Hyperspectral Image Data

Size: px
Start display at page:

Download "Hyperspectral Image Data"

Transcription

1 CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p. 1 Hyperspectral Image Data Files needed for this exercise (all are standard ENVI files): Images: cup95eff.int &.hdr Spectral Library: jpl1.sli &.hdr Tasks: Use the MNF transform to a) remove residual noise from the spectral data and b) provide a convenient mechanism for selecting prototype spectra. The minimum (or maximum) noise fraction (MNF) transformation is used to isolate noise from signal in the data set. The MNF would be followed by an inverse transform to produce spectral images that are relatively noise free but retain most, if not all, of the spectral detail. 1,2 The resulting data will be particularly useful for direct comparison of the image spectra with library spectra. The MNF transform as modified from Green et al. (1988) and implemented in ENVI is essentially two cascaded Principal Component transformations. The first transformation, based on an estimated noise covariance matrix, decorrelates and rescales the noise in the data. This first step results in transformed data in which the noise has unit variance and no band-to-band correlations. The second step is a standard Principal Component transformation of the noise-whitened data. Further processing can take two forms: 1) Elimination of MNF component images with high noise content For the purposes of further spectral processing, the inherent dimensionality of the data is determined by examination of the final eigenvalues and the associated images. The data space can be divided into two parts: one part associated with large eigenvalues and coherent eigenimages, and a complementary part with near-unity eigenvalues and noise-dominated images. By using only the coherent portions, the noise is separated from the data, thus improving spectral processing results. 2) Isolation of spectral prototypes. The structure of the transformed data space is that of a central circular mass (noise) with multiple spikes or protrusions. Each spike represents a spectrally unique direction and typically relates to a particular type of material, and the tip of the spike represents the purest spectral representation of the material. These extrema are typically effective as "endmembers" for use with hyperspectral classification methods. Both the eigenvalues and the MNF images (eigenimages) are used to evaluate the dimensionality of the data. Eigenvalues for bands that contain information will be an order of magnitude larger than those that contain only noise. Since the noise variance was "whitened" by being normalized to a magnitude of 1.0, the break between signal and noise should occur for eigenvalues near 1.0. The signal-containing images will be spatially coherent, while the noise images will not contain any significant spatial information. 1 Green, A. A., Berman, M., Switzer, P, and Craig, M. D., 1988, A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1): Boardman J. W., and Kruse, F. A., 1994, Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada: in Proceedings, Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, p. I I-418.

2 CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p. 2 Original Image Dark (or flat field) Image Image Statistics Noise Statistics Homogeneous Image Area Noise Fraction Statistics Existing Statistics Estimated from the image MNF Transform MNF Component Images Eigenvalues Evaluation, Band reduction &/or filtering Reduced component, "noise-whitened" image set Inverse MNF Transform "noise-whitened" spectral image set Figure 1: Diagram of the general MNF procedure Forward MNF transform using noise statistics estimated from the image The optimal method for computing the image noise statistics is to use a dark current image collected at the time of the mission. In the absence of a dark current image one may estimate the noise using an ENVI utility to estimate noise statistics directly from the image data. This procedure assumes that each pixel contains both signal and noise, and that adjacent pixels contain the same signal but different noise. A "shift difference" is performed on the data by differencing adjacent pixels to the right and above each pixel and averaging the results to obtain the "noise" value to assign to the pixel being processed. The best noise estimate is gathered using the shift-difference statistics from a homogeneous area rather than from the whole image. ENVI allows you to select the subset for statistics extraction. We will perform the MNF transform, identify a subset of MNF images that contains more signal than noise. apply the inverse MNF transform to a reduced data set in order to produce a less noisy data set (with the same number of bands as the original data set) in the original spectral domain. Use the MNF image set to select candidate endmembers. Use the MNF inverse spectral data to compare with spectral library data.

3 CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p. 3 Create a reduced-noise subset using the MNF transform: 1. Load and display the cup95eff.int image. This is an AVIRIS hyperspectral image of an area near Cuprite, NV. The image has been atmospherically corrected using the ATREM atmospheric correction procedure 3,4 It was then "polished" to remove consistent noise and error features using the Empirical Flat Field Optimal Reflectance Transformation (EFFORT) procedure. 5 The reflectance values have been multiplied by 1000 in order to represent the spectra as integer values. 2. Select Transforms > MNF Rotation > Forward MNF > Estimate Noise Statistics From Data 3. Select the cup95eff.int image in the MNF Transform Input File and then select "OK". The "Forward MNF Transform Parameters" dialog appears. 4. In the "Forward MNF Transform Parameters" window, enter a filename in the "Enter Output Noise Stats Filename [.sta]" text box (e.g. cup95eff_mnf-noise.sta). 5. Enter a filename in the "Enter Output MNF Stats Filename [.sta]" text box (e.g. cup95eff_mnf.sta). Warning - Be sure that the MNF and noise statistics files have different names. Also, remember where you put these. You will need to access the Output MNF Stats file later. 6. Set the "Select Subset from Eigenvalues" toggle to No 7. Select "File" or "Memory" output. (e.g., cup95_mnf.img) Figure 2: MNF parameters window 8. Click "OK". When ENVI has finished processing, it loads the MNF bands into the Available Bands List and displays the MNF Eigenvalues Plot Window. 9. Examine the MNF Eigenvalues and note where the eigenvalues approach a value of 1.0. The MNF transform suppresses noise by normalizing the noise covariance matrix to a value of 1.0. Thus, one might expect the transition from signal to noise to occur when the eigenvalues of the MNF image set approach 1.0. Select the first MNF image and display as a gray scale image. 10. Select Tools >Animation and select all of the MNF bands. Step through the images and note the correspondence of the apparent image quality with the eigenvalue plot. Would using an eigenvalue of 1.0 delineate an effective boundary between signal and noise? 11. Display the 1 st three bands of the MNF image as a color image. Note that the image appears "flat", i.e., the topographic characteristics (shadows and illuminated areas) have been minimized and the color variations are prominent. 12. Select Transforms > MNF Rotation > Inverse MNF Transform 3 Gao, B.-C., & Davis, C. O. (1997). Development of a line-by-line-based atmosphere removal algorithm for airborne and spaceborne imaging spectrometers. SPIE Proceedings, Vol (pp ). 4 Gao, B.-C., Heidebrecht, K. B., & Goetz, A. F. H. (1993). Derivation of scaled surface reflectances from AVIRIS data. Remote Sensing of Environment, 44, Boardman, J. W., 1998, Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT: a lesson in accuracy versus precision, in Summaries of the Seventh JPL Airborne Earth Science Workshop, Vol. 1, p. 53.

