information

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics

Visual Perception. Readings and References. Forming an image. Pinhole camera. Readings. Other References. CSE 457, Autumn 2004 Computer Graphics Readings and References Visual Perception CSE 457, Autumn Computer Graphics Readings Sections 1.4-1.5, Interactive Computer Graphics, Angel Other References Foundations of Vision, Brian Wandell, pp. 45-50

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

Retinal stray light originating from intraocular lenses and its effect on visual performance van der Mooren, Marie Huibert

Retinal stray light originating from intraocular lenses and its effect on visual performance van der Mooren, Marie Huibert University of Groningen Retinal stray light originating from intraocular lenses and its effect on visual performance van der Mooren, Marie Huibert IMPORTANT NOTE: You are advised to consult the publisher's

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Exemplar for Internal Achievement Standard Level 2

Exemplar for Internal Achievement Standard Level 2 Exemplar for internal assessment resource Physics 2.2A for Achievement Standard 91169 Exemplar for Internal Achievement Standard 91169 Level 2 This exemplar supports assessment against: Achievement Standard

More information