4 CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p Choose the cup95eff_mnf.img image and select the first 13 bands of the MNF data set. This would be my choice for the transition from signal to noise in the image set. 14. Select "OK" 15. Choose the "cup95_mnf.sta" statistics file in the "Enter Forward MNF Stats Filename. 16. Name the output file (e.g., cup95_mnfinv-13.img) and select "OK". Compare the Filtered and original Images The point of MNF filtering in this exercise is to improve the comparison of the image spectra with laboratory spectra and, more generally, to improve the identification of target materials. One way to qualitatively evaluate the effect of the smoothing is to directly compare spectra from each image. 1. Display the original and the inverse of the MNF subset. (cup95eff.int; cup95eff_mnfinv.img). Use the same bands for the RGB display (R:2.101; G:2.2008; B:2.3402). 2. Link the displays, display the spectral profiles (Tools > Profiles > z-profiles) for both images, and compare the filtered and unfiltered spectra by moving the cursor around in either image. Look for smoother features in the MNFinv spectra. Ideally, the differences are due to a reduction of noise, and not a loss of spectral detail. 3. Compare multiple spectra for one mineral type. a. Pick an area that is predominantly one color. Examples are outlines in Figure 3. b. Move the cursor to one of the areas. c. In the spectral profile window, select Options > collect spectra. d. Move the cursor around within that area (most easily done with the arrow keys). Note that the MNFinv spectra are more stable than spectra for the original bands (Figure 4). e. Note also, the presence of specific absorption bands. These are molecular absorption features that are specific to each mineral type. They tend to be much more clearly defined in the noise-whitened image data. Figure 3: Uniform color areas. Figure 4: Spectra from original image (left), vs. spectra from the inverse MNF image (right).

5 CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p. 5 Examine MNF Scatter Plots A major use of the MNF data is to locate spectrally unique data. The MNF procedure is said to "whiten" noise, meaning that the noise is compressed to a unit variance in all bands. This tends to result in enhancing and isolating spectrally unique data. Use Tools > 2-D Scatter Plots in the Main Image window to examine the MNF images. 1. Examine the high variance (low band number) MNF bands. Notice the sharp protrusions in the low band number MNF scatter plots. These are spectrally distinct materials. 2. Examine at least one scatter plot of low variance (high band number) MNF bands (change the bands by selecting Options > Change Bands in the Scatter Plot window). a) MNF bands 1 & 2 b) MNF bands 15 & 16 Figure 5: 2-D scatterplots of MNF eigenimages Use Scatter Plots to Select Spectral Prototypes (endmembers) We will now investigate the possibility of selecting prototype pixels that represent the purest available examples of different minerals in the image using MNF images and the 2-D scatter plot tools. These prototypes, or "endmembers", will form the basis of a hyperspectral classification scheme. 1. Display the cup95eff_mnfinv image and use that to create a scatterplot of cup95eff_mnf bands 1 and 2. Note: Make sure that the 2-D scatterplot is created using the MNF inverse image. This is necessary in order to examine the spectra. 2. Create another scatterplot using MNF bands 15 & 16 (Figure 5b). Note the zero mean, the lack of any correlation between these two bands (spherical shape) and that the variance is O(1). 3. In the scatter plot, use the drawing function to select the outer portion of one of the more distinct protruding arms in the scatter plot and note the location in the image. Note: instead of selecting a cluster to obtain an average spectrum of mineral type, you are selecting the most extreme examples (red pixels in Figure 5). These should be representative of the "purest" examples of the mineral.

6 CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p Change the class color and select a set of pixels at the extreme end of each of the protruding arms. 5. Export all the classes that you have identified. Select Options > Export All in the Options pulldown menu of the scatter plot to export the identified pixels as ENVI Regions of Interest (ROIs). Optional: Continue the process, selecting other unique prototype ROIs using different combinations of the first several MNF bands. 6. Display the MNF inverse image and select Tools > Region of Interest > ROI Tool. (This may simply highlight the ROI window that you've already been working with.) 7. In the ROI Tool window, choose Select ALL and the Stats. 8. In the ROI Statistics Results window click on Select Plot > Mean for All ROIs. The plot should look something like that shown in the Figure on the right, with wavelength on the x-axis (not band numbers) and values in the 100s. 9. Right click in the ROI Statistics Results window and select Optiona > New Window with Plots. This makes it easier to enlarge the plot window and change the plot parameters. 10. Right Click in the plot window and select Plot Figure 6: Endmember spectra Key. 11. Close the 2-D scatter plot by selecting File > Cancel in the Scatter Plot window. Spectral Libraries / Reflectance Spectra The next task is to identify the minerals whose reflectance spectra most nearly resemble the image spectra. ENVI includes several spectral libraries. For the purposes of this exercise, you will use the JPL Spectral Library (Groves et al., 1992) and the USGS Spectral Library (Clarke et al., 1993). 1. Compare apparent reflectance spectra from the image to selected library reflectance spectra. a. Select Spectral > Spectral Libraries > Spectral Library Viewer from the ENVI main menu. b. In the Spectral Library Input File dialog, click Open > Spectral Library, select jpl_lib > jpl1.sli, and click OK and select any mineral from the library. This will cause the Spectral Library Plot to appear. c. The spectral library reflectance values range from The image reflectance is scaled from You cannot compare magnitude, but you can compare shape. d. Plot the following spectra by selecting the spectra names in the Spectral Library Viewer dialog (right click in the viewer box to display the names of the minerals): ALUNITE SO-4A BUDDINGTONITE FELDS TS-11A CALCITE C-3D KAOLINITE WELL ORDERED PS-1A LEPIDOLITE YELLOW PS-13A Select Options > Plot Key to display the labels for each spectrum.

7 CEE 615: Digital Image Processing Lab 11: Hyperspectral Noise p. 7 e. Customize the plot by selecting Edit > Plot Parameters from the plot window menu. In the Plot Parameters dialog, do the following: Select the X-Axis radio button, and adjust the Range to 2.00 to 2.5 change the Margin fields until the X margins are as desired. Select the Y-Axis radio button, and Change the Range to be from 0.4 to 0.9. (I also like to change the number of minor ticks to 4 in both the x- and y-axes, feeling that it makes the divisions easier to read.) Click Apply then Cancel in the Plot Parameters window. Blue is difficult to see against the black background. Change the display color to something that will be easily distinguishable. Select Edit > Data Parameters. Select the spectrum that appears in blue (Calcite in my example) and change the color. Click Apply then Cancel in the Data Parameters window. The final graph should look something like. Figure 7: Customized Plot Parameters f. Compare the prototype spectra to the mineral spectra. This will be easier to do in a separate window. In the Spectral Library Plots window, click on Options > New Window: blank. In the ROI Statistics window, click on the label of a mineral spectrum and dragging it to the new window. Next, drag the mineral spectrum that you wish to compare into the new window. Repeat for as many spectra as you wish to compare.

ENVI Tutorial: Advanced Hyperspectral Analysis

ENVI Tutorial: Advanced Hyperspectral Analysis ENVI Tutorial: Advanced Hyperspectral Analysis Table of Contents OVERVIEW OF THIS TUTORIAL...3 MNF TRANSFORMS AND ENDMEMBERS...4 Background: MNF Transforms...4 Open EFFORT-Corrected Data...4 Open and Load

More information

Hyperspectral image processing and analysis

Hyperspectral image processing and analysis Hyperspectral image processing and analysis Lecture 12 www.utsa.edu/lrsg/teaching/ees5083/l12-hyper.ppt Multi- vs. Hyper- Hyper-: Narrow bands ( 20 nm in resolution or FWHM) and continuous measurements.

More information

ENVI Classic Tutorial: Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification 2

ENVI Classic Tutorial: Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification 2 ENVI Classic Tutorial: Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) Classification 2 Files

More information

Basic Hyperspectral Analysis Tutorial

Basic Hyperspectral Analysis Tutorial Basic Hyperspectral Analysis Tutorial This tutorial introduces you to visualization and interactive analysis tools for working with hyperspectral data. In this tutorial, you will: Analyze spectral profiles

More information

ENVI Tutorial: Hyperspectral Signatures and Spectral Resolution

ENVI Tutorial: Hyperspectral Signatures and Spectral Resolution ENVI Tutorial: Hyperspectral Signatures and Spectral Resolution Table of Contents OVERVIEW OF THIS TUTORIAL... 2 SPECTRAL RESOLUTION... 3 Spectral Modeling and Resolution... 4 CASE HISTORY: CUPRITE, NEVADA,

More information

Remote Sensing 4113 Lab 08: Filtering and Principal Components Mar. 28, 2018

Remote Sensing 4113 Lab 08: Filtering and Principal Components Mar. 28, 2018 Remote Sensing 4113 Lab 08: Filtering and Principal Components Mar. 28, 2018 In this lab we will explore Filtering and Principal Components analysis. We will again use the Aster data of the Como Bluffs

More information

APPLICATION OF HYPERSPECTRAL REMOTE SENSING IN TARGET DETECTION AND MAPPING USING FIELDSPEC ASD IN UDAYGIRI (M.P.)

APPLICATION OF HYPERSPECTRAL REMOTE SENSING IN TARGET DETECTION AND MAPPING USING FIELDSPEC ASD IN UDAYGIRI (M.P.) 1 International Journal of Advance Research, IJOAR.org Volume 1, Issue 3, March 2013, Online: APPLICATION OF HYPERSPECTRAL REMOTE SENSING IN TARGET DETECTION AND MAPPING USING FIELDSPEC ASD IN UDAYGIRI

More information

Geology/Geography 4113 Remote Sensing Lab 06: AVIRIS Spectra of Goldfield, NV March 7, 2018

Geology/Geography 4113 Remote Sensing Lab 06: AVIRIS Spectra of Goldfield, NV March 7, 2018 Geology/Geography 4113 Remote Sensing Lab 06: AVIRIS Spectra of Goldfield, NV March 7, 2018 We will use the image processing package ENVI to examine AVIRIS hyperspectral data of the Goldfield, NV mining

More information

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 1, JANUARY Chein-I Chang, Senior Member, IEEE, and Antonio Plaza, Member, IEEE

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 1, JANUARY Chein-I Chang, Senior Member, IEEE, and Antonio Plaza, Member, IEEE IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 1, JANUARY 2006 63 A Fast Iterative Algorithm for Implementation of Pixel Purity Index Chein-I Chang, Senior Member, IEEE, Antonio Plaza, Member,

More information

Geologic Mapping Using Combined Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and SIR-C/X-SAR Data. Fred A.

Geologic Mapping Using Combined Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and SIR-C/X-SAR Data. Fred A. Geologic Mapping Using Combined Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and SIR-C/X-SAR Data Fred A. Kruse Analytical Imaging and Geophysics LLC, 4450 Arapahoe Ave., Suite 100,

More information

Remote Sensing Instruction Laboratory

Remote Sensing Instruction Laboratory Laboratory Session 217513 Geographic Information System and Remote Sensing - 1 - Remote Sensing Instruction Laboratory Assist.Prof.Dr. Weerakaset Suanpaga Department of Civil Engineering, Faculty of Engineering

More information

Remote Sensing 4113 Lab 10: Lunar Classification April 11, 2018

Remote Sensing 4113 Lab 10: Lunar Classification April 11, 2018 Remote Sensing 4113 Lab 10: Lunar Classification April 11, 2018 Part I Introduction In this lab we ll explore the use of sophisticated band math to estimate composition, and we ll also explore the use

More information

Textbook, Chapter 15 Textbook, Chapter 10 (only 10.6)

Textbook, Chapter 15 Textbook, Chapter 10 (only 10.6) AGOG 484/584/ APLN 551 Fall 2018 Concept definition Applications Instruments and platforms Techniques to process hyperspectral data A problem of mixed pixels and spectral unmixing Reading Textbook, Chapter

More information

8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS

8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS Editing and viewing coordinates, scattergrams and PCA 8. EDITING AND VIEWING COORDINATES, CREATING SCATTERGRAMS AND PRINCIPAL COMPONENTS ANALYSIS Aim: To introduce you to (i) how you can apply a geographical

More information

Hyperspectral User Manual. [Type the author name]

Hyperspectral User Manual. [Type the author name] Hyperspectral User Manual [Type the author name] IMPORTANT: PLEASE READ CAREFULLY Limited Warranty CytoViva warrants for a period of one (1) year from the date of purchase from CytoViva, Inc. or an authorized

More information

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur

Mod. 2 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Fernerkundung und Waldinventur Histograms of gray values for TM bands 1-7 for the example image - Band 4 and 5 show more differentiation than the others (contrast=the ratio of brightest to darkest areas of a landscape). - Judging from

More information

6. Multivariate EDA. ACE 492 SA - Spatial Analysis Fall 2003

6. Multivariate EDA. ACE 492 SA - Spatial Analysis Fall 2003 1 Objectives 6. Multivariate EDA ACE 492 SA - Spatial Analysis Fall 2003 c 2003 by Luc Anselin, All Rights Reserved This lab covers some basic approaches to carry out EDA with a focus on discovering multivariate

More information

This week we will work with your Landsat images and classify them using supervised classification.

This week we will work with your Landsat images and classify them using supervised classification. GEPL 4500/5500 Lab 4: Supervised Classification: Part I: Selecting Training Sets Due: 4/6/04 This week we will work with your Landsat images and classify them using supervised classification. There are

More information

BIOMASS AND HEALTH BASED FOREST COVER DELINEATION USING SPECTRAL UN-MIXING INTRODUCTION

BIOMASS AND HEALTH BASED FOREST COVER DELINEATION USING SPECTRAL UN-MIXING INTRODUCTION BIOMASS AND HEALTH BASED FOREST COVER DELINEATION USING SPECTRAL UN-MIXING ABSTRACT Mohan P. Tiruveedhula 1, PhD candidate Joseph Fan 1, Assistant Professor Ravi R. Sadasivuni 2, PhD candidate Surya S.

More information

Land Remote Sensing Lab 4: Classication and Change Detection Assigned: October 15, 2017 Due: October 27, Classication

Land Remote Sensing Lab 4: Classication and Change Detection Assigned: October 15, 2017 Due: October 27, Classication Name: Land Remote Sensing Lab 4: Classication and Change Detection Assigned: October 15, 2017 Due: October 27, 2017 In this lab, you will generate several gures. Please sensibly name these images, save

More information

Title pseudo-hyperspectral image synthesi. Author(s) Hoang, Nguyen Tien; Koike, Katsuaki.

Title pseudo-hyperspectral image synthesi. Author(s) Hoang, Nguyen Tien; Koike, Katsuaki. Title Hyperspectral transformation from E pseudo-hyperspectral image synthesi Author(s) Hoang, Nguyen Tien; Koike, Katsuaki International Archives of the Photo Citation and Spatial Information Sciences

More information

LAB 2: Sampling & aliasing; quantization & false contouring

LAB 2: Sampling & aliasing; quantization & false contouring CEE 615: Digital Image Processing Spring 2016 1 LAB 2: Sampling & aliasing; quantization & false contouring A. SAMPLING: Observe the effects of the sampling interval near the resolution limit. The goal

More information

Hyperspectral Imagery: A New Tool For Wetlands Monitoring/Analyses

Hyperspectral Imagery: A New Tool For Wetlands Monitoring/Analyses WRP Technical Note WG-SW-2.3 ~- Hyperspectral Imagery: A New Tool For Wetlands Monitoring/Analyses PURPOSE: This technical note demribea the spectral and spatial characteristics of hyperspectral data and

More information

Enhancement of Multispectral Images and Vegetation Indices

Enhancement of Multispectral Images and Vegetation Indices Enhancement of Multispectral Images and Vegetation Indices ERDAS Imagine 2016 Description: We will use ERDAS Imagine with multispectral images to learn how an image can be enhanced for better interpretation.

More information

Application of Linear Spectral unmixing to Enrique reef for classification

Application of Linear Spectral unmixing to Enrique reef for classification Application of Linear Spectral unmixing to Enrique reef for classification Carmen C. Zayas-Santiago University of Puerto Rico Mayaguez Marine Sciences Department Stefani 224 Mayaguez, PR 00681 c_castula@hotmail.com

More information

MULTISPECTRAL IMAGE PROCESSING I

MULTISPECTRAL IMAGE PROCESSING I TM1 TM2 337 TM3 TM4 TM5 TM6 Dr. Robert A. Schowengerdt TM7 Landsat Thematic Mapper (TM) multispectral images of desert and agriculture near Yuma, Arizona MULTISPECTRAL IMAGE PROCESSING I SENSORS Multispectral

More information

SPECTRAL POLISHING OF HIGH RESOLUTION IMAGING SPECTROSCOPY DATA

SPECTRAL POLISHING OF HIGH RESOLUTION IMAGING SPECTROSCOPY DATA SPECTRAL POLISHING OF HIGH RESOLUTION IMAGING SPECTROSCOPY DATA Daniel Schläpfer a and Rudolf Richter b a ReSe Applications Schläpfer, Wil, Switzerland daniel@rese.ch b German Aerospace Center (DLR), Wessling,

More information

GEOG432: Remote sensing Lab 3 Unsupervised classification

GEOG432: Remote sensing Lab 3 Unsupervised classification GEOG432: Remote sensing Lab 3 Unsupervised classification Goal: This lab involves identifying land cover types by using agorithms to identify pixels with similar Digital Numbers (DN) and spectral signatures

More information

GEOG432: Remote sensing Lab 3 Unsupervised classification

GEOG432: Remote sensing Lab 3 Unsupervised classification GEOG432: Remote sensing Lab 3 Unsupervised classification Goal: This lab involves identifying land cover types by using agorithms to identify pixels with similar Digital Numbers (DN) and spectral signatures

More information

Mixed Pixels Endmembers & Spectral Unmixing

Mixed Pixels Endmembers & Spectral Unmixing Mixed Pixels Endmembers & Spectral Unmixing Mixed Pixel Analysis 1 Mixed Pixels and Spectral Unmixing Spectral Mixtures Areal Aggregate Intimate TYPES of MIXTURES Areal Aggregate Intimate Pixel 1 Pixel

More information

Color and More. Color basics

Color and More. Color basics Color and More In this lesson, you'll evaluate an image in terms of its overall tonal range (lightness, darkness, and contrast), its overall balance of color, and its overall appearance for areas that

More information

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI)

Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) Seasonal Progression of the Normalized Difference Vegetation Index (NDVI) For this exercise you will be using a series of six SPOT 4 images to look at the phenological cycle of a crop. The images are SPOT

More information

QGIS LAB SERIES GST 101: Introduction to Geospatial Technology Lab 6: Understanding Remote Sensing and Analysis

QGIS LAB SERIES GST 101: Introduction to Geospatial Technology Lab 6: Understanding Remote Sensing and Analysis QGIS LAB SERIES GST 101: Introduction to Geospatial Technology Lab 6: Understanding Remote Sensing and Analysis Objective Explore and Understand How to Display and Analyze Remotely Sensed Imagery Document

More information

Comparing Across Categories Part of a Series of Tutorials on using Google Sheets to work with data for making charts in Venngage

Comparing Across Categories Part of a Series of Tutorials on using Google Sheets to work with data for making charts in Venngage Comparing Across Categories Part of a Series of Tutorials on using Google Sheets to work with data for making charts in Venngage These materials are based upon work supported by the National Science Foundation

More information

A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization

A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 6, JUNE 2003 1525 A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization Qian Du, Member, IEEE, Hsuan

More information

4. Measuring Area in Digital Images

4. Measuring Area in Digital Images Chapter 4 4. Measuring Area in Digital Images There are three ways to measure the area of objects in digital images using tools in the AnalyzingDigitalImages software: Rectangle tool, Polygon tool, and

More information

Super-Resolution of Multispectral Images

Super-Resolution of Multispectral Images IJSRD - International Journal for Scientific Research & Development Vol. 1, Issue 3, 2013 ISSN (online): 2321-0613 Super-Resolution of Images Mr. Dhaval Shingala 1 Ms. Rashmi Agrawal 2 1 PG Student, Computer

More information

DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING

DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING DEFENSE APPLICATIONS IN HYPERSPECTRAL REMOTE SENSING James M. Bishop School of Ocean and Earth Science and Technology University of Hawai i at Mānoa Honolulu, HI 96822 INTRODUCTION This summer I worked

More information

Image Enhancement in spatial domain. Digital Image Processing GW Chapter 3 from Section (pag 110) Part 2: Filtering in spatial domain

Image Enhancement in spatial domain. Digital Image Processing GW Chapter 3 from Section (pag 110) Part 2: Filtering in spatial domain Image Enhancement in spatial domain Digital Image Processing GW Chapter 3 from Section 3.4.1 (pag 110) Part 2: Filtering in spatial domain Mask mode radiography Image subtraction in medical imaging 2 Range

More information

Texture characterization in DIRSIG

Texture characterization in DIRSIG Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2001 Texture characterization in DIRSIG Christy Burtner Follow this and additional works at: http://scholarworks.rit.edu/theses

More information

Drum Transcription Based on Independent Subspace Analysis

Drum Transcription Based on Independent Subspace Analysis Report for EE 391 Special Studies and Reports for Electrical Engineering Drum Transcription Based on Independent Subspace Analysis Yinyi Guo Center for Computer Research in Music and Acoustics, Stanford,

More information

Module 11 Digital image processing

Module 11 Digital image processing Introduction Geo-Information Science Practical Manual Module 11 Digital image processing 11. INTRODUCTION 11-1 START THE PROGRAM ERDAS IMAGINE 11-2 PART 1: DISPLAYING AN IMAGE DATA FILE 11-3 Display of

More information

-f/d-b '') o, q&r{laniels, Advisor. 20rt. lmage Processing of Petrographic and SEM lmages. By James Gonsiewski. The Ohio State University

-f/d-b '') o, q&r{laniels, Advisor. 20rt. lmage Processing of Petrographic and SEM lmages. By James Gonsiewski. The Ohio State University lmage Processing of Petrographic and SEM lmages Senior Thesis Submitted in partial fulfillment of the requirements for the Bachelor of Science Degree At The Ohio State Universitv By By James Gonsiewski

More information

Background Adaptive Band Selection in a Fixed Filter System

Background Adaptive Band Selection in a Fixed Filter System Background Adaptive Band Selection in a Fixed Filter System Frank J. Crosby, Harold Suiter Naval Surface Warfare Center, Coastal Systems Station, Panama City, FL 32407 ABSTRACT An automated band selection

More information

Exercise 4-1 Image Exploration

Exercise 4-1 Image Exploration Exercise 4-1 Image Exploration With this exercise, we begin an extensive exploration of remotely sensed imagery and image processing techniques. Because remotely sensed imagery is a common source of data

More information

Drawing Bode Plots (The Last Bode Plot You Will Ever Make) Charles Nippert

Drawing Bode Plots (The Last Bode Plot You Will Ever Make) Charles Nippert Drawing Bode Plots (The Last Bode Plot You Will Ever Make) Charles Nippert This set of notes describes how to prepare a Bode plot using Mathcad. Follow these instructions to draw Bode plot for any transfer

More information

Thermo ImageQuest Version 1.0.1

Thermo ImageQuest Version 1.0.1 Thermo ImageQuest Version 1.0.1 User Guide XCALI-97200 Revision B May 2009 2009 Thermo Fisher Scientific Inc. All rights reserved. Xcalibur is a registered trademark of Thermo Fisher Scientific Inc. in

More information

Image analysis. CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror

Image analysis. CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror Image analysis CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror 1 Outline Images in molecular and cellular biology Reducing image noise Mean and Gaussian filters Frequency domain interpretation

More information

Laboratory 1: Motion in One Dimension

Laboratory 1: Motion in One Dimension Phys 131L Spring 2018 Laboratory 1: Motion in One Dimension Classical physics describes the motion of objects with the fundamental goal of tracking the position of an object as time passes. The simplest

More information

8th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING

8th ESA ADVANCED TRAINING COURSE ON LAND REMOTE SENSING Urban Mapping Practical Sebastian van der Linden, Akpona Okujeni, Franz Schug Humboldt Universität zu Berlin Instructions for practical Summary The Urban Mapping Practical introduces students to the work

More information

GIS and Remote Sensing

GIS and Remote Sensing GE110 Fall 2008 Week 4 October 18, 2010 GIS and Remote Sensing Lab 2 LANDSAT 7 and ASTER In this lab, you will: 1. Process the LANDSAT 7 ETM+ image to emphasize the useful information a. Transformations

More information

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec )

Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Land Cover Change Analysis An Introduction to Land Cover Change Analysis using the Multispectral Image Data Analysis System (MultiSpec ) Level: Grades 9 to 12 Windows version With Teacher Notes Earth Observation

More information

AmericaView EOD 2016 page 1 of 16

AmericaView EOD 2016 page 1 of 16 Remote Sensing Flood Analysis Lesson Using MultiSpec Online By Larry Biehl Systems Manager, Purdue Terrestrial Observatory (biehl@purdue.edu) v Objective The objective of these exercises is to analyze

More information

Image interpretation and analysis

Image interpretation and analysis Image interpretation and analysis Grundlagen Fernerkundung, Geo 123.1, FS 2014 Lecture 7a Rogier de Jong Michael Schaepman Why are snow, foam, and clouds white? Why are snow, foam, and clouds white? Today

More information

CRISM Data Users' Workshop Nili Fossae Data Processing Walkthrough

CRISM Data Users' Workshop Nili Fossae Data Processing Walkthrough CRISM Data Users' Workshop Nili Fossae Data Processing Walkthrough March 22, 2009 Frank Seelos and the CRISM Team Walkthrough / Take Home Exercise Blue Text: CAT/ENVI interface instructions Green Text:

More information

PASS Sample Size Software

PASS Sample Size Software Chapter 945 Introduction This section describes the options that are available for the appearance of a histogram. A set of all these options can be stored as a template file which can be retrieved later.

More information

CrossLoopPatterner User Guide

CrossLoopPatterner User Guide CrossLoopPatterner User Guide 110.01.1609.UG Sep 23, 2016 CrossLoopPatterner converts antenna pattern measurements (LOOP) files and AIS measurements into SeaSonde antenna patterns which are used to obtain

More information

A Comparison of AVIRIS and Synthetic Landsat Data for Land Use Classification at the Urban Fringe

A Comparison of AVIRIS and Synthetic Landsat Data for Land Use Classification at the Urban Fringe A Comparison of AVIRIS and Synthetic Landsat Data for Land Use Classification at the Urban Fringe Platt, R.V. IIASA Interim Report August 2002 Platt, R.V. (2002) A Comparison of AVIRIS and Synthetic Landsat

More information

Experiment 2: Electronic Enhancement of S/N and Boxcar Filtering

Experiment 2: Electronic Enhancement of S/N and Boxcar Filtering Experiment 2: Electronic Enhancement of S/N and Boxcar Filtering Synopsis: A simple waveform generator will apply a triangular voltage ramp through an R/C circuit. A storage digital oscilloscope, or an

More information

A graph is an effective way to show a trend in data or relating two variables in an experiment.

A graph is an effective way to show a trend in data or relating two variables in an experiment. Chem 111-Packet GRAPHING A graph is an effective way to show a trend in data or relating two variables in an experiment. Consider the following data for exercises #1 and 2 given below. Temperature, ºC

More information

A Quick Spin on Autodesk Revit Building

A Quick Spin on Autodesk Revit Building 11/28/2005-3:00 pm - 4:30 pm Room:Americas Seminar [Lab] (Dolphin) Walt Disney World Swan and Dolphin Resort Orlando, Florida A Quick Spin on Autodesk Revit Building Amy Fietkau - Autodesk and John Jansen;

More information

1. Theory of remote sensing and spectrum

1. Theory of remote sensing and spectrum 1. Theory of remote sensing and spectrum 7 August 2014 ONUMA Takumi Outline of Presentation Electromagnetic wave and wavelength Sensor type Spectrum Spatial resolution Spectral resolution Mineral mapping

More information

GEOSS Americas/Caribbean Remote Sensing Workshop November Lab 2 Investigating Cloud Phase, NDVI, Ocean Color and Sea Surface Temperatures

GEOSS Americas/Caribbean Remote Sensing Workshop November Lab 2 Investigating Cloud Phase, NDVI, Ocean Color and Sea Surface Temperatures GEOSS Americas/Caribbean Remote Sensing Workshop 26-30 November 2007 Lab 2 Investigating Cloud Phase, NDVI, Ocean Color and Sea Surface Temperatures Kathleen Strabala kathy.strabala@ssec.wisc.edu Table:

More information

Recovering highlight detail in over exposed NEF images

Recovering highlight detail in over exposed NEF images Recovering highlight detail in over exposed NEF images Request I would like to compensate tones in overexposed RAW image, exhibiting a loss of detail in highlight portions. Response Highlight tones can

More information

EO-1 User Guide v. 2.3

EO-1 User Guide v. 2.3 EO-1 User Guide v. 2.3 http://eo1.usgs.gov & http://eo1.gsfc.nasa.gov 1 EO-1 User Guide Version 2.3 July 15, 2003 Supporting materials are available at: http://eo1.usgs.gov and http://eo1.gsfc.nasa.gov

More information

How to generate different file formats

How to generate different file formats How to generate different file formats Different mediums print, web, and video require different file formats. This guide describes how to generate appropriate file formats for these mediums by using Adobe

More information

GST 101: Introduction to Geospatial Technology Lab Series. Lab 6: Understanding Remote Sensing and Aerial Photography

GST 101: Introduction to Geospatial Technology Lab Series. Lab 6: Understanding Remote Sensing and Aerial Photography GST 101: Introduction to Geospatial Technology Lab Series Lab 6: Understanding Remote Sensing and Aerial Photography Document Version: 2013-07-30 Organization: Del Mar College Author: Richard Smith Copyright

More information

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-2, February- 2016]

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-2, February- 2016] Mapping saline soils using Hyperion hyperspectral images data in Mleta plain of the Watershed of the great Oran Sebkha (West Algeria) Dif Amar 1, BENALI Abdelmadjid 2, BERRICHI Fouzi 3 1,3 Earth observation

More information

GE 113 REMOTE SENSING. Topic 7. Image Enhancement

GE 113 REMOTE SENSING. Topic 7. Image Enhancement GE 113 REMOTE SENSING Topic 7. Image Enhancement Lecturer: Engr. Jojene R. Santillan jrsantillan@carsu.edu.ph Division of Geodetic Engineering College of Engineering and Information Technology Caraga State

More information

Chapter 11 Coherence Editing: Pulse-field Gradients and Phase Cycling

Chapter 11 Coherence Editing: Pulse-field Gradients and Phase Cycling Chapter 11 Coherence Editing: Pulse-field Gradients and Phase Cycling Coherence editing is used to remove unwanted signals from NMR spectra. For example, in the double quantum filtered COSY experiment,

More information

Shimadzu RF-5301 Fluorimeter operation guide for students

Shimadzu RF-5301 Fluorimeter operation guide for students Department of Chemistry Teaching Laboratories Shimadzu RF-5301 Fluorimeter operation guide for students General directions Detailed instructions for use of the fluorimeter may be given in the lab script,

More information

Satellite image classification

Satellite image classification Satellite image classification EG2234 Earth Observation Image Classification Exercise 29 November & 6 December 2007 Introduction to the practical This practical, which runs over two weeks, is concerned

More information

ME scope Application Note 01 The FFT, Leakage, and Windowing

ME scope Application Note 01 The FFT, Leakage, and Windowing INTRODUCTION ME scope Application Note 01 The FFT, Leakage, and Windowing NOTE: The steps in this Application Note can be duplicated using any Package that includes the VES-3600 Advanced Signal Processing

More information

Using QuickBird Imagery in ESRI Software Products

Using QuickBird Imagery in ESRI Software Products Using QuickBird Imagery in ESRI Software Products TABLE OF CONTENTS 1. Introduction...2 Purpose Scope Image Stretching Color Guns 2. Imagery Usage Instructions...4 ArcView 3.x...4 ArcGIS...7 i Using QuickBird

More information

Image analysis. CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror

Image analysis. CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror Image analysis CS/CME/BioE/Biophys/BMI 279 Oct. 31 and Nov. 2, 2017 Ron Dror 1 Outline Images in molecular and cellular biology Reducing image noise Mean and Gaussian filters Frequency domain interpretation

More information

Introduction to Filters

Introduction to Filters Introduction to Filters Using SAGA Tutorial ID: IGET_RS_006 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial

More information

Christopher D. Curtis and Sebastián M. Torres

Christopher D. Curtis and Sebastián M. Torres 15B.3 RANGE OVERSAMPLING TECHNIQUES ON THE NATIONAL WEATHER RADAR TESTBED Christopher D. Curtis and Sebastián M. Torres Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma,

More information

Introduction to Remote Sensing

Introduction to Remote Sensing Introduction to Remote Sensing Outline Remote Sensing Defined Resolution Electromagnetic Energy (EMR) Types Interpretation Applications Remote Sensing Defined Remote Sensing is: The art and science of

More information

IDENTIFICATION AND MAPPING OF HAWAIIAN CORAL REEFS USING HYPERSPECTRAL REMOTE SENSING

IDENTIFICATION AND MAPPING OF HAWAIIAN CORAL REEFS USING HYPERSPECTRAL REMOTE SENSING IDENTIFICATION AND MAPPING OF HAWAIIAN CORAL REEFS USING HYPERSPECTRAL REMOTE SENSING Jessica Frances N. Ayau College of Education University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Coral reefs

More information

PRELIMINARY EXPERIMENT OF SIMPLE FIELD SPECTROSCOPY BY USING FILTERED COMMERCIAL DIGITAL CAMERA

PRELIMINARY EXPERIMENT OF SIMPLE FIELD SPECTROSCOPY BY USING FILTERED COMMERCIAL DIGITAL CAMERA Proceedings of the 8th Asian Geothermal Symposium, December 9-10, 2008 PRELIMINARY EXPERIMENT OF SIMPLE FIELD SPECTROSCOPY BY USING FILTERED COMMERCIAL DIGITAL CAMERA Isao TAKASHIMA 1, MYINT SOE 1, Daizo

More information

Technical Note How to Compensate Lateral Chromatic Aberration

Technical Note How to Compensate Lateral Chromatic Aberration Lateral Chromatic Aberration Compensation Function: In JAI color line scan cameras (3CCD/4CCD/3CMOS/4CMOS), sensors and prisms are precisely fabricated. On the other hand, the lens mounts of the cameras

More information

Ground Truth for Calibrating Optical Imagery to Reflectance

Ground Truth for Calibrating Optical Imagery to Reflectance Visual Information Solutions Ground Truth for Calibrating Optical Imagery to Reflectance The by: Thomas Harris Whitepaper Introduction: Atmospheric Effects on Optical Imagery Remote sensing of the Earth

More information

Lesson 4 Holes and Rounds

Lesson 4 Holes and Rounds Lesson 4 Holes and Rounds 111 Figure 4.1 Breaker OBJECTIVES Sketch arcs in sections Create a straight hole through a part Complete a Sketched hole Understand the Hole Tool Use Info to extract information

More information

GEO/EVS 425/525 Unit 2 Composing a Map in Final Form

GEO/EVS 425/525 Unit 2 Composing a Map in Final Form GEO/EVS 425/525 Unit 2 Composing a Map in Final Form The Map Composer is the main mechanism by which the final drafts of images are sent to the printer. Its use requires that images be readable within

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. Just over two hundred years ago Thomas Young demonstrated the interference of light by illuminating two closely spaced narrow slits with light from a single light source.

More information

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR

DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR DETECTION OF SMALL AIRCRAFT WITH DOPPLER WEATHER RADAR Svetlana Bachmann 1, 2, Victor DeBrunner 3, Dusan Zrnic 2 1 Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma

More information

Chapter 6: TVA MR and Cardiac Function

Chapter 6: TVA MR and Cardiac Function Chapter 6 Cardiac MR Introduction Chapter 6: TVA MR and Cardiac Function The Time-Volume Analysis (TVA) optional module calculates time-dependent behavior of volumes in multi-phase studies from MR. An

More information

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications )

Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Preparing Remote Sensing Data for Natural Resources Mapping (image enhancement, rectifications ) Why is this important What are the major approaches Examples of digital image enhancement Follow up exercises

More information

An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods

An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods 19 An Efficient Color Image Segmentation using Edge Detection and Thresholding Methods T.Arunachalam* Post Graduate Student, P.G. Dept. of Computer Science, Govt Arts College, Melur - 625 106 Email-Arunac682@gmail.com

More information

HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS. International Atomic Energy Agency, Vienna, Austria

HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS. International Atomic Energy Agency, Vienna, Austria HYPERSPECTRAL IMAGERY FOR SAFEGUARDS APPLICATIONS G. A. Borstad 1, Leslie N. Brown 1, Q.S. Bob Truong 2, R. Kelley, 3 G. Healey, 3 J.-P. Paquette, 3 K. Staenz 4, and R. Neville 4 1 Borstad Associates Ltd.,

More information

CHANGE DETECTION BY THE IR-MAD AND KERNEL MAF METHODS IN LANDSAT TM DATA COVERING A SWEDISH FOREST REGION

CHANGE DETECTION BY THE IR-MAD AND KERNEL MAF METHODS IN LANDSAT TM DATA COVERING A SWEDISH FOREST REGION CHANGE DETECTION BY THE IR-MAD AND KERNEL MAF METHODS IN LANDSAT TM DATA COVERING A SWEDISH FOREST REGION Allan A. NIELSEN a, Håkan OLSSON b a Technical University of Denmark, National Space Institute

More information

PHYC 500: Introduction to LabView. Exercise 9 (v 1.1) Spectral content of waveforms. M.P. Hasselbeck, University of New Mexico

PHYC 500: Introduction to LabView. Exercise 9 (v 1.1) Spectral content of waveforms. M.P. Hasselbeck, University of New Mexico PHYC 500: Introduction to LabView M.P. Hasselbeck, University of New Mexico Exercise 9 (v 1.1) Spectral content of waveforms This exercise provides additional experience with the Waveform palette, along

More information

v References Nexus RS Workshop (English Version) August 2018 page 1 of 44

v References Nexus RS Workshop (English Version) August 2018 page 1 of 44 v References NEXUS Remote Sensing Workshop August 6, 2018 Intro to Remote Sensing using MultiSpec By Larry Biehl Systems Manager, Purdue Terrestrial Observatory (biehl@purdue.edu) MultiSpec Introduction

More information

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE

EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE EXPERIMENT NUMBER 10 TRANSIENT ANALYSIS USING PSPICE Objective: To learn to use a circuit simulator package for plotting the response of a circuit in the time domain. Preliminary: Revise laboratory 8 to

More information

Reference Manual SPECTRUM. Signal Processing for Experimental Chemistry Teaching and Research / University of Maryland

Reference Manual SPECTRUM. Signal Processing for Experimental Chemistry Teaching and Research / University of Maryland Reference Manual SPECTRUM Signal Processing for Experimental Chemistry Teaching and Research / University of Maryland Version 1.1, Dec, 1990. 1988, 1989 T. C. O Haver The File Menu New Generates synthetic

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS PRINCIPAL COMPONENTS BASED TECHNIQUES FOR HYPERSPECTRAL IMAGE DATA by Leonidas Fountanas December 2004 Thesis Advisor: Second Reader: Christopher Olsen

More information

Spotlight on Hyperspectral

Spotlight on Hyperspectral Spotlight on Hyperspectral From analyzing eelgrass beds in the Pacific Northwest to identifying pathfinder minerals for geological exploration, hyperspectral imagery and analysis is proving its worth for

More information

Evaluation of Sentinel-2 bands over the spectrum

Evaluation of Sentinel-2 bands over the spectrum Evaluation of Sentinel-2 bands over the spectrum S.E. Hosseini Aria, M. Menenti, Geoscience and Remote sensing Department Delft University of Technology, Netherlands 1 outline ointroduction - Concept odata

More information

Benchtop System Quick Start

Benchtop System Quick Start Benchtop System Quick Start Release 5.2 Resonon Inc. Dec 11, 2018 CONTENTS 1 System Overview 1 2 Basic Data Acquisition 3 2.1 Data Modes................................................ 3 2.2 Start The

More information

Why Should We Care? More importantly, it is easy to lie or deceive people with bad plots

Why Should We Care? More importantly, it is easy to lie or deceive people with bad plots Elementary Plots Why Should We Care? Everyone uses plotting But most people ignore or are unaware of simple principles Default plotting tools (or default settings) are not always the best More importantly,

More